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Test of an Additive Model of Social Inference
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Ratings of a hypothetical person's attitude or likely behavior toward a group
are a nonadditive function of his/her attitudes or behaviors toward subgroups.
The effect of a person's attitude toward one of several subgroups is inversely
related to the total number of attitudes or behaviors toward different sub-
groups. Addition of neutral instances raises the ratings of sets of low-valued
items and lowers the ratings of high-valued sets. These critical interactions
violate the basic independence assumption of a general class of additive models.
Furthermore, the diminished effect of one item due to the total number of
items did not depend on whether the items were redundant in value, contrary
to the expenctancy-impact, values of instances model. The results were quali-
tatively consistent with an averaging model, although quantitative tests sug-
gested that sets containing a greater number of items may receive reduced
absolute weight.

Knowing a person's attitude toward Ne-
groes and Jews, one could form an inference
of the person's general attitude toward minor-
ities. Gollob, Rossman, and Abelson (1973)
theorized that social inferences of this sort
obey an additive model in which the resultant
inference of one's attitude toward a group is
assumed to be the sum of the values of in-
stances of the attitudes or behaviors toward
subgroups. For example, if a man despises
Jews and feels superior to Negroes, the addi-
tive model predicts that the inferred general
attitude, dislikes minorities, is the sum of the
values of these two instances.

The additive models studied in the past
have assumed that the effect of a piece of
information will be independent of the other
information with which it is combined. Thus,
a given piece of information should produce
the same directional effect on the social infer-
ence, independent of other instances in the
set. In contrast, averaging models of informa-
tion integration (Anderson, 1971, 1974a,
1974b; Birnbaum, 1973, 1974; Birnbaum,
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Wong, & Wong, in press) predict that a
neutral-valued instance could produce oppo-
site directional effects in combination, lower-
ing the judgment of a set of positive instances
and raising the judgment of a negative set.
Certain experimental designs do not allow the
distinction between constant-weight averaging
models and additive models. When appropri-
ate designs have been used, research in sev-
eral information integration domains has ruled
out additive models in favor of averaging
formulations (Anderson, 1971; Birnbaum,
1974; Birnbaum et al., in press).

It is important to note that the "additive,
values of instances model" of Gollob et al.
(1973) is not additive in the traditional
sense and can account for a result that would
ordinarily be interpreted as critical evidence
against adding models. Gollob et al. (1973)
assume that the impact of redundant infor-
mation will be less. This assumption is termed
the expectancy-impact hypothesis: Expected
information should have smaller effects.

The adding model, with parameter invari-
ance, predicts that if a + c > a, then b + c
> b. However, information integration experi-
ments often find that J(L + LH) > J(L),
yet J(H + LH) < J(H), where L is a low-
valued item, H is a high-valued item, LH is
a combination, and J represents the judg-
ment. The data of Gollob et al. (1973) show
that the addition of a disconfirming-confirm-
ing combination (HL) to a disconfirming
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instance (L) raises the rating from 3.58 to
4.S7, whereas the addition of the same HL
combination to an H item lowers the rating
from 6.8S to 6.67. This result would ordi-
narily be interpreted as inconsistent with
additive models. Two points that have not
been noted previously deserve emphasis: (a)
The values of instances model (Gollob et al.,
1973) can account for this result; (b) the
values of instances model is not equivalent
to the averaging model and can be tested
against it with a suitable experiment.

The present experiment provides a more
critical test of additive models of social in-
ference, allowing a differentiation of the
averaging models from the additive, values
of instances model.

METHOD
Instructions

The instructions were similar to those of Gollob
et al. (1973) and included the following:

The purpose of this experiment is to investigate
how people use various sorts of information in
drawing conclusions about other people. For ex-
ample, I am interested in learning how people
answer questions such as: "If you know that a
man respects Japanese, how likely do you think it
is that the man, generally speaking, respects for-
eigners?" In past work of this type it has been
found that, rather than use the names of real
groups of people such as Japanese and foreigners,
it is useful to ask the questions about an imagi-
nary group of people called Antuvians. (Gollob
et al., 1973, p. 23)

Each Antuvian was said to belong to one, and
only one, of 12 equal-sized subgroups with names
such as Buvians, Cuvians, Duvians, and so on.
Thus, the 12 subgroups form a mutually exclusive,
exhaustive partition of Antuvians.

The subjects were instructed that each set of
instances contained information about a man's atti-
tudes or actions toward one or more subgroups of
Antuvians. Their tasks were to rate the likelihood
of this man liking or helping Antuvians, based on
the set of instances describing his feelings or actions
toward the subgroups. For example, if you know
that a man loves Guvians, feels superior to Huvians,
and ignores Kuvians, what is the likelihood that the
man, generally speaking, likes Antuvians? If you
know that a man protects Guvians, criticizes
Juvians, and associates with Huvians, what is the
likelihood that the man helps Antuvians?

The subjects were instructed to rate their infer-
ences of liking and helping using 9-point scales with
categories ranging from 1 (very, very unlikely) to
9 (very, very likely), in which 5 was designated as
uncertain.

Stimuli

The sets were composed of 46 instances that were
chosen on the basis of preliminary scaling of 132
items to fit categories of low (L), slightly negative
(M—), neutral (N), slightly positive (M+), or high
(H) evaluation. Half of the 46 items described
manifest or observable behaviors, and the other half
described subjective or unobservable feelings. The
following are examples of the items chosen for each
category, with their mean ratings from the pre-
liminary scaling experiments:

1. subjective—L, despises (1.76); M—, feels supe-
rior to (3.35); N, is indifferent toward (S.06);
M+, approves of (6.76) ; H, loves (8.29); and

2. manifest—L, hurts (1.76); M—, criticizes (3.41);
N, talks about (4.82); M+, listens to the ideas of
(6.41); H, protects (7.88).

Design

There were 60 sets of instances generated from a
5 X 3 X 4 (value of first instance X number of sub-
sequent instances X value of subsequent instances)
factorial design, in which the first instance had levels
of value of L, M—, N, M+, and H; the number of
subsequent instances was 0, 2, or 6 items, and subse-
quent instances had values of M—, N, M—M+, and
M+. Subsequent instances of 2(M—M+) had one
item of each value; similarly, 6(M—M+) had three
M— and three M+.

There were two replications of the entire design,
one using subjective instances and the rating of
liking, the other using minifest instances and the
rating of helping. Within each replication, the factor
for the first instance used the, same item at each
level of value throughout. The experimental design
is also portrayed in Figure 2, where the mean ratings
are reported averaged across the stimulus replicates.

Procedure

The 120 trials were printed in random order on
22 pages which were shuffled in different orders to
form booklets. The cover page of each booklet in-
cluded written instructions and an explanation of the
rating scales. Subjects were instructed to glance
through the booklet to familiarize themselves with
the task before beginning. They were permitted to
work at their own pace and completed the task in
45 minutes to li hours.

Subjects

The subjects were 50 Kansas State University
undergraduates who received extra credit in a
psychology course.

RESULTS

Figure 1 plots the mean rating of social
inference as a function of the value of the
first instance. Panel A plots the results for
sets of three instances, with a separate curve
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for subsequent pairs of instances of M —,
M—M + , N, or M+ value. Panel B plots the
results for sets of seven instances in similar
fashion. Since there were no important dif-
ferences between the subjective and manifest
replications when graphed separately, the data
are averaged across replicates. All of the
following analyses were performed separately
on each replicate with the result that both
sets of data supported the same theoretical
conclusions as the averaged data.

Except for sets including neutral subse-
quent instances, the curves in each panel are
nearly parallel; the interaction is nonsignifi-
cant, F(8,392) = .73. However, with the in-
clusion of neutral instances, the interaction
(the N curves crossing the M—M+ curve)
is statistically significant, F(12, 588) = S.07.
This interaction would be inconsistent with
simple additive or constant-weight averaging
models but could be explained in terms of the
averaging model by allowing subsequent N
items to carry less weight than items of more
extreme value.

Figure 2 plots the mean social inference as

a function of the value of the first instance,
with a separate curve for each number of
subsequent instances. Each panel shows the
results for adding subsequent instances of
different value. The interaction between the
number of subsequent instances and value of
subsequent instances is significant, F(6, 294)
= 119.15, and is consistent with both aver-
aging and adding models. The simple additive
model predicts that the curves in Figure 2
should be parallel; that is, the effect of the
value of the first instance (slopes) should be
independent of the number of subsequent
instances. Instead, the slopes in Figure 2 are
a monotonically decreasing function of the
number of items, consistent with averaging
models, F(B, 392) = 32.84. Furthermore, this
dependence of the effect of the value of the first
item on the number of items appears inde-
pendent of whether the subsequent items are
redundant or nonredundant with the first.
The three-way interaction of Value of the
First Instance X Value of Second Instance
X Number of Subsequent Instances is sta-
tistically significant but of trivial magnitude,

L M- N M+ H L M- N M+ H

VALUE OF FIRST INSTANCE
FIGURE 1. Mean ratings of social inference as a function of the value of the first instance. Curve

parameters indicate that the value of the subsequent instances were either moderately unfavorable
(M-), neutral (N), moderately favorable (M+), or mixed (M—M+). Panel A plots results for
sets containing 2 subsequent instances. Panel B plots results for sets of 6 subsequent instances.



658 TIMOTHY ANDERSON AND MICHAEL H. BIRNBAUM

B

M-MH

i r

L M- N M+ H L M- N M+ H L M- N M+ H L M- N M+ H

VALUE OF FIRST INSTANCE

FIGURE 2. Mean ratings of social inference as a function of the first instance, with a separate
curve for each number of subsequent instances. Different panels show results for adding subse-
quent instances of different value. Curves labeled 0 in separate panels represent different judg-
ments of single first instances.

F(24,1176) = 1.55. The data do not sup-
port the prediction of the expectancy-impact,
values of instances model, that the curves in
Figure 2 would be parallel when nonredundant
subsequent items are included.

DISCUSSION

The present data are inconsistent with
additive models and the values of instances
model of social inference proposed by Gollob
et al. (1973). Social inferences appear to be
better explained by the averaging model,
which has also bested additive models in other
information integration tasks (Anderson,
1971, 1974a, 1974b). Much of the recent
discussion of additive and averaging models
has perhaps been confused by a failure to
specify sufficiently the assumptions of the
models. The following sections define the
additive and averaging models, expand on
their psychological implications, explain why
the general class of additive models is ruled
out by the present data, and describe how
these models would have to be modified to
account for the present data.

Adding Model

Figure 3 depicts two alternative models of
the social inference process. The additive
model views the process of social inference as

an attempt to map out a space in which
Buvians, Cuvians, Duvians, and the like,
correspond to subsets of Antuvians, repre-
sented by the entire area. Each circle repre-
sents one instance. The value of each instance
is represented by the number of plus or
minus signs within the circle. The value of
the social inference is assumed to be the dif-
ference between the total value of the positive
and negative instances (i.e., the difference
between the number of positive and negative
signs in the diagram). Each symbol (sign)
can be viewed as representing a certain
number of Antuvians.

In the case where the subsets are (psycho-
logically) mutually exclusive, this model is an
additive model with parameter invariance. If
there is no overlap among the sets, the model
can be written

k
£ [i]

where * is the social inference based on k
instances, and st is the value (either positive
or negative) of the z'th instance. This model
assumes parameter invariance; that is, the
value of st is independent of the value and
number of other instances. This can be seen
by considering Figure 3 for the case of mu-
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tually exclusive sets (upper left-hand panel).
The simple (no overlap) additive model

predicts that the effect of any instance will
be independent of the value and number of
other instances with which it is paired. The
effect of the first instance is represented by
the slopes in Figures 1 and 2. The additive
model requires that all of the slopes be the
same (i.e., that all of the curves in Figures
1 and 2 be parallel). Instead, Figure 1 shows
that the first item has a greater effect when
paired with N items than when paired with
M—M+ combinations. Figure 2 shows that
the effect of the first item is inversely related
to the number of subsequent items. These
critical crossover violations of independence
rule out the simple additive model.

Values of Instances Model

Gollob et al. (1973) suggested an additive
model that can be represented in these terms
by allowing the sets to overlap. This plausible
assumption is illustrated in the left-hand
middle panel of Figure 3. Although the sub-
jects are instructed that the sets are mutually
exclusive, they would be reasonable to expect
(by induction) that attitudes toward one
subgroup might apply to others. Thus, when
one hears that a man hates Buvians, it would
be natural to induce that he may also hate
some Cuvians and Duvians as well. Conse-
quently, the additional information that the
man hates Cuvians would not have as great
an impact. The left-hand middle panel of
Figure 3 illustrates an example in which each
piece of information would be worth 7 units
(plus signs) alone, but when added to another
item of the same sign, it increases the total
by 5, and when added to two other items, its
increment is only 4. The increments are repre-
sented as those portions of the union that
exclude the other sets (i.e., the increment is
the measure of the intersection of a set with
the complement of the union of the other sets).

The additive model of Gollob et al. (1973)
can be written

n m

* = E *<+£*/, C2]
»=l j=*\

where * is the social inference of n favorable
instances and m unfavorable ones, st is the

ADDING AVERAGING

FIGURE 3. Additive and averaging models of social
inference: Left-hand panels portray social inference
as a measure of the union of sets, the difference be-
tween the number of favorable and unfavorable
aspects. Overlaps (intersections) among same-signed
instances allow for redundancy effects. Right-hand
panel models the social inference as the resultant
temperature of a mixture of solutions. The basic
quality of an averaging model is illustrated by the
fact that the effect of the temperature of Solution C
will be inversely related to the total amount of
liquid in the mixture.

value of the Oh favorable instance, and s/ is
the value of the jth unfavorable instance.
The model allows the value of ^ to depend
on the particular phrase and on the other
favorable instances; similarly, the value of sf
depends on the other unfavorable instances.
However, the model assumes no interaction
between favorable and unfavorable instances.

The additive, values of instances model
(Equation 2), by permitting the redundancy
effect, can account for some of the crossovers
(e.g., Figure 2, Panel B) that would previ-
ously have been assumed to rule out additive
models. The left-hand, lower panel of Fig-
ure 3 illustrates how addition of an HL
combination would lower the rating of an H
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from 7 to S; whereas, addition of the same
HL combination to an L would raise the
rating from — 7 to — S. This violation of in-
dependence is allowed because the second H
or L in the set carries reduced value. Re-
dundancy therefore allows a crossover, while
still retaining an adding function for the
integration process.

The additive, values of instances model
predicts no interaction between the number
of unfavorable instances and the value of
favorable instances included in the same set.
Therefore, it would predict that the curves in
Figure 2, Panel A should be parallel for items
of N, M+, and H value. Instead, the slopes
are inversely related to the number of subse-
quent M— items. Similarly, the values of
instances model predicts that the curves
in Figure 2, Panel D should be parallel for
L, M —, and N items. Instead, the effects of
the first unfavorable item (the slopes) are
inversely related to the number of favorable
(M+) items. This result shows that the
diminishing marginal effects of additional in-
stances are better explained by an averaging
model, in which the effect of any one instance
is washed out by other instances, rather than
by an expectancy impact model, in which the
additive effect of an item would be presumed
to depend on its redundancy.

The crossover in Figure 2, Panel C also
presents great difficulty for the values of in-
stances model. When adding instances of N
value, redundancy should not occur; there-
fore, the effect of favorable or unfavorable
information should be unaffected by the num-
ber of N instances. For an additive model to
explain the neutral-item crossovers in Fig-
ure 2, Panel C and Figure 1, it would have
to be assumed that items changed value and
sign in linear contrast with the other items
in the set.

This requirement would be consistent with
a theory of social inference that is analogous
to the idea of the measure of the union of
several sets. The measure of a union of two
sets is the sum of the measures of the two
sets minus the measure of the intersection.
One attraction of this approach, aside from
the elegance of set theory, is that the inter-
section (redundancy) may be predictable
from the difference in value. Thus, if a neu-

tral item can be represented by a set with
elements of both positive and negative value,
the intersection with a positive item will be
positive so the contribution of a neutral item
would be negative. Similarly, a neutral item
will produce a positive effect when combined
with a negative item since the intersection
would be negative.

This modification seems unattractive for
two reasons: First, it seems unlikely that
judges would think, for example, that "talks
about Buvians" should have a negative impli-
cation when the person also "listens to the
ideas of Cuvians" but a positive value when
combined with "disagrees with Cuvians."
Second, previous research in information inte-
gration has shown that ratings of single items
show assimilation to the other items, rather
than the contrast that would be postulated
to save the additive model (Anderson, 1966,
1971, 1974a). Nevertheless, this set theory
version seems to deserve further scrutiny in
empirical studies.

Averaging Model

The right-hand panel of Figure 3 models
the process of social inference as the tempera-
ture of a mixture of solutions. Each piece of
information is represented by a portion that
will be added to the mixture. Thus, each
solution has a temperature (st) and a volume
(wt) corresponding to scale value and weight.
The initial impression corresponds to the fluid
(presumably lukewarm) already in the mixing
beaker. The resultant social inference, *, of
k items is presumed to correspond to the
temperature of the mixture, which will be
given by the averaging quotation

*L
i-o

[3]

where w0 and s0 are the volume and tempera-
ture of liquid already in the beaker.

The averaging model accounts for three
important qualitative features of the data,
whereas neither the simple adding model nor
the values of instances model can explain all
of the features of the data. First, the effect of
the first instance (the slopes in Figure 2)
should be inversely related to the number of
items in the set. In the temperature model
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(Figure 3), the effect of the temperature of
Solution C will be inversely related to the
total amount of fluid in the beaker.

Second, the crossover in Figure 1 is ex-
plained by postulating that neutral items are
less diagnostic and have less weight. In the
temperature analogy, it would be as though
N-value solutions (of intermediate tempera-
ture) had less fluid. Consequently, the first
item has greater effect (slopes in Figures 1
and 2) when the subsequent items are N.

Third, if the weights of M+ and M— items
are equal and the weight of the first item is
constant, the averaging model predicts the
parallelism for the M—, M+, and M—M+
curves in Figure 1. The additive model
(Equation 1) also predicts this parallelism.
The expectancy-impact values-of-instances
model, however, predicts a small interaction
due to redundancy that does not appear in
Figure 1.

Consistent with the averaging model, the
slopes of Figure 1 vary inversely with the
total number of items in the set, and the
distances between the curves in Figure 1,
Panel B increase as the slopes decrease. How-
ever, the averaging model would require some
modification to give an accurate quantitative
account of the slopes. The average slopes in
Figure 2 (arbitrarily setting the abscissa
variation to unity) are 3.81, 2.26, and
1.72. If the absolute weight of each item is
constant, the slopes are proportional to w/
(w0 + w), w/(w0 + 3w), and w/(wa + 1w).
Hence, the reciprocals should be linearly
related to 1,3, and 7. Instead, ths reciprocals
are .26, .44, and .58. This result can be ac-
counted for by a configural-weighted aver-
aging model that allows absolute weight to
decline with increasing set sizes. This con-
figural-weight model was fit to the 60 means
in Figure 2 using a least-squares criterion,
with the aid of the STEPIT subroutine
(Chandler, 1969). The mean squared discrep-
ancy was .024, and the deviations appeared
unrelated to set size. The estimates of the
absolute weights, setting w0= 1, were Wi
= .984, w2 = 1.20, and ws = 2.61, for the
first instance, sets of 2, and sets of 6 subse-
quent instances, respectively. These param-
eters are far from being proportional to 1,
2, and 6.

It might be thought that the configural
weighting effect is analogous to the expectancy-
impact hypothesis, since both are violations
of the assumption of parameter invariance.
However, the expectancy-impact hypothesis
predicts that the effect would depend on
whether the added information is of the same
or different sign, whereas the configural
weighting effect depends only on set size.

The experiment of Gollob et al. (1973) was
not designed to differentiate the values of
instances model from the averaging model.
It is worthwhile to note that the averaging
model can account for the pattern of results
in their Table 3 without the expectancy-
impact hypothesis. The negatively accelerated
set-size function (one argument for expect-
ancy impact) is a mathematical consequence
of the averaging model. Although the present
study does not support an expectancy inter-
pretation, the general concept of expectancy
may prove useful for explaining other effects
in judgment (Birnbaum, 197S).

The averaging model can thus account for
all of the important qualitative features of
the data. It can explain both the parallelism
for M* and M" items and the crossovers in
Figure 1, the shifts in the location of the
crossovers in Figure 2, and the variation of
the slopes as a function of the number of
items. To give a complete quantitative ac-
count, however, the model may require a con-
figural weighting revision, in which the abso-
lute weights diminish as the number of items
in the set increases. In the temperature
analogy, this would amount to a cook who
added less of each solution when there were
many solutions to add. With this simple
modification, the averaging model can give a
complete account of the present data.
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