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Abstract

The random preference, Fechner (or ‘white noise’), and constant error (or ‘tremble’) models of stochastic
choice under risk are compared. Various combinations of these approaches are used with expected utility and
rank-dependent theory. The resulting models are estimated in a random effects framework using experimental
data from two samples of 46 subjects who each faced 90 pairwise choice problems. The best fitting model uses
the random preference approach with a tremble mechanism, in conjunction with rank-dependent theory. As
subjects gain experience, trembles become less frequent and there is less deviation from behaviour consistent
with expected utility theory.
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Over the last twenty years, the growth of experimental research into decision making
under risk, and the resulting accumulation of evidence of deviations from the predictions
of expected utility theory, has led to the development of many alternative theories of
choice. In almost all these theories, the choices of any given individual are taken to
be fully determined by fixed preferences. Recently, however, there has been a revival
of interest among economic theorists in modelling the stochastic element in decision
making. In this paper, by means of microeconometric analysis of experimental data, we
compare the explanatory power of three of the most prominent models of stochastic
choice to emerge in recent discussions.

The new interest in stochastic choice is partly a response to experimental evidence
of what appears to be random variation in individuals’ decisions. For example, in a
number of tightly-controlled experiments in which subjects have confronted exactly the
same pairwise choice problem on two occasions, separated only by a short time interval,
the proportion who choose differently in the two cases has often been found to be of
the order of 20 to 30 per cent.! Such evidence suggests that stochastic variation is an
essential feature of decision-making behaviour, and not merely the outward manifestation
of changes in the values of unobserved variables.
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Interest has also been generated by several studies which have attempted to find a ‘best
buy’ from the set of deterministic theories of choice under risk by estimating alternative
models using experimental data.> Such estimation exercises require the specification of
stochastic ‘error’ mechanisms. Different researchers have assumed fundamentally differ-
ent mechanisms, while comparing the performance of the same deterministic theories.
But choosing between alternative stochastic specifications is not just a matter of econo-
metric convenience: whether a given pattern of behaviour is classified as a systematic—
that is, non-random—deviation from the predictions of a given deterministic theory can
depend on the stochastic specification that is used.> We suggest that the ‘best buy’ prob-
lem is better posed as a choice between alternative stochastic theories. Thus, alternative
stochastic specifications, just like the determinisitic theories to which they are added,
should be tested for their explanatory power.

Three alternative approaches to the modelling of stochastic choice have been discussed
in recent papers. The ‘constant error’ or ‘tremble’ approach proposes that each individual
normally behaves according to some deterministic theory of choice, but subject to some
constant probability of a lapse of concentration; if such a lapse occurs, choices are
random. The ‘Fechner’ or ‘white noise’ approach proposes that the individual maximizes
some form of utility function which includes a stochastic disturbance term. The ‘random
preference’ approach proposes that, for each individual, there is a set of alternative
preference relations; facing any particular decision problem, the individual acts on one
of these preference relations, selected at random. These approaches embody different
explanations of stochastic variation—explaining it as the product either of error in the
execution of preferences (the constant error approach), or of error in the formation of
preferences (the Fechner approach), or of uncertainty about preferences (the random
preference approach).

Our principal objective in this paper is to compare the explanatory power of these three
approaches in conjunction both with expected utility theory and with its most prominent
rival, rank-dependent theory. In principle, this analysis could be extended to include other
non-expected utility theories; our main reason for considering only these two theories is
to keep our investigation within manageable bounds. However, for reasons that we shall
explain later in the paper, we think it unlikely that other known non-expected utility
theories would perform markedly better than rank-dependent theory in explaining our
data.

Our analysis also breaks new ground by investigating how far the behaviour of exper-
imental subjects is modified in the light of experience of and familiarity with a given
type of task. Critics of experimental economics sometimes suggest that experimentally-
observed deviations from deterministic expected utility theory represent some combina-
tion of systematic and random errors, made by naive respondents who are unfamiliar
with the decision tasks they confront. Implicit in this suggestion is the notion that, as
individuals gain experience of the decision-making environment, both kinds of error will
tend to become less frequent. Our analysis allows us to separate the deterministic and
stochastic elements in choice, and to track how each element changes as individuals
become more experienced.
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1. Three models of stochastic choice

We consider decisions between pairs of risky lotteries or prospects. Let X = {x,, ..., x,}
be a set of money consequences with x, < x; < --- < x,,. A prospect is a probability dis-
tribution over those consequences; typical prospects will be denoted by p = (py, - - - » P,,)
and q = (g, - - - » ,,)- A decision problem is a pair of prospects {p, q}.

A core theory is a function V(-,-) which assigns a real-valued index of subjective
value to every pair (p, z) where p is a prospect and z € Z is a vector of person-specific
parameters. The content of Z depends on the theory. For example, in expected utility
(EU) theory, Z is the set of all vectors z = (uq, . . ., u,) of von Neumann—-Morgenstern
utility indices satisfying the monotonicity condition u#, < u; < --- < u,; we then have:

n?

V(p,z) = Zpiui' ey

Later in this paper we will also be concerned with rank-dependent (RD) theory (Quiggin,
1982). This can be represented as a deterministic theory in which Z is the set of all
vectors Z = (uy, ..., U, ay, - .. ,da,) where the u; terms are interpreted as for EU, and
the a; terms are the parameters of a probability transformation function : [0, 1] —
[0, 1] which is monotonically increasing, with 77(0) = 0 and 7 (1) = 1. Then:

V(p,z) =) wu, (2
where the w; terms (the decision weights) are given by

wy = 7(py)s (3)

and
wizw(ép_j)_w(gp_,> (i=1.....n). (3b)

Person-specific parameters are used to allow a theory to account for interpersonal vari-
ation in preferences. When a core theory is interpreted deterministically, it is assumed
that for any given person, the values of these parameters are fixed, and that decisions
maximize subjective value.

We now consider how a stochastic component might be grafted onto a core theory. As
an expositional device, it is helpful to assume that some given core theory provides a nor-
matively compelling account of rational choice, and to imagine the process of choosing
between two prospects p, q being split into three stages:* preference selection, calcula-
tion, and action. In the first stage, the decision-maker identifies her current preferences,
represented by a particular vector z. In the second stage, she calculates the values of
V(p,z) and V(q, z) and resolves to choose whichever prospect has the higher subjec-
tive value. In the third stage, she implements her choice (say, by pressing a key on a
keyboard). Randomness could enter the choice process at any of these stages.
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The first possibility is that randomness enters at the preference selection stage: the
individual is uncertain about her own preferences (while being certain that they have
whatever general properties are required by the core theory). This can be modelled by
assuming that for any given individual, there is a probability distribution over Z. The
vector of person-specific parameters used for each decision problem is a random drawing
Z from this distribution. The choice between p and q is then determined by the sign of
V(p,2) — V(q,2).° This stochastic specification is the random preference model. This
model, with EU as the core theory, is due to Becker, DeGroot and Marschak (1963). It
has recently been reconsidered and generalized by Loomes and Sugden (1995).

A second possibility is that randomness enters at the calculation stage: we might
imagine that the individual has ‘true’ preferences, represented by the core theory in con-
junction with some fixed z, but that her calculations of subjective values are subject
to random error. This error can be modelled by adding a stochastic term to the dif-
ference in subjective value, so that the choice between p and q is determined by the
sign of V(p,z) — V(q,z) + &, where ¢ is a continuous random variable, symmetrically
distributed around zero. This stochastic specification is the Fechner model (named after
Fechner, 1860/1966). This model, like the first, was developed by Becker, DeGroot and
Marschak (1963); it has recently been used by Hey and Orme (1994) and Carbone and
Hey (1994) in estimating a wide range of alternative models of choice under risk.

The final possibility is that randomness enters at the action stage. We might imagine
that the individual sometimes fails properly to understand a decision problem, or suffers
a lapse of concentration or tremble, with the result that her action is unconnected with
her preferences. This kind of error can be modelled by assuming that, for all decision
problems {p, q}, there is some fixed probability 0 < @ < 1 that the decision is made
at random. With probability 1 — w, the decision is determined by the sign of V(p, z) —
V(q,z). This stochastic specification will be called the constant error model. It was
developed by Harless and Camerer (1994), who use it to compare the power of various
theories of choice under risk.®

There is no obvious reason to assume that only one of these forms of randomness
is present. In principle, these models of stochastic variation can be combined with one
another. Moreover, there is a practical econometric reason for considering hybrid mod-
els. The random preference model implies that, in certain classes of decision problems,
choice is not stochastic. Take any core theory, and consider any decision problem {p, q}
such that, in that theory, V(p,z) > V(q, z) for all z. For example, this is the case if
the core theory is EU or RD and if p stochastically dominates q. Then the random pref-
erence model implies that p is chosen with probability one. Thus, with EU or RD as
the core theory, a single violation of dominance (i.e., a case in which a stochastically
dominated prospect is chosen) is sufficient to refute the random preference model. In any
experiment with many subjects, each of whom faces many choice problems, there are
almost certain to be some instances of the kinds of misunderstandings, confusions and
errors that the constant error model represents. If any of these trembles creates a violation
of dominance, an EU- or RD-based random preference model cannot be estimated. An
obvious solution to this problem is to add a tremble mechanism to the random preference
model.



ALTERNATIVE STOCHASTIC THEORIES OF RISKY CHOICE 107

The Fechner model does not confront this problem so directly: for every decision
problem {p, q}, the Fechner model implies that each prospect is chosen with non-zero
probability. However, if experimental subjects sometimes make the kind of errors that
are best modelled as trembles, adding a tremble mechanism to a Fechner model will
improve its specification.

2. Existing evidence

Hey and Orme (1994), Carbone and Hey (1994) and Harless and Camerer (1994) com-
pare the predictive power of alternative theories of choice under risk; the first two papers
use the Fechner approach while the third uses the constant error aproach. Although
these three papers address a common problem, it is difficult to use them to compare
the explanatory power of the two models of stochastic variation. Hey and Orme’s and
Carbone and Hey’s strategy is to present parameterized forms of the various determin-
istic theories, to add a Fechner error term, and then to estimate each of these models,
separately for each of a set of experimental subjects. In contrast, Harless and Camerer
do not estimate person-specific parameters: they test predictions which are independent
of those parameters, using data which are aggregated across subjects.

A small number of recent experimental studies have compared the explanatory power
of different stochastic specifications. Ballinger and Wilcox (1997) test a number of impli-
cations of the Fechner and constant error models which are independent of the core
theory with which those specifications are combined. Their data reject the constant error
model but not the Fechner model.” Carbone (1998) compares all three stochastic spec-
ifications, using EU as the core theory and estimating parameterized models subject by
subject. The constant error model performs least well, but neither of the other two models
emerges as obviously better than the other.

In the light of these investigations, it seems clear that the constant error model is
inadequate. Given the extreme simplicity of that model, this finding is perhaps not sur-
prising; and it does not rule out the possibility that a tremble mechanism might be part
of a successful hybrid model of stochastic choice. Little is yet known about the relative
performances of the Fechner and random preference models, particularly in conjunction
with non-EU theories.

3. Data

The experiment which generated our data set is described in detail by Loomes and
Sugden (1998). Here, we merely summarize its main features.

There were 92 subjects, recruited from the student population of the University of
York. Each subject began the experiment by facing a set of 45 pairwise choice problems,
presented in random order. After a short break, the same 45 pairwise choices were
presented again, in a different random order. At the end of the experiment, one problem
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was selected at random for each subject; the subject then played out the gamble described
by the prospect she had chosen in that problem, and was paid accordingly.

For each subject, the 45 choices involved different probability mixes of three fixed
consequences. Subjects were divided at random between two subsamples, the ‘£30 group’
and the ‘£20 group.” For the £30 group, the consequences were x, = £0, x, = £10, x, =
£30; for the £20 group, they were x, = £0, x, = £10, x, = £20. The parameters of the
two sets of 45 problems are presented in Tables la and 1b. The final three columns of
these tables show the values of the parameters d, = p, — ¢, and d, = p, — ¢,, and the
quantity —d,/d,, whose relevance will become apparent.

For each subsample, each of the non-dominance Problems 1-40 requires a choice
between a pair of prospects p, q, where d, + d, < 0 and d, > 0; thus, neither prospect
stochastically dominates the other, and p is unambiguously riskier than q. In EUT, a
person’s preference ranking of any such pair is determined by her degree of risk aversion
and by the value of —d,/d,: where the subject’s attitude to risk parameter u, to be defined
in Section 5, exceeds —d, /d,, p is chosen; otherwise, q is chosen. These 40 problems can
be subdivided into five sets of eight: Problems 1-8, 9-16, 17-24, 25-32, and 33-40. For
a given subsample, the value of —d,/d, is constant for all problems in any one of these
sets, but increases from set to set, the lowest values of —d,/d, being associated with the
highest-numbered problems. Thus, we might expect p to be more attractive relative to q
in the higher-numbered sets. Each of the dominance Problems 41-45 requires a choice
between a pair of prospects p, q where d, + d, > 0 and d, > 0, with a strict inequality
in at least one case. Thus, in these problems, p stochastically dominates q.

The full data set is presented in Tables 2a and 2b. In these tables, each row represents
a problem, and each column represents a subject. Problems 46, . . . , 92 are identical with
problems 1, ..., 45, but represent those problems when faced for the second time. A
value of 1 indicates that p was chosen, a value of 0O that q was chosen.

Casual inspection reveals that, in non-dominance problems, p choices become more
frequent as —d,/d, decreases, and that in all dominance problems, q choices are very
infrequent (there are only 13 violations of dominance in 920 decisions). Another feature
of the data evident from Tables 2a and 2b is the enormous variation between subjects
within each subsample: some subjects never choose p in non-dominance problems; others
choose p nearly every time. Clearly, subjects differ greatly in their attitudes to risk.
Summing over all subjects and all non-dominance problems, the reversal rate (that is,
the relative frequency of cases in which a subject’s first and second responses to a
problem are different) is 0.183. This rate is a little lower than in some other similar
experiments (see the introduction), but it still suggests a considerable degree of within-
subject stochastic variation.

4. Regularities in the data
The experiment generated data for certain specific non-parametric hypothesis tests. These

tests are described in Loomes and Sugden (1998). Briefly, these tests reject some impli-
cations of the constant error model that are independent of the core theory. They also
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Table 1a. Parameters of problems: £20 group
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Problem Po P P> o q Ue) d d, —d,/d,
1 0.15 0.00 0.85 0.00 0.25 0.75 -0.25 0.10 2.5
2 0.30 0.00 0.70 0.15 0.25 0.60 —0.25 0.10 2.5
3 0.30 0.00 0.70 0.00 0.50 0.50 —0.50 0.20 2.5
4 0.15 0.25 0.60 0.00 0.50 0.50 —0.25 0.10 2.5
5 0.15 0.75 0.10 0.00 1.00 0.00 -0.25 0.10 2.5
6 0.60 0.00 0.40 0.00 1.00 0.00 —1.00 0.40 2.5
7 0.60 0.00 0.40 0.15 0.75 0.10 -0.75 0.30 2.5
8 0.90 0.00 0.10 0.75 0.25 0.00 —0.25 0.10 2.5
9 0.10 0.00 0.90 0.00 0.20 0.80 -0.20 0.10 2.0

10 0.50 0.00 0.50 0.10 0.80 0.10 —0.80 0.40 2.0

11 0.50 0.00 0.50 0.00 1.00 0.00 —1.00 0.50 2.0

12 0.10 0.80 0.10 0.00 1.00 0.00 —0.20 0.10 2.0

13 0.70 0.00 0.30 0.50 0.40 0.10 —0.40 0.20 2.0

14 0.70 0.00 0.30 0.40 0.60 0.00 —0.60 0.30 2.0

15 0.50 0.40 0.10 0.40 0.60 0.00 —0.20 0.10 2.0

16 0.90 0.00 0.10 0.80 0.20 0.00 —0.20 0.10 2.0

17 0.10 0.00 0.90 0.00 0.25 0.75 -0.25 0.15 1.67

18 0.40 0.00 0.60 0.10 0.75 0.15 —0.75 0.45 1.67

19 0.40 0.00 0.60 0.00 1.00 0.00 —1.00 0.60 1.67

20 0.10 0.75 0.15 0.00 1.00 0.00 —0.25 0.15 1.67

21 0.70 0.00 0.30 0.60 0.25 0.15 -0.25 0.15 1.67

22 0.70 0.00 0.30 0.50 0.50 0.00 —0.50 0.30 1.67

23 0.60 0.25 0.15 0.50 0.50 0.00 —0.25 0.15 1.67

24 0.85 0.00 0.15 0.75 0.25 0.00 —0.25 0.15 1.67

25 0.10 0.00 0.90 0.00 0.30 0.70 —0.30 0.20 1.5

26 0.40 0.00 0.60 0.20 0.60 0.20 —0.60 0.40 L5

27 0.40 0.00 0.60 0.10 0.90 0.00 —0.90 0.60 1.5

28 0.20 0.60 0.20 0.10 0.90 0.00 —0.30 0.20 L5

29 0.60 0.00 0.40 0.50 0.30 0.20 —0.30 0.20 1.5

30 0.60 0.00 0.40 0.40 0.60 0.00 —0.60 0.40 L5

31 0.50 0.30 0.20 0.40 0.60 0.00 —0.30 0.20 1.5

32 0.80 0.00 0.20 0.70 0.30 0.00 —0.30 0.20 L5

33 0.10 0.00 0.90 0.00 0.50 0.50 —0.50 0.40 1.25

34 0.20 0.00 0.80 0.10 0.50 0.40 —0.50 0.40 1.25

35 0.20 0.00 0.80 0.00 1.00 0.00 —1.00 0.80 1.25

36 0.10 0.50 0.40 0.00 1.00 0.00 —0.50 0.40 1.25

37 0.35 0.25 0.40 0.25 0.75 0.00 —0.50 0.40 1.25

38 0.40 0.00 0.60 0.25 0.75 0.00 —0.75 0.60 1.25

39 0.40 0.00 0.60 0.35 0.25 0.40 —0.25 0.20 1.25

40 0.60 0.00 0.40 0.50 0.50 0.00 —0.50 0.40 1.25

41 0.00 0.25 0.75 0.00 0.30 0.70 —0.05 0.05 —

42 0.55 0.20 0.25 0.65 0.15 0.20 0.05 0.05 —

43 0.80 0.00 0.20 0.85 0.00 0.15 0.00 0.05 —

44 0.10 0.75 0.15 0.15 0.75 0.10 0.00 0.05 —

45 0.70 0.30 0.00 0.75 0.25 0.00 0.05 0.00 —
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Table 1b. Parameters of problems: £30 group

Subjects in the £30 group faced problems with the same probabilities as those given in Table la, apart from
problems 33—40, which were as follows:

Problem Po Pi P2 90 9 9 d, d, —d,/d,
33 0.10 0.00 0.90 0.00 0.40 0.60 —0.40 0.30 1.33
34 0.25 0.00 0.75 0.10 0.60 0.30 —0.60 0.45 1.33
35 0.25 0.00 0.75 0.00 1.00 0.00 —1.00 0.75 1.33
36 0.10 0.60 0.30 0.00 1.00 0.00 —-0.40 0.30 1.33
37 0.50 0.20 0.30 0.40 0.60 0.00 —0.40 0.30 1.33
38 0.55 0.00 0.45 0.40 0.60 0.00 —0.60 0.45 1.33
39 0.55 0.00 0.45 0.50 0.20 0.30 —-0.20 0.15 1.33
40 0.70 0.00 0.30 0.60 0.40 0.00 —-0.40 0.30 1.33

reject some implications of the random preference and Fechner error models, given the
assumption that the core theory is EU. These negative results are broadly consistent with
the results of Ballinger and Wilcox (1997) and Carbone (1998), which were outlined in
Section 2.

The non-parametric methods used by Loomes and Sugden do not allow any formal
analysis of how these models failed. However, by using descriptive statistics, Loomes
and Sugden identify two apparent regularities in the data which are inconsistent with all
three stochastic models, when combined with EU.

The first regularity is the bottom-edge effect: for non-dominance pairs {p, q}, for any
given value of —d, /d,, the frequency of p choices is markedly greater when ¢, = O than
when ¢, > 0. That is, p choices are more frequent when q is located on the bottom edge
of the Marschak-Machina triangle than when it is located anywhere else.® This effect
has been found in other experiments. Summarizing the results of several independent
experiments, Harless and Camerer (1994, p. 1285) conclude that EU predicts well when
decision problems involve pairs of prospects that have the same support (i.e. when both
are in the interior of the triangle), but poorly when the support is different (i.e. when at
least one prospect is on an edge of the triangle). The implication is that, if we are to
test the random preference and Fechner models, we need to combine them with some
non-EU core theory which is consistent with the bottom-edge effect.

The second regularity is common to these data and to the data of Hey and Orme
(1994) and Ballinger and Wilcox (1997).° In all three experiments, subjects faced the
same decision problems twice. In each case, the second set of responses are more risk
averse than the first set, and this difference is statistically significant. This finding cannot
be accommodated by any of the stochastic models as they have been proposed so far; it
requires a model in which experience can have a systematic effect.

The present study uses parametric maximum likelihood estimation methods to investi-
gate the unresolved issues outlined above. We compare the performance of the Fechner
and random preference models, not only for the benchmark case in which the core theory
is EU, but also for the case of RD. Our reasons for using RD, rather than any other non-
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Table 2a. Choices made by subjects: £20 group
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Choices Row sum
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Table 2b. Choices made by subjects: £30 group
Problem Choices Row sum

1 0100001000010000000000000000000001110000000000 6
2 0010001001010000000010010000000111101000001000 12
3 0001001000000000000000000000010011000001000000 6
4 0000001100010000000001000010000000000000001000 6
5 0111001100001100001001001101000011001101000000 17
6 0000001000000000000000000001000000000000000000 2
7 0000001000000000000000000100000110000100000000 5
8 1011101100000101011000000000001101001000000000 14

9 0110001000000000001010000000000011001000000000 8
10 0010001000000000000000000001001000100101000000 7
11 0000001100000000011000010011000011100110110000 14
12 1101001101010100100001001111011011111101101000 25
13 0010001000100000000000000000000110001000000000 6
14 1000001100000000000000010011000010001101000000 10
15 1011101100100101011010111111111111101101010000 29
16 1110101100100001011000011110111110101000011000 23
17 0100001100010000001011000010111011111001011000 19
18 0010001000010010000000000011001110100100000000 11
19 0000001100000100010000010001001011100000000000 10
20 1111001100010000110001011111001111111111111000 28
21 1010101010000100001000010000110011001100000000 4
22 1010001100000000101000000011000011100000001000 12
23 1011111110100111011010011111111001101101100010 30
24 1010001100100111011000011111111111101100111010 28
25 0101001100011010101011100100001011111110011000 23
26 0000001000000000000000010000010110100111001000 10
27 1010001100100101001000100011000011100100010001 17
28 111101110011010001 1111110111 111111 111111111010 36
29 1010001000100100001000010101101011001100001000 16
30 1011011100000100001000011011111111101101001010 24
31 1010111100110101011010111111111111101111101000 32
32 1111111110110101011010011111111010101100111000 31
33 1111001011010010001010100111011111111111011000 28
34 1110001000010110011000110111001011111111011000 25
35 1110011101010111010011110111101111111111111001 34
36 111100110101111000101 111111111101 1111111111011 36
37 11rrr1r1111110101011001111110L11111111101011010° 37
38 1011011100000101011000110101101011111100011010 25
39 1010111010110100001000110011011000011101000010 21
40 1111111110110111111000110111111111111100011010 35
41 TETIOT LTI eI eI rerrrrrer 45
42 TLITLIII It 1t0ri1eir1i1r1ns 45
43 TLITLIII I bbb riir1retls 46
44 1 T T U O A U O O U U O O O U U U O O O A N O O U U B B 51
45 Tttt ettt rrtrrrrrrerl 46
46 0010001000010000100000000000000010000100111000 9
47 0010001000000100000000000000000011000000000000 5
48 0000001000000000000000000100000001000100001000

49 0110001000000000001001000000000001000000001000 7
50 0010001100000000000001000001010011100110000000 11
51 0000001000000000000000000001010010000000000000 4
52 0010001000000000000000000000000110000000000000 4
53 1010001100000001000000000000000110001000001000 9
54 0010001000010000000000000000001011001100000010 9
55 0000001100000000011000000000000111000000100000 8
56 0000001000000001001000000001000010110000000000 7
57 1111001000010001001001111011001011101101011000 23
58 1010001100000000000000000000000011001000001000 8
59 0010001000000000000000000001000011001000001000 7
60 1111001101100101001010110111111111101101111000 30
61 1010101100000101011000010111101111001100001000 21
62 0100001100010001010000000000010011110111111000 17
63 0010001011000000000000100001000111100000000000 10
64 0010000100010001000000100011001011110000000001 13
65 0111001100010001101001001011111011111111101000 26
66 1010001100110101001000100101101001001100011000 19
67 1010001100000101001010000001001011001000001000 14
68 1011001100100101001000011111111111101001111000 26
69 1111001000100101011000010111011111101000111000 24
70 0101001101010001001000100100011011101101111000 21
71 1000001000000010000000000001011111110000001000 12
72 1010001100010000001000000001111111100000011000 16
73 1111011100111101001001110111111111101111011000 32
74 1100011100010101000000000011111011001100101000 19
75 1010011000000100001000010111101111101001001000 19
76 11101111001101010110000111111111111111101011010 33
77 1010111100100101011000010111111111111100011000 27
78 0110011101010000001001000101011011111110101000 22
79 1110001100000101001010100101011110100110011000 21
80 1011011100010111001000110011101011111101111000 27
81 1101011101010001111001010011001011111101111010 28
82 1011111100110101011000111111111111111101011000 32
83 1010011110000101011000010111111111110000011010 25
84 1111011010110111011000010101110011111100000000 25
85 1011111100110101011000110111111111111100011000 30
86 TETTII LTI e ettt ittt rrtl 46
87 TIIT1LII I eIt riir1retes 46
88 T1IIT Ittt ettt r1iirrrtonrt 45
89 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrlorrrrrrrrrrrrrL 45
90 TLITLIII I bbb riirirerns 46
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EU theory, will be explained in Section 5. The models we estimate allow us to separate
the effects of experience from stochastic variation.

Inevitably, the use of parametric methods requires us to assume specific functional
forms for the relationships within our models. The functional forms we used were
selected after a good deal of experimentation with alternatives in the pursuit of goodness
of fit and parsimony. Except in a few particularly significant cases, space constraints
prevent us from reporting this work. We found no evidence to suggest that our main
qualitative conclusions are sensitive to our choice of specifications.

5. Stochastic models based on expected utility theory

We begin by considering the implications of deterministic EU for the decisions of any
given subject in our experiment. As explained in Section 1, we define a vector u of von
Neumann-Morgenstern utility indices. We adopt the normalization'® u, = 0, u, = 1, and
define u = u,. Notice that all relevant properties of the utility function are captured by
the single value u. Since we assume that utility is monotonically increasing in money, we
impose the restriction # > 1. The value of u then represents the individual’s attitude to
risk, higher values of u corresponding with lower degrees of risk aversion; the individual
is risk-averse, risk-neutral or risk-loving according to whether u is less than, equal to, or
greater than x,/x,. EU preferences are given by:

p(R)ad +du(Z)0 )

We now consider various models which add a stochastic component to (4). In this
Section, we consider the choices of a given individual. The problems faced by this
individual will be indexed by ¢ and the total number of problems will be denoted by T.

5.1. The random preference model

In this model, the attitude-to-risk parameter u is a random variable satisfying the restric-
tion u > 1. We shall assume that (u — 1) follows a lognormal distribution. Thus, letting
m be the median value of u:

In(u —1) ~ N[ln(m - 1), 0'3] (5)

Let {p,,q,} be the pair of options offered in problem #, and let d;, and d,, be the
probability differences, as defined in Section 3. Let y, be a variable taking the value 1 if
p, is chosen from {p,, q,} and O if q, is chosen. For non-dominance problems, (4) and

(5) imply:

d2f
+In(m—1
d1r+d21) ( )—I

- | ©)

lrln —
pr(y,=1|m)=pr(d,,+d,,u>0|m) =
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where ®(-) is the standard normal distribution function. Clearly, pr(y, = 1) = 1 for
dominance problems.

As noted in Section 1, the random preference model breaks down if any violations of
dominance are observed. This problem can be avoided by adding a tremble mechanism.
Let w be a parameter representing the probability that any choice is made at random
(0 < @ < 1). Then, for non-dominance problems:

dy, >
—— 2 ) 4In(m—1)
dlr+d2t
g,

u

1n<
pr(y, = 1lm) = (1 - @) +3 ™

For dominance problems, pr(y, = 1) = 1 — w/2. Theoretical and practical issues relating
to the estimation of the tremble parameter are discussed in detail in a more general
context by Moffatt and Peters (2001).

5.2. The Fechner model

In the Fechner model, « is a fixed parameter, and stochastic variation results from an error
term &, applied additively to (4), so that p, is chosen if d,, + d,,u + € > 0. Following
Hey and Orme (1994), we assume that & follows a normal distribution with mean zero.
The particular distribution we specify is & ~ N[0, (o, In(u))?] where o, is a parameter.

For a model of a single individual, it would be sufficient to represent the variance of &
by a single parameter. Our specification is designed to apply across subjects; the value of
o, will be held constant while # will be subject-specific. The reason why the parameter u
appears in the expression for the variance is that we need to explain the behaviour of the
considerable number of subjects who chose the safer option q in all or almost all non-
dominance problems. The only way that the responses of such a subject can be explained
in the context of the Fechner model is by inferring both that the value of the subject’s
u parameter is close to one, and that the variance of ¢ is close to zero. This is made
possible by our specification. In interpreting this specification, it must be remembered
that the variance of & is expressed in units of utility, and that the normalization of utility
is arbitrary. Any ranking of subjects by error variance is conditional on the normalization
used. Thus, it would be a mistake to interpret our model as implying that more risk-averse
individuals are in any real sense less error-prone.

With this distributional assumption, we have, for all problems:

dl/ + d2tu
o, In(u)

pr(y, = 1) = pr(dy, + doytt + & > Olu) = @[ ®)

5.3. The Fechner model with trembles

The model described by (8) can be estimated whether or not there are violations of
dominance, and so it is not essential to add a tremble mechanism. Nevertheless, the
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specification might be improved by such an addition. The Fechner model with trembles
is:

d d
pr(y, = 1) = (1 —w)@[M} ©

o @) | T2 ©)

with 0 < w < 1.

5.4. The effect of experience

The index ¢ identifies the {p, q} pair under consideration and corresponds with the
labelling of problems in Tables la and 1b. However, the actual order in which the
problems were faced was determined randomly for each subject. For a given subject
facing problem 7, let 7, be the number of problems she has faced (including problem ¢).
Thus, if 7, = 17, problem 1 is the 17th problem that the subject faces. The effect of
experience can then be modelled by allowing pr(y, = 1) to depend on ,. In principle,
any of the parameters m, o, u, o, and w might vary with 7. In the specification search
we investigated all these possibilities, but we found significant experience effects only
for w. We therefore chose to model experience through its effect on w, as follows:

@, = @, exp(®,7,). (10)

The parameter w,, represents the tremble probability at the start of the experiment, and
®, indicates how this probability changes with experience. If trembles are interpreted
as misunderstandings, then since we might expect misunderstandings to become less
frequent with experience, we would expect a negative value for w,. On the other hand,
if trembles are interpreted as lapses of concentration, then it is possible that they could
become more frequent as subjects become tired or bored, implying a positive value
for w,.

6. Stochastic models based on rank-dependent theory

We chose to study RD as a representative non-EU theory. In part, we made this choice in
recognition of the prominence of RD in the literature: it is probably the most widely-used
non-EU theory. But we were also influenced by the properties of our data.

As explained in Section 4, there is an apparently systematic bottom-edge effect in our
data. If a core theory is to induce a general bottom-edge effect, it must have the property
that, for all ¢, and z, the value of V(q, z) is highly sensitive to changes in the value of
q, when that value is equal to or close to zero. Specifically, low but non-zero values of
q,, i.e., the probability of receiving the best consequence, must be ‘overweighted.” The
most direct way of incorporating such an effect into an EU-like theory is to allow objec-
tive probabilities to be transformed into subjective decision weights, and to make this
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transformation responsive to the ranking of consequences (so that the ‘best consequence’
has a distinct status). RD has exactly these properties.!!

In RD, the bottom-edge effect is generated if 7(p) < p for values of p that are
close to but strictly less than 1. In the RD literature, it is conventional to assume that
the probability transformation function has this property, along with the mirror-image
property that 77(p) > p for values of p close to but strictly greater than 0. The latter
property implies that low but non-zero values of 1 — ¢, — g,, i.e., the probability of
receiving the worst consequence, are also overweighted. This generates a side-edge effect:
for any given value of —d, /d,, there is a tendency for the frequency of q choices to be
greater when g, + g, = 1 than when ¢, + ¢, < 1. However, in the general form of RD
(as presented in Section 1), a bottom-edge effect can occur in the absence of a side-edge
effect, and vice versa.'?

Analogously with our treatment of EU, we begin by considering the implications of
deterministic RD for a given subject. For estimation purposes, we need to specify a
functional form for the probability transformation function.

Our specification search led us to the following simple functional form:

m(p)=(1—-b)p (p<l) (11a)
m(1) =1; (11b)

with 0 < b < 1. With b = 0, this model reduces to EU. Positive values of b imply the
overweighting of the probability of the best outcome in each lottery (i.e., the decision
weight is greater than the probability), and thus induce a bottom-edge effect.

This specification can be generalized to allow a side-edge effect by introducing a
second parameter 0 < a < 1 and setting 7(0) =0, w(1) =1, and w(p) =a+ (1 —a —
b)p for 0 < p < 1. However, when we experimented with such a model, our estimates
of a were not significantly different from zero.

Now consider any prospect p defined for the set of consequences {x,, x;, x,}. Using
the notation developed in Section 1, and using the same normalization of the utility func-
tion as in Section 4, the subjective value of p can be written as V(p, u, b). Combining
(2), (3a), (3b), (11a), and (11b), V(p, u, b) can conveniently be expressed as:

V(p, u, b) = (1 = b)(p, + p,u) + bu if p, > 0; (12a)
V(p,u,b) =(1—=>b)(p; + pu) +b if p, =0. (12b)

Now consider any choice {p,, q,} in the experiment. Noting that there are no problems
in which p,, = 0 and ¢,, > 0,"® we define a binary variable E, which takes the value
one if p,, > 0 and ¢,, = 0, and zero otherwise. Then, using (12a) and (12b), for every
problem in the experiment:

V(pm u, b) - V(qn u, b) = (1 - b)(dlt + dzr”) + b(u - I)Er- (13)

If b > 0, the second term on the right-hand side of (13) represents the bottom edge
effect.
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Equation (13) is the deterministic core of our RD model. We now consider alternative
ways of combining it with a stochastic specification.

If we use the stochastic specification given by the random preference model, and add
a tremble mechanism, we arrive at the equation:

pr(y, = 1jm) = (1 — w)pr[(1 — b)(d,, + dp,u) + b(u — 1)E, > 0] + w/2. (14)

As when the core theory is EU, we treat u as a random variable, with the distribution
(5). To allow for the effect of experience, w depends on 7 as in (10). To simplify the
task of estimation, we treat b as deterministic. However, we allow b to vary with 7, so
that our estimations can pick up any tendency for the bottom-edge effect to decay with
experience. Our specification is:

bz = bO exp(bth)s (15)

with0 < b, < 1,b, <O0.
If we use the Fechner model without trembles, choice probabilities are given by:

pr(yr = 1|“) = pl"[(l - bt)(dlr + dZtu) + bt(u - I)Et +&> 0] (16)
If we use the Fechner model with trembles, this equation becomes:
pr(y[ =1 |Lt) = (1 _wt)pr[(l _bt)(d1t+d2tu) —|—b,(u— I)Et +e> O] +wt/2' (17)

As in our EU-based models, we assume that & follows the normal distribution N[O,
(0, 1n(u))?]; and as in the random preference model, w and b are assumed to depend on
7, according to (10) and (15).

We recognize that our specification of the probability transformation function by (11a)
and (11b) is not conventional: it is more usual to use a functional form which makes
7r(-) smooth and continuous. In deference to this practice, we also report an estimation
based on the following alternative specification:

. (1- at)pl—ﬁ,
= Ty (e o
a, = Qq exp(alTr) (19)
8, = 6,exp(8,7,) (20)

We shall call this the RDS model (‘S’ standing for ‘smoothed’). The functional form (18)
is discussed by Prelec (1998). It defines a family of smooth functions with the common
properties that 7(p) > p at low values of p (inducing a side-edge effect), and 7 (p) < p
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at high values (inducing a bottom-edge effect). As we shall show, the RDS model does
not fit the data as well as our basic RD model.

7. The models with many subjects

In the discussion so far, we have modelled the behaviour of a single subject. It would be
possible to follow the strategy of Hey and Orme (1994), Carbone and Hey (1994) and
Carbone (1998), and to estimate the various models separately for each subject. However,
we prefer to pool the observations from all subjects, and to be as parsimonious as
possible in the use of subject-specific parameters. As with most economics experiments,
our subject pool is not a systematic sample of any economically significant population.
Thus, findings about the relative frequency of different kinds of behaviour in the subject
pool are of limited value. Our view is that experimental findings are of most interest
when they reveal systematic tendencies in the behaviour of subjects in general, and
when those tendencies are susceptible to explanation by general theories.

As we pointed out in Section 4, our subjects appear to differ greatly in their attitudes
to risk. The implication seems to be that any model which is to fit our data needs at
least one subject-specific parameter to represent attitude to risk. In the Fechner models,
it is natural to make the value of u subject-specific, and we do this by assuming In(u —
1) ~ N(u, n%). In the random preference models, the corresponding move is to make
m (i.e., the median value of u) subject-specific, and we do this by assuming In(m —
1) ~ N(u, n%). In the interests of parsimony, the RD parameters b, and b,, the RDS
parameters «, «,, 6, and 8,, and the tremble parameters w, and w,, are required to take
the same value for all subjects.

We estimate each model in a random effects framework, by assuming that the subject-
specific parameters vary randomly across the population according to a distribution
whose parameters we set out to estimate. An alternative would be to adopt a fixed
effects approach and to obtain an estimate of the subject-specific parameter separately
for each subject. We prefer the random effects approach for two reasons. First, there are
many less parameters to estimate in the random effects approach. Second, with the fixed
effects approach, we encounter difficulties with those subjects who chose q in almost
every non-dominance problem and with the smaller number who almost always chose
p- The problem is that it is impossible to estimate such a subject’s attitude to risk, and
so these subjects need to be discarded in order to estimate the model. No such problems
are encountered when random effects are used, so all subjects can be included in the
estimation. Our estimation methods are described in the Appendix.

8. Results

The stochastic models which we have presented can be classified by their core theo-
ries (EU, RD, and RDS) and by their stochastic specifications: random preference with
trembles (RP-T), Fechner without trembles (F); and Fechner with trembles (F-T). Hence-
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forth, we shall use the core theory acronyms as subscripts to the stochastic specification
acronyms. So, for example, RP-Tg; represents the random preference model with trem-
bles applied to expected utility theory.

We have estimated each of the six possible combinations of the core theories EU
and RD and the three stochastic specifications. To show why we chose our particular
parameterization of RD, we also report an estimation of RP-Typq.

Each model was estimated separately for the two subsamples of subjects. Each sub-
sample contains 46 subjects, so the sample size is always 46 x 90 = 4140. The results
are presented in Tables 3a and 3b. All entries are maximum likelihood estimates of
parameters, with asymptotic standard error estimates in parentheses. Each column refers
to a different model.

We begin by addressing the question of which of these models is best at explaining
the observed data. We can go some way towards answering this question by adopting
the straightforward criterion of the maximized log-likelihood. Where one model is nested
within another, we can compute a likelihood ratio test statistic (LR) as twice the differ-
ence of the maximized log-likelihoods between the two models, whose distribution is
x2(g) under the truth of the nested model, where q is the number of restrictions under
test. We have conducted several such nested LR tests, and the results are displayed in
Figure 1(a) and (b), in which single-pointed arrows represent movement from a nested
model to a nesting model.

As it happens, all of the tests we have conducted are tests of two restrictions. This
means the null distribution is always y?(2). If the LR test statistic exceeds 6.0, there
is evidence in favour of the nesting model; if the statistic exceeds 13.8, the evidence
is overwhelming. Figure 1(a) and (b) show that all of the LR tests conducted result
in overwhelming rejections of the restrictions under test, and therefore overwhelming
evidence in favour of the nesting model in each case.'* These results have two distinct
implications. In relation to core theories, these results establish that the RD model has
significantly greater explanatory power than the EU model. In relation to stochastic spec-
ifications, they establish that the addition of a tremble mechanism to the Fechner model
leads to a significant increase in explanatory power. Thus, in comparing the performance
of the Fechner and random preference approaches, we should compare the models F-Ty,
and RP-Tgp,.

A formal comparison of these two models is less straightforward than the compar-
isons discussed in the last paragraph, because these two models are non-nested. For the
purpose of this comparison, we make use of Vuong’s (1989) non-nested likelihood ratio
test, which is described in the Appendix. The results of using this test are shown in
Figures 1a and 1b, where double-pointed arrows indicate non-nested tests, with positive
values indicating evidence in favour of random preference models relative to Fechner
models, and in favour of RD models relative to RDS ones. The tests comparing F-Ty,
and RP-Ty, result in a Z-statistic of +2.57 for the £20 group, and of +6.19 for the
£30 group. In each case, this is strong evidence that RP-Tg, is closer to the true data
generating process than F-Typ. In other words, when combined with the most successful
core theory, the most successful model of stochastic variation is the random preference
model with trembles.
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Fry
LogL=-1512.31

LR=149.0
(q=2)
F-Tyu 7=+0.43 RP-Try
Logl=-1475.74 Logl=-1446.80 LogL=-1441.49
LR=108.72 LR=169.6
LR=166.6 @=2) @=2)
(q=2)
F-Tro 7=42.57 RP-Txp
LogL=-1392.44 Logl=-1356.67
Z=+3.05
RP-Tros
LogL=-1407.22
(@)
Fry
LogL= -2026.54
LR=133.2
(q=2)
F-Tyy Z=+5.02 RP-Tgy
LogL=-1911.23 LogL=-1959.93 LogL=-1870.35
LR=329.86 LR=330.0
(q=2) @=2)
F-Tro Z=+6.19 RP-Tep
LogL= -1795.00 LogL=-1705.35
Z=+5.65

RP-Trps
LogL=-1799.37

()

Figure 1. Nested and non-nested hypothesis tests. (a) £20 group. (b) £30 group.
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When the Vuong test is used to compare RP-Ty, and RP-Tyg, the Z-statistics are
+3.05 (£20 group) and +5.65 (£30 group). This is the evidence for our claim that our
specification of the probability transformation function in (11a) and (11b) has greater
explanatory power than the more conventional specification (18).

Using our estimated RP-Ty, model, we turn to the relationship between experience
and stochastic variation. Our estimates of o,, the parameter which represents within-
subject variation, are significantly positive. At the specification search stage, we found
no evidence that the value of this parameter is affected by experience. The implication
is that stochastic variation includes a constant component, which RP theory interprets as
the individual’s uncertainty about her own ‘true’ preferences. However, there is a second
component, represented by the tremble parameters w, and w,. The fact that our estimates
of w, are significantly positive for both subsamples shows that a model without a tremble
mechanism would be inadequate. The effect of experience on trembles is picked up by
w,. Our negative estimates of this parameter (significantly negative for the £30 group)
imply that the kind of errors that are modelled by the tremble mechanism become less
frequent as subjects gain experience. Substituting our estimates for the £30 group into
(10), the predicted relationship between the tremble probability and experience is:

@, = 0.114 exp(—0.0237,) (21)

This formula implies that the value of w is 0.111 at the beginning of the experiment
(1 = 1) but falls to 0.014 by the end (7 = 90). This effect is equivalent to a fall in the
reversal rate from 0.10 to 0.01.

In our model, experience also impacts on the bottom-edge effect through the parame-
ters b, and b,. Both our estimates of b, are significantly positive, indicating a bottom-
edge effect that is inconsistent with EU but can be explained by RD. However, both our
estimates of b, are significantly negative, indicating that this effect declines with expe-
rience. Substituting our estimates for the £30 group into (15), the relationship between
the parameter b and experience is:

b, = 0.202 exp(—0.0067,) (22)

Recall that b is a measure of the degree to which the probability of the best outcome
(when close to zero) is overweighted; in EU, b = 0. The formula (22) implies that the
value of b falls from 0.201 to 0.118 during the course of the experiment; however it
remains significantly different from zero even after 90 decisions have been made."> In
our specification search, we found that the attitude-to-risk parameter w did not show any
similar dependence on experience. Thus, the apparent increase in risk-aversion during
the course of the experiment, mentioned in Section 4, seems to be due principally to the
decay of the bottom-edge effect.

Extrapolating from our estimated model and taking the limit as 7 — oo, we can
identify a simple model, towards which choice behaviour is apparently tending. The
core theory of this model is EU, and the stochastic specification is RP. For any given
individual, this model is fully described by m and o2, the parameters of the probability
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Figure 2. Von Neumann—-Morgenstern utility functions.

distribution of the quantity u for that individual. For the population as a whole, it is
described by w and 7, i.e., the parameters of the population-wide probability distribution
of m, and by o2. From our estimates of u and 7, it is straightforward to deduce, using an
inversion of (A1), the quartiles of m over the population. For the £20 group, the quartiles
of m are (Q1, 02, 03) = (1.119, 1.202, 1.340). For the £30 group, the quartiles are
(1.203, 1.346, 1.590). In Figure 2, the solid piecewise line is the estimated median utility
function for the median individual in the population, and the two dotted piecewise lines
are the median utility functions for the first and third quartile individuals. The quartile
utility functions we have estimated turn out to be remarkably close to power functions
of the form u(x) = (x/10)#, where x is the subject’s winnings (measured in pounds)
from the experiment,'® with the value of 8 approximately 0.16 for the first quartile, 0.27
for the median, and 0.42 for the third quartile.!” The dotted and dashed curve in Figure 2
represents the power function for the median individual.

9. Dominance

One major difference between the random preference and Fechner models of stochastic
variation is in their implications for choices in dominance problems. For the moment,
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we consider each of these models in the absence of a tremble mechanism. When com-
bined with a core theory in which preferences respect stochastic dominance, the random
preference model implies that dominating prospects are always chosen. In contrast, the
Fechner model permits violations of dominance. In the latter model, the frequency of
such violations depends on the difference between the subjective values of the two
prospects and on the variance of the error term &. Thus, for dominance problems in
general, dominance violations cannot be infrequent unless the variance of & is small;
and if that variance is small, reversal rates on all problems will be low. In other words:
the Fechner model cannot easily accommodate both high reversal rates on non-dominance
problems and low rates of dominance violation. Recall that in our data, the reversal rate
on non-dominance problems (0.183) is very much higher than the rate of dominance
violation (0.014). It is therefore natural to ask how far the superiority of the random
preference specification in our tests is attributable to the dominance problems.

To investigate this question, we estimated the Fyp, F-Tgp, RPgp, and RP-Ty, models
using only the data from the 40 non-dominance problems. Notice that the elimination
of the dominance problems makes it possible for us to estimate a random preference
model without a tremble mechanism (i.e., RPyp). The results are shown in Figure 3(a)
and (b), which use the same notation as Figure 1(a) and (b). The Fechner and random
preference specifications are now more evenly matched. If tremble mechanisms are not
added, the random preference model (RPgp) still performs somewhat better than the
Fechner model (Fgp) for the £30 group, but there is almost no difference between the
models for the £20 group. If tremble mechanisms are added, the ranking is reversed:

Frp 7Z=+0.24 RPgp
LogL=-1344.47 LogL=-1339.20
LR=119.04 LR=46.00
(q=2) q=2)
F-Tep 7=-3.20 RP-Trp
>
LogL=-1284.95 LogL=-1316.20
(a)
Frp 7Z=+1.93 RPrp
LogL=-1747.74 LogL=-1692.69
LR=149.50 LR=36.28
(@=2) (q=2)
F'TRD 7=-0.12 RP-TRD
LogL=-1672.99 [ > |LoglL=-1674.55

Figure 3. Model comparisons in the absence of dominance problems. (a) £20 group. (b) £30 group.

(b)
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the Fechner model (F-Tgp) performs significantly better for the £20 group, while there
is almost no difference for the £30 group.

It seems, then, that the superiority of the random preference specification in our prin-
cipal tests owes something to the dominance problems; for non-dominance problems,
there is little to choose between random preference and Fechner specifications. Nev-
ertheless, dominance problems surely fall within the scope of any theory of stochastic
decision making. The low rate of dominance violations in our data must count as evi-
dence against the Fechner approach to explaining stochastic variation in choice.

10. Conclusions

In relation to the set of problems presented in this experiment, our subjects’ decision-
making behaviour can be modelled as converging towards a random preference model
of stochastic choice with expected utility as the core theory. However, we are inclined
to be cautious about interpreting this as evidence in support of the general validity of a
stochastic form of expected utility theory. To draw this conclusion would be to claim that
the utility functions we have estimated represent subjects’ ‘true’ preferences, and can be
used to predict the decisions that those subjects would make in relation to other choice
problems (after sufficient experience of the relevant choice environment). Our estimation
used data from pairwise choices involving a very limited set of payoffs. The experimental
data sets used by other researchers who have estimated competing theories of risky choice
are similar to ours in this respect. Before concluding in favour of stochastic expected
utility theory, we would need to be sure that the parameters of our estimated models are
stable across a wider range of payoffs and a richer set of decision tasks.

However, as far as the analysis of the current data set is concerned, we can give some
clear answers to the questions which prompted our research. Our first objective was to
compare the explanatory power of alternative models of the stochastic component in
individual choice under risk. Although the constant error or tremble model, as used by
Harless and Camerer (1994), is inadequate as a general theory of stochastic choice, our
results show that the explanatory power of other stochastic models can be significantly
increased by the addition of a tremble term. One significant implication of this result is
that stochastic variation in decision making does not have a single cause. We focused
on two other approaches to modelling stochastic choice: the Fechner model (as used
by Hey and Orme, 1994) and the random preference model (as proposed by Loomes
and Sugden, 1995). We found that the random preference model performed significantly
better than the Fechner model in explaining our data as a whole; when choices between
stochastically dominating and stochastically dominated prospects were excluded from
the data set, neither model was clearly superior to the other.

Our second objective was to investigate the relationship between stochastic varia-
tion and decision-making experience. We found that the frequency of Harless-Camerer
trembles decayed rapidly as subjects gained experience: after subjects had faced the 90
decision problems of our experiment, trembles had almost disappeared. This suggests
that the tremble component of stochastic variation may be a form of error, which indi-
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viduals can learn to avoid. However, that part of the variation that can be explained by
the random preference model did not decay with experience. The latter variation might
be interpreted as the result of imprecision in people’s preferences. We speculate that such
imprecision may be an inherent and stable property of preferences rather than a transitory
phenomenon. We suggest that future theoretical and empirical work on decision making
under risk should give serious attention to the formulation, testing and refinement of
decision theories in stochastic form.

Appendix
A.l. Estimation

The random effects models we construct are similar to the random effects probit model
of Avery et al. (1983). We let n denote the number of subjects in the sample, and we
index them by i. In this Appendix, we index the binary variable y by both i and ¢, so that
v, = 1 if subject i chose p in problem ¢. In the random preference models, we assume
that the median of u varies across the population according to a lognormal distribution,
so that:

In(m —1) ~ N(p, n°) (A1)

We may then construct the log-likelihood function:

LogL = Zln[/lw [TIpr(s =11 @) pr(y, = 0| ) ] £, w, m) dﬁl} (A2)

i=1

where f,,(m; w, 1) is the log-normal density function for the random variable m, evalu-
ated at the value m. The conditional probability term pr(y;, = 1 | m) is defined in either
(7) or (14), depending on which of the random preference models is under consideration.

In the Fechner models, it is u itself which is assumed to vary across the population.
We therefore specify:

In(u — 1) ~ N(w, 7°) (A3)
and the log-likelihood function is:
n o T
LogL = il [T [prCs, = 1 @pr0, =01/ | s myai | (a9
i=1 1=

where f, (it; w, 1) is the log-normal density function for the random variable u, evaluated
at i, and pr(y;, = 1 | &) is defined in either (8), (9), (16) or (17), depending on which
particular model is under consideration.
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We use the MAXLIK routine in GAUSS to maximise the log-likelihood functions (A2)
and (A4). We always use the BHHH algorithm (Berndt et al., 1974) with analytic first
derivatives. The GAUSS quadrature routine INTQUADI is used to evaluate the integral
appearing in the formula for the log-likelihood. Convergence to the MLE is usually
achieved in around 12 iterations. The asymptotic standard error estimates reported in
Tables 3a and 3b are obtained from an estimated covariance matrix which is returned by
the MAXLIK routine.

A.2. Vuong’s non-nested likelihood ratio test

Consider any two non-nested models 1 and 2. Let ﬁ be the estimated probability of
observing the T actual choices made by subject i, on the assumption that model 1 is the
true model. Let g; be the estimated probability of observing the same 7 choices on the
assumption that model 2 is the true model. The Vuong test is based on the quantity D,
defined by:

D= n”zilog<£’:) (A5)

i=1 i

D is similar to the log-likelihood ratio of the two models, but since the models are non-
nested, it can be of either sign. To implement the test, we need to estimate the variance
of D. An appropriate variance estimator is:

7 E({) [ 2]

The Vuong test statistic is then:

,_D
Vv

As proved by Vuong (1989), the statistic Z defined in (A7) has a limiting standard normal
distribution under the hypothesis that the two models are equivalent. A significantly
positive value of Z indicates that model 1 is closer to the true data generating process
than model 2, while a significantly negative value of Z indicates the converse.

(A7)
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Notes

10.

11.

12.

13.

14.

15.

16.

17.

. See Starmer and Sugden (1989), Camerer (1989), Hey and Orme (1994, p. 1296), and Ballinger and Wilcox

(1997).

The pioneering studies are those of Harless and Camerer (1994), Hey and Orme (1994), and Carbone and
Hey (1994).

For more on this, see Loomes and Sugden (1995).

We do not assume that decision-makers actually go through these three stages when they deliberate.

We assume that the probability density function over Z has continuity properties such that, for all
P, q: pr[V(p,2) — V(q,2) = 0] = 0.

This model is discussed in more detail by Ballinger and Wilcox (1997).

Ballinger and Wilcox test and reject three parametric distributions of &, but the hypothesis of strong
stochastic transitivity (which is an implication of all Fechner models, irrespective of the distribution of &)
survives their tests.

For given values of x,, x;, x, satisfying x, < x; < x,, the Marschak-Machina triangle represents all
possible prospects p in (p,, p,) space.

This regularity is not reported in Hey and Orme’s paper, but was found in subsequent analysis. We are
grateful to John Hey for telling us of this effect.

We choose this normalization because x, = £0 and x, = £10 for both subsamples, while x, refers to a
different consequence in the two cases.

The cumulative form of prospect theory (Starmer and Sugden, 1989; Tversky and Kahneman, 1992) has
the same properties. If (as in our data set) there are no negative consequences, RD and cumulative prospect
theory are formally equivalent.

Prospective reference theory (Viscusi, 1989) offers an alternative way of modelling the bottom-edge effect.
This theory effectively ‘overweights’ all small non-zero probabilities. Thus, the bottom-edge effect cannot
occur in the absence of a corresponding side-edge effect. For this reason, prospective reference theory is
less well adapted than RD to explaining data like ours, which show the former effect but not the latter.
This is a consequence of the fact that in non-dominance problems, p, is riskier than q,, while in dominance
problems, p, dominates q,.

An issue here is that when the null hypothesis of no tremble is being tested, the LR test does not have the
x2(2) null distribution because the parameter values under the null are on the boundary of the parameter
space. However, simulations reported by Moffatt and Peters (2001) reveal that the true distribution of this
statistic is not far from y?(2), and certainly not far enough from it to alter our conclusion that a tremble
is present in every case that we consider.

The estimate of the bottom-edge parameter at the end of the experiment is 0.118, and the standard error
of this estimate (obtained using the delta method) is 0.012.

Notice that this function has constant relative risk aversion with respect to changes in wealth. If utility is
interpreted as a function of levels of wealth (the standard interpretation in EU), this type of constant risk
aversion would occur only by an astonishing coincidence. (The coincidence is that, given the utility-of-
wealth function, the subject’s initial wealth should happen to be at the level that induces constant relative
risk aversion with respect to changes in wealth.) Thus, this function’s success in fitting the data suggests
that preferences should be defined relative to a person’s status quo position, as in prospect theory.

After observing this regularity, we estimated the RP-T, model using pooled data from the £20 and £30
groups, with the power function specification u(x) = (x/10)?. Our estimate of the median value of 8 for
the median individual was 0.22. Space constraints prevent us from describing this estimation in detail.
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