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Psychological measurement is the oldest area of scientific research in psychology
and probably the area with the most sophisticated controversies. The chapters in
this volume reflect a good deal of disagreement on the fundamental question:
How should we measure subjective values? This chapter reviews some of these
controversies and presents new points of view on some old, but unsettled, prob-
lems.

1. There are two popular methods for obtaining ‘‘direct measures’’ of
psychological value—the methods of category rating and magnitude estimation.
If category ratings and magnitude estimations are linearly related to subjective
value, they should be linearly related to each other. Instead, magnitude estima-
tions are often a positively accelerated function of category ratings. This apparent
contradiction has long troubled psychologists, and several theories have been
proposed to explain the discrepancy. Section A notes that the relationship be-
tween ratings and magnitude estimations varies because both depend on stimulus
spacing and the range of responses implied in the instructions. Therefore,
theories that assume an invariant relationship between the results of the two
procedures face grave difficulties.

2. Because the instructions for magnitude estimation (M) seem to focus on
“‘ratios’’ whereas the instructions for ratings (C) seem to focus on ‘‘intervals,’’ it
seems reasonable to speculate that the relationship between C and M could be bet-
ter understood in terms of the comparison processes of the judge. Section B re-
views experiments designed to test the hypothesis that judges use the same compari-
son operation despite instructions to judge ‘‘differences’’ or ‘‘ratios.’’ (In this chap-
ter, quotation marks are used to denote the instructions given to the subject or the
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responses obtained with such instructions. It is possible to empirically test the
hypothesis that *‘ratio”’ judgments, for example, fit a ratio model, so it is impor-
tant to maintain the distinction between the task given the subject and the mode]
used to represent the data.)

3. Many experiments, reviewed in Section B, are consistent with the
hypothesis that subjects use the same comparison process to judge both ‘‘dif-
ferences’” and ‘‘ratios.’’ If subjects use only one operation, is there any way to
decide empirically how to represent that operation? Section C discusses more
general theories of stimulus comparison that make predictions for tasks in which
judges are asked to compare two stimulus relations, for example, to judge the
“‘ratio of two differences’’ or the ‘‘difference between two ratios.’’ In this wider
realm, it is possible to test among theories that would otherwise be impossible to
discriminate. Evidence from three studies suggests that the ‘‘basic’’ operation for
comparing two stimuli is subtraction.

4. Contextual effects in scaling are discussed in Sections A, D, and E. In
Section A, contextual effects due to stimulus spacing in category ratings and
magnitude estimations are shown to be comparable in form for the two proce-
dures. However, Section D shows that in stimulus-comparison experiments, it
may be possible to derive scales that are largely independent of stimulus distribu-
tion. In certain situations it is possible to localize the effects of stimulus distribu-
tion in the final stage of processing (i.e., in the response function). Section D
also presents evidence that in cross-modality comparisons a stimulus is compared
in relation to other stimuli within its own modality, and contextually determined
values within modality are compared between modalities. Hence, scale values
derived from cross-modality comparison depend on the stimulus contexts.

5. Section E discusses philosophical implications of contextual effects for
methodology. Some have argued that there is a ‘‘right’’ way to do psychophysi-
cal experiments and have advocated experimental designs that would preclude
evaluation of the theories upon which the methodology is based. An alternative
point of view is presented in which contextual effects are regarded as basic to
studies of scaling, and they are therefore accepted and even welcomed.

6. Section F takes up controversies in measurement and model testing. The
parallelism test of functional measurement is shown incapable of simultaneously
establishing the validity of the response scale and model. Two areas of research,
impression formation and the size-weight illusion, are reviewed to challenge
previous conclusions of functional measurement and to show how methodologi-
cal loopholes in simplistic application led to inappropriate conclusions. Improved
techniques for model testing are discussed.

7. Section G evaluates related theories of psychophysics that attempt to en-
compass a wide array of data. It is shown that theories requiring different scales
of sensation for different tasks are not yet needed by the data and simpler theories
that assume a single scale of sensation remain consistent with a variety of data.
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A. JUDGMENT FUNCTIONS IN SINGLE STIMULUS
EXPERIMENTS

The overt response, be it a category judgment, magnitude estimation, linemark,
physical estimate, cross-modality match, or physical adjustment, depends on the
context: the stimulus range, spacing, frequency of presentation, etc. These ef-
fects cannot be ‘‘avoided’’ and should not be ignored either at the practical or
theoretical level. One way to represent contextual effects is to express the overt
response as a function of the subjective value of a stimulus, where the function is
permitted to depend on the contextual features of the experiment.

Category Ratings vs. Magnitude Estimations

Let C;. and M, be the category judgment and magnitude estimate of stimulus &,
in context k, having subjective value s;. One can then express the judgments as
follows:

Ci = -]cA (s9); (A.1)
M;, = JMA (s9); (A.2)

where J-and J,, are the strictly monotonic judgment functions for context k.

Equations A.1 and A.2 make clear the distinction between subjective value, s,
and the overt response. If the modulus in magnitude estimation or the number of
categories in category rating were changed, the overt judgments would change,
but one would not want to conclude that the sensations changed. The subscripts
(k) for context include any change in procedure for responding that is likely to
influence the judgment (or output) function. It seems reasonable to suppose that
the functions J and Jy; lawfully depend upon such contextual features as the
& k

number of categories, stimulus spacing, modulus, etc.
The relationship between category ratings and magnitude estimates in contexts
k and n can be expressed as follows:

M;, = JMA [Jcn—l(cin)] (A.3)

where Jy, (J ') represents the relationship between ratings and magnitude esti-

timates of the same stimuli.

At one time it was thought that one could operationally define judgments as in
Egs. A.1 and A.2 to be ‘‘direct’’ measures of sensation, a definition that corre-
sponds to assuming Jy, and/or J are linear. However, category ratings and
magnitude estimations are typically nonlinearly related (Stevens & Galanter,
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1957). Therefore, if s is the same in both equations, then J ¢ and J y; cannot both
be linear. Typically, M is positively accelerated relative to C. Torgerson (1960)
noted that log M is often linearly related to C. Eisler (1962) found that log (M + b)
may be more nearly linear to C. Marks (1974, 1979), Orth (this volume), Wegener
(this volume), and others have represented this relationship with linear functions of
power functions, C = aM® + d, where a, b, and d are arbitrary constants.

Although M is typically a positively accelerated function of C, the relation-
ship between M and C changes as a function of contextual details of the experi-
ments, as is illustrated in the next section.

Contextual Effects in “Direct” Scaling

The following experiment illustrates typical findings. Groups of subjects were
instructed to judge the darkness of the dot patterns in either half of Fig. 17.1
using either category rating or magnitude estimation. There were eight different
groups of subjects. Four groups made category ratings and four groups made
magnitude estimations. Within either response procedure, two groups of subjects
received stimuli spaced according to a positively skewed stimulus distribution
(relative to log®), as shown in the left side of Fig. 17.1, and two different groups
of subjects received stimuli spaced according to a negatively skewed distribution,
as on the right of Fig. 17.1. Note that both distributions have six values in
common. Patterns labeled 9, 11, 6, 10, 1, and 7 have 12, 18, 27, 40, 60, and 90
dots, respectively, in both contexts. If there were no effects of the other stimuli
presented for judgment, then these common stimuli should receive the same
judgments in both contexts.

Category Ratings. For the category-rating experiments, two groups used a
five-point scale in which 1 = lightest pattern and 5 = darkest pattern. The other
two groups were given a 1-100 scale with the end points anchored to the end
stimuli in the same way.

Results for the category-rating tasks are shown in Fig. 17.2. The upper panel
shows the results for the 1-100 scale, and the lower panel shows the results for
the 1-5 scale. The two curves within each panel show that mean ratings can be
either positively accelerated or negatively accelerated relative to log®, depend-
ing on the spacing of the stimuli chosen for judgment. The general shape of the
trends is consistent with Parducci’s range-frequency theory. Parducci (this vol-
ume) has shown that the magnitude of the contextual effect due to stimulus
distribution decreases with increasing number of response categories and in-
creases as a function of the number of stimulus levels. The present data, obtained
with 11 stimulus values, show that the contextual effect for the 100-point rating
scale remains quite large.
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POSITIVELY SKEWED CONTEXT NEGATIVELY SKEWED CONTEXT

FIG. 17.1. Two stimulus distributions (contexts). Subjects judged darkness of
each dot pattern. Different groups of subjects received different stimulus distri-
butions. Note that patterns numbered 9, 11, 6, 10, 1, and 7 are identical in both
contexts; these stimuli have 12, 18, 27, 40, 60, and 90 dots, respectively. From
Birnbaum and Mellers (1980a).
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Magnitude Estimations. For the magnitude-estimation experiments, all
subjects were told to call the lightest pattern ‘100"’ and to assign numbers
to each stimulus so that the ratios of the numbers would match the ‘‘ratios of
the subjective darkness of the sensations.’” Both groups were encouraged to
use whatever numbers they wished, but different examples were given in the
instructions to help explain the task. In one case, the examples went as high
as ‘300"’ (if the pattern seems three times as dark as the lightest pattern, say
300). In the other case, the examples went as high as **900°" (if the pattern seems
nine times as dark). Note that this change in the magnitude-estimation instruc-
tions is subtle; according to early theories of magnitude estimation, this aspect of
the instructions should theoretically have no effect. Instead, Fig. 17.3 shows that
it has a great effect.

The magnitude estimations of the common stimuli are shown in Fig. 17.3,
with a separate curve for each condition. If the stimulus values chosen had no
effect on magnitude estimations, and if the examples used in the instructions had
no effect, then all four curves should coincide. Instead, the difference between
the open and solid points shows that when the examples range as high as **900,”
the subjects use numbers that average much higher than when the largest example
is only ‘‘300.’” Inasmuch as the exponent obtained in a magnitude-estimation
experiment depends largely on the (log) response range, it appears that the
exponents obtained in magnitude-estimation studies may relate more closely to
the experimenter’s range of examples than to the subjects’ range of sensations.
Robinson (1976) and Poulton (1979) reached similar conclusions.
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FIG. 17.3. Contextual effects in
800 | Magnitude Estimation /{ 4 magnitude estimation. Mean mag-
/1 )"900" nitude estimations are plotted against
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skewed distribution; solid lines are
for negatively skewed conditions.
Upper two curves show results when
instructions included an example re-
sponse as high as *'900°"; lower two
curves show results when largest
example was ‘*300."" Brackets show
plus and minus one standard error. If
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Furthermore, Fig. 17.3 shows that magnitude estimations depend on the
stimulus spacing. Magnitude estimations appear to show similar contextual ef-
fects to those for category ratings. Parducci (1963) found similar results.

Quite clearly, because the relationships between M and ® and between C and @
can have so many different forms, the relationship between M and C should not
be theorized to be an invariant functional form.

Contextual effects due to stimulus distribution cannot be adequately approxi-
mated by power functions. By increasing the stimulus density in the center of the
array or at the ends, the functions can be changed in their cubic components
(sigmoidal trends). Therefore, the relationship between category ratings and
magnitude estimations cannot be adequately represented by power functions,
even allowing different exponents for different contexts. Because the relationship
between stimulus and response can attain so many different functional forms,
Nihm (1976) has suggested (satirically) that the power function be replaced by
the polynomial, which given enough parameters can describe any finite set of
data.

Reactions to Contextual Effects

Some investigators, having realized the existence of contextual effects, have
reacted by adopting extreme positions. Some of these are discussed by Poulton
(1968, 1979). One reaction is that contextual effects are undesirable and should
be ‘‘avoided,’’ averaged away, or ignored. In order to ‘‘avoid’’ contextual
effects, it has been argued that everyone should use the same stimulus distribu-
tion, response examples, and so on. Then these different functions (as in Fig.
17.3) would not trouble us. But then, how do we decide which context (stimulus
distribution, response procedure, etc.) is the ‘‘right’’ one? Will we not be ac-
cused of choosing the context to produce the desired effect?

The second reaction, which is also unfortunate, is that if the functional rela-
tionship between stimulus and response can be manipulated, then one cannot
assume any metric properties in the response. It could be thought that because the
response with one procedure (rating) is nonlinearly related to the response with
another (estimation), one cannot assume any more than that the response is an
unknown and perhaps unpredictable monotone function of subjective value. It is
argued in sections D and E that this reaction is too pessimistic and ignores the
lawfulness of the effects in Figs. 17.2 and 17.3. Instead, it can be argued that any
complete theory of psychophysics must give an account of the response proce-
dure and contextual effects in order to explain the lawful numerical changes that
result as a function of these variables.

The effects of stimulus range, stimulus spacing, and frequency are best under-
stood for category ratings and are well-described by Parducci’s range-frequency
theory (Parducci, 1963, 1965, 1974, this volume; Parducci & Perrett, 1971).
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Indeed, the lawfulness of the stimulus-spacing effect can be used to define a
psychophysical scale (Birnbaum, 1974c).

Range-Frequency Theory

A general form of Parducci’s range-frequency theory can be written as follows:

5i
Cik = ax [————

— :\ + biG(si) + ck (A.3)
Sm — So
where Cj, is the category rating of stimulus i in context k; s; is the subjective
value of the stimulus; s,, and s, are the subjective values of the maximum and
minimum stimuli in context k; and G,(s;) is the (cumulative) proportion of
subjective values less than s; in context k. The linear constants, dy, by, and ¢,
reflect the weight of the range and frequency principles and may depend on the
number of stimulus levels and the number of categories (Parducci, this volume).
Birnbaum (1974c) noted that when the stimulus and response ranges are held
constant, and the stimuli are presented simultaneously, ratings can be well-
approximated by the model:

Cik = as; + ka ((Dl) + c (A4)

where F(®;) is the cumulative proportion of stimuli less than ®; in context k;
and a, b, and c are constants. It follows that

as; +¢ =Cu — bF 1, (®) (A.5)

Thus, because F', is known, range-frequency theory provides a basis for estimat-
ing scale values. Instead of ‘‘avoiding’’ contextual effects by holding the
stimulus distribution fixed to some arbitrary value, Bimbaum (1974e) argued that
the systematic manipulation of the context allows one to test theories, such as
range-frequency theory, and simultaneously estimate context-free scale values.
This issue is taken up in greater detail in Section E.

B. “RATIOS” AND “DIFFERENCES”

Torgerson (1961) postulated that the contradiction between magnitude estima-
tions and category ratings might be explained by the premise that judges perceive
only a single relation between a pair of stimuli, irrespective of instructions to
judge *‘differences’’ or <ratios.”” This conjecture, which could not be tested in
the early research, has received new support from recent studies that have inde-
pendently manipulated stimulus levels (for reviews, see Birnbaum, 1978, 1979,
1980a). The following empirical findings have emerged from this research:



17. MEASUREMENT CONTROVERSIES 409

1. With certain experimental methods, magnitude estimations of ‘‘ratios’’
closely fit the ratio model. The raw data, when plotted against the esti-
mated scale value of the comparison stimulus with a separate curve for
each standard, show the appropriate pattern of bilinearity predicted by the
ratio model.

2. Category ratings of ‘‘differences’’ fit the subtractive model, showing ap-
proximate parallelism, when the data are plotted in the same way.

3. Scale values derived from the fit of the ratio model applied to ‘‘ratios’’ are
very close to an exponential function of scale value derived from the fit of
the subtractive model applied to ‘‘difference’’ judgments.

4. Judgments of ‘‘ratios’’ and ‘‘differences’’ are monotonically related.
These empirical findings are consistent with the hypothesis that the same
operation and scale values underlie both procedures.

Theories of Ratios and Differences

Two-Operation Theory. According to this theory, subjects perform both
tasks using two operations on the same scale values. ‘‘Ratio”’ judgments are
given by the equation:

RU = JR[sj/si] (Bl)

where Ry is the ‘‘ratio’” judgment of stimulus j relative to i, and Jg is the
monotonic judgment function. ‘‘Difference’’ judgments are given by the equa-
tion:

D;; = Jpls; — sl (B.2)

where Dy; is the ‘‘difference’’ response, and Jp, is the judgment function for
‘‘differences.”’

This theory implies that R;; and D;; should not be monotonically related, in
general, but instead that the rank orders of these matrices should be different but
appropriately interrelated (Krantz, Luce, Suppes, & Tversky, 1971). For exam-
ple, as a constant difference is moved up the scale (e.g.,2 — 1 =3 -2=4 — 3
=5 — 4, etc.), the corresponding ratios approach 1 3 >4 > %> %, etc.). Asa
constant ratio is moved up the scale (e.g., # = 4), absolute differences increase (2
-1<4-2).

The left side of Fig. 17.4 plots actual ratios against actual differences for a 7
x 7, A by B, factorial design, using successive integers from 1 to 7 as levels of A
and B. The ordinate plots A/B, the abscissa plots A — B, and separate curves
connect points with the same value of B (curve parameters). The highest curve
(solid points) plots A/l vs. A-1. The curve with the lowest slope (solid
diamonds) plots A/7 vs. A-7. Note that the relationship between actual ratios and
differences cannot be expressed by any function of a single variable because for
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PREDICTED RATIO
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FIG. 17.4. Theoretical predictions of theory that judgments of ‘‘ratios’’ and
“differences’’. are governed by ratio and difference operations. Left: A/B plotted
against A-B with a separate symbol (and separate curve) for each value of B.
Predictions for 7 X 7 design using successive integers from 1 to 7 for A and B.
Right: (A/B)'*7 plotted against 2.17(A—B) in the same fashion, except the seven
values of A and B were evenly spaced between 1 and 3.76 (i.e., 1 to 7-%8). From
Birnbaum (1980a).

any given difference there does not exist one unique ratio, but many, and for any
ratio there exist many differences.

The judgment functions, Jg and Jp, serve to monotonically stretch the ordi-
nate and abscissa of Fig. 17.4, but it should be clear that as long as A and B have
been independently manipulated over a sufficient range, the ordinal pattern of
ratios vs. differences of Fig. 17.4 should remain.

The right side of Fig. 17.4 shows the expected relationship between ratios and
differences if the subjective stimulus range is only 7-%8, or 3.76, and if the Jg
function is a power function with an exponent of 1.47. The abscissa shows
differences (times 2.17), and the ordinate shows ratios raised to the 1.47 power.
Thus, the ordinate shows (A/B)!*7, plotted against 2.17 (A — B) on the abscissa,
using seven levels of A and B spaced evenly between 1.0 and 3.76.

This smaller stimulus range was chosen so that the largest ‘‘ratio”’ (7) would
be consistent with typical results from ‘‘ratio’’ experiments, given the average
output exponent (1.47) reported by Rule and Curtis (this volume). Thus, if
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magnitude estimations of *‘ratios’’ are a power function of subjective ratios with
an exponent in the range of values reported by Rule and Curtis, ‘‘ratios’” and
““differences’’ should be quite distinct and have different rank orders as shown
on the right of Fig. 17.4.

One-Operation Theory. If subjects use only one operation for both tasks,
and if that operation can be represented by subtraction, then the data can be
represented by the following:

R;; = Jgls; — si (B.3)
Dij = JD[Sj - Si] (B4)

where Jg represents the strictly monotonic judgment function for magnitude
estimations of ‘‘ratios’’ and Jy, represents the strictly monotonic judgment func-
tion for ratings of ‘‘differences.’’ It follows that s; — s; = Jp![Dy]. Therefore,
R; = Jg[Jp '(Dy)]. Because JgJ p~* is monotonic, one-operation theory implies
that ‘‘ratios’’ are monotonically related to ‘‘differences.’’

With the experimental procedures used in the research reviewed by Birbaum
(1980a), it has been found that the Jg function for magnitude estimation can be
well-approximated by an exponential function, and Jy, for ratings can be approx-
imated by a linear function. In this case, the model can be written:

R;; = agexplcg(s; — si)] + by, (B.5)
D;; = ap(s; — s0) + by, (B.6)

where ag, ap, by, bp, and cg are constants. The comparison operation is
subtraction in both cases. It follows that R;; should be exponentially related D;.

A Brief Review of Research on ‘‘Ratios” and
“Differences”

Nine experiments that obtained ‘‘ratio’’ and ‘‘difference’’ judgments are sum-
marized in Fig. 17.5. *‘Ratios’’ are plotted on the ordinate against ‘‘differences”’
on the abscissa, with separate symbols for each divisor, as in Fig. 17.4. Instead
of resembling the predictions in Fig. 17.4 of the two-operation theory, the data
appear more closely to fall on a single monotone function in each case. ° ‘Ratios”’
are roughly an exponential function of ‘‘differences,’” as shown by the resem-
blance of the data to the exponential curves, which have been fit through just two
points (0, 1) and the highest point for each set of data.

Figure 17.5 shows that for experiments with heaviness (Birnbaum & Veit,
1974a), pitch of pure tones (Elmasian & Bimmbaum, 1979), darkness of dot
patterns (Birnbaum, 1978), darkness of grays (Veit, 1978), loudness of 1000 Hz
tones (Bimbaum & Elmasian, 1977), likeableness of adjectives (Hagerty &
Bimbaum, 1978), and easterliness or westerliness of U.S. cities (Birnbaum &
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FIG. 17.5. Judgments of ‘‘ratios’’ and *‘differences,’” plotted as in Fig. 17.4,
for nine experiments. Magnitude estimations of *‘ratios’’ are nearly a monotonic
function of ratings (or estimations) of *‘differences, '’ unlike the predictions of Fig.
17.4, but consistent with the theory that the same operation underlies both tasks.
Exponential functions have been drawn through the point corresponding to a

difference of ‘‘zero’’ and a ratio of ‘‘one’’ (arrows) and the highest point for each
experiment. From Bimbaum (1980a).
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Mellers, 1978), it appears that ‘‘ratios’’ and ‘‘differences’’ are monotonically
related. Similar conclusions were reached by Rose and Birnbaum (1975) for
numerical comparisons. Although Parker, Schneider, and Kanow (1975) con-
cluded that judges use two operations for length, Schneider, Parker, Kanow, and
Farrell (1976) reached the conclusion that ‘‘ratios’’ of loudness are governed by
subtraction. Schneider (this volume) summarizes additional research consistent
with the hypothesis that the same comparison process is used for judgments of
‘“‘ratios’’ and ‘‘differences.”’

In summary, for a number of social and psychophysical continua, judgments
of ‘‘ratios’’ and ‘‘differences’ can be represented by the same comparison
operation. If it is assumed that this operation is subtraction, the Jg function (for
magnitude estimations of ‘‘ratios’’) can be approximated by the exponential, and
the Jp, function (for ratings of ‘‘differences’’) is approximately linear.

However, the subtractive representation,

R;; = agexp(s; — §y) (B.7)

D;; = ap(s; — si) (B.8)
can be replaced by an equivalent ratio representation as follows:

Ry = ag(sf¥is¥) (B.9)

Dy = apln(s}s¥) (B.10)

where s* = exp(s). In other words, judgments of ‘‘ratios’’ and ‘‘differences”
are consistent with the proposition that the same operation underlies both tasks,
but they do not permit specification of what that operation might be.

Is it meaningful to ask whether judges are ‘‘really’’ comparing two stimuli by
computing a difference or a ratio? The next section discusses a theoretical and
methodological framework in which this question can be answered.

C. RESOLUTION OF THE RATIO-DIFFERENCE
CONTROVERSY

The finding that judgments of ‘‘ratios’’ and ‘‘differences’’ are monotonically
related is consistent with Torgerson’s (1961) hypothesis that judges compare two
stimuli by the same operation for both tasks. Torgerson (1961) concluded that if
only one operation were used, it would not be possible to discover whether the
operation is a difference or ratio. Whichever representation was chosen would be
a ‘‘decision, not a discovery.”’

However, Bimbaum (1978) and Veit (1978) have shown that with a wider
array of data involving both stimulus comparisons (A vs. B) and also compari-
sons of stimulus relations (AB vs. CD), it becomes possible to discriminate
among different theories. Consider the stimuli shown in Fig. 17.6. The observer
can be asked to judge the *‘ratio’’ (R) of A to B or the *‘difference’’ (D) between A
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A B C D

FIG. 17.6. Stimulus array for one trial of a four-stimulus task. From Birnbaum
(1980d).

and B, as before. It is also possible to ask the observer to judge the ‘‘ratio of the
difference’’ between A and B relative to the difference between C and D, for
example. Four of these four-stimulus tasks have been investigated: ‘‘ratios of
ratios”’ [RR = (A/B)/(C/D)], *‘ratios of differences’’ [RD = (A — B)/(C — D)},
“*differences of ratios’’ [A/B — C/D], and *‘differences of differences’’ [(A — B)
— (C = D)I.

These four-stimulus polynomials can be diagnosed by ordinal and metric
analyses (Birnbaum, 1978). Furthermore, by comparing the scale values for the
same stimuli across the tasks, the information gained from such an experiment is
increased. Veit (1978) employed a ‘‘ratio of differences’’ task in addition to the
“‘ratio’’ and *‘difference’’ tasks for judgments of the darkness of papers of varied
reflectance. Hagerty and Bimbaum (1978) used six tasks (R, D, RR,RD, DR, DD).
(These experiments have been reviewed by Birnbaum, 1978). The next sections
illustrate the major findings using data from a new experiment that employed
stimuli as in Fig. 17.6, and which replicated the findings of Veit (1978) and those
of Hagerty and Birnbaum (1978). The following conclusions have been drawn
from this research:

1. Judgments of ‘‘ratios of ratios,”’ ““differences of ratios,’’ or ‘‘differences
of differences,’’ can all be represented by the difference of differences
model, using the same scale values for the stimuli for all three tasks.

2. However, judgments of ‘‘ratios of differences’’ can be represented by a
ratio of differences model.

3. The scale derived from the ratio of differences model is consistent with the
scale derived from the subtractive model applied to ‘‘difference’’ and
‘“‘ratio’’ judgments.

4. The scale values derived from the fit of the difference of differences model
applied to “‘ratios of ratios,’” *‘differences of ratios,”” and ““differences of
differences’’ agree with the scale derived from the ratio of differences
model applied to ‘‘ratios of differences.”’

5. The judgment functions for magnitude estimations of *‘ratios’’ and ‘‘ratios
of ratios’’ can be well-approximated by exponential functions, whereas the
other judgment functions are approximately linear.

6. Therefore, the data are consistent with the hypothesis that the basic opera-
tion for comparing two stimuli in these continua is subtraction.
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Theories of Stimulus Comparison

Figure 17.7 gives an outline for discussing theories of stimulus comparison and
combination. In the outline, the physical and subjective values of the stimuli are
denoted ® and s, where s = H(®) is the psychophysical function; the subjective
value of a comparison between two stimuli (or the combination of two stimuli) is
denoted ¥;; = C(s;, 5;), where C represents the comparison (or combination)
process. Two comparisons (or combinations) are compared (or combined) by the
function 8 = G(¥;, ¥)); the overt response, R, is assumed to be a monotonic
function of ¥ in the two-stimulus case and of & in the four-stimulus case. For
comparison with Table 17.1 andFig. 17.7,lets; = A, s;=B, 5 = C,and s, =D.

Table 17.1 shows five theories of stimulus comparison considered by
Bimnbaum (1978, 1979). It is useful to consider first the predictions of the theory
that judges obey the instructions and use a single scale of subjective value. This
theory is labelled Model = Task in Table 17.1.

Figure 17.8 shows calculated ratios and differences for a 7 X 7, A by B,
factorial design, using integers from 1 to 7 as in the left of Fig. 17.4. In Fig.
17.8, A/B is plotted on the left as a function of A with a separate curve for each

Two-Stimulus Task
. H C J

o—> S

\
o— 5 /

Vi) - Rjj

Four-Stimulus Task
H C G J

O——> s \
/‘1’”
o—> 5,
Skl — Ryl

@k—-——‘» Sk \ /
W

qpl————P- ]
FIG. 17.7. Outline of stimulus comparison and combination for two- and four-
stimulus tasks. In the outline, physical values, &, are mapped into subjective
values, s, by the psychophysical function, H; subjective values are compared (or
combined) by the function, ¥, =C(s;, 55). Two comparisons (or combinations)
are compared (or combined) by the function, & = G(¥,;, V). The overt re-

sponse, R is assumed to be a monotonic function of the subjective impression,
where J represents the judgment function. From Birnbaum (1979).
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FIG. 17.8. Predicted ratios (A/B) and differences (A-B) for 7-by-7 design using
successive integers from | to 7 for values of A and B. This figure replots the data
of Fig. 17.4 to show bilinearity and parallelism predictions of ratio and subtractive
models, respectively. Center panel shows that when ratios are rescaled to paral-
lelism (by the log transformation), the curves would not coincide with differences.
From Birnbaum (1978).

level of B. On the right of Fig. 17.8, A — B is plotted against A with a separate
curve for each level of B. The curves are linearly related to A in each case. They
form a bilinear divergent fan for A/B, and the curves are parallel for A — B. The
center panel of Fig. 17.8 shows that when ratios are transformed by the log
function, log(A/B) = logA — logB, the transformed ratios are parallel, but they
are not linearly related to A. Figure 17.8 shows again that A/B and A — B are not
monotonically related.

Figures 17.9 and 17.10 show predictions of the theory that Model = Task for
the four-stimulus tasks (RR, RD, DD, and DR). To compute predictions, the
7 x 7 design (using successive integers from 1 to 7) was factorially combined
with a2 X 2, C by D design, in which the levels of C were five and seven and the
levels of D were one and four. The design is thusa7 by 7by 2 by 2, Aby Bby C
by D factorial. Therefore, C/D is always greater than 1, and C — D is always
greater than O.

Figure 17.9 shows that the RR and DR models [(A/B)/(C/D) and A/B — C/D]
imply a bilinear interaction between A and B. The DD and RD models [(A — B) —
(C — D) and (A — B)/(C — D)] imply no interaction (parallelism) between A and
B. Figure 17.10 shows the form of the A by C by D interactions for the four
tasks. Other aspects of these models are discussed by Birnbaum (1978).
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FIG. 17.9. Predicted values for A-by-B cell means, averaged over levels of C
and D, for the theory that the model is the same as the task. Note that curves are
parallel for ratios of differences (RD) and differences of differences (DD), and
that they show bilinear divergence for ratios of ratios (RR) and differences of
ratios (DR). Note also that curves are all linearly related to scale values of A.
From Birmmbaum (1980d).

Comparing the Theories

As Bimbaum (1978) and Veit (1978) noted, the four-stimulus polynomials can
be distinguished on the basis of ordinal tests analogous to those described by
Krantz and Tversky (1971). By adding the extra leverage of the scale con-
vergence criterion, .the number of distinct outcomes (and therefore the total
constraint of the experiment) is greatly increased.

In addition to the theory that Model = Task, there are four simple theories to
consider. The subtractive theory assumes that simple ‘‘ratios’’ and “*dif-
ferences’’ are computed by subtraction. Once a subjective interval has been
computed, however, the subject can compare this interval by either a ratio or
difference operation. The ratio theory (comparably) assumes that ratios underlie
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FIG. 17.10. Predicted values for A by Cby D, with B fixed to level 1 (for upper
panels) and averaged over levels of B (for lower panels) based on the theory that
model = task. Note that curves are linearly related to scale values of A in all
panels. Note also that A is additive (parallel) with C/D and c-D for DR and
DD)models, respectively, and shows a bilinear interaction with C/D and C-D for
RR and RD models, respectively. From Birnbaum (1980d).

the comparison of two stimuli and that judges can compare two ratios by either a
ratio or by a difference. The indeterminacy theory assumes that only one opera-
tion is possible for comparison of two stimuli or two comparisons. If the data are
consistent with this theory, they would not offer any basis for preferring a ratio or
subtractive representation. The two-worlds theory assumes that there are two
scales and two sets of corresponding operations. The two-worlds outcome could
occur if observers in the four-stimulus tasks used arithmetic on their (implicit)
judgments of R and D.

Except for Model = Task, all four theories predict that the R, D, RR, and DD
data should be rescalabletoa difference, or difference of differences, model using
the same scale values for A. The theories differ in that the subtractive and two-
worlds theories predict that ‘‘ratios of differences’’ should fit the ratio of dif-
ferences model.
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Veit (1978) found that *‘ratios of differences’’ of darkness of gray chips could
indeed be fit to a ratio of differences model, but could not be monotonically
rescaled to fit a difference of differences model, as they showed the appropriate
violations of joint independence that refute the DD or RR models but which are
characteristic of the RD model. Thus, her results were consistent with the sub-
tractive theory but did not test the two-worlds theory.

The ratio theory and two-worlds theory predict that ‘‘differences of ratios’
should fit the difference of ratios model. Hagerty and Birnbaum (1978) studied
all six tasks for the likeableness of adjectives and found no evidence for ratio
theory or two-worlds theory. With the assistance of Steven E. Stegner and
Bernadette Setiadi, the author has replicated the major findings of Hagerty and
Birnbaum (1978) in a new experiment using psychophysical stimuli as in Fig.
17.6.

Experimental Test

In this experiment, 227 undergraduates judged ‘‘ratios’’ and ‘‘differences’’ of
the darkness of dot patterns presented in the format of Fig. 17.6 (except without
C and D). The number of dots varied from 8 to 90 in seven equal log steps as in
the experiment described by Birnbaum (1978, Fig. 4), which used a different
stimulus presentation format. After performing both the simple R and D tasks,
each subject served in one of the four-stimulus tasks: RR, RD, DR, or DD (there
were 41 to 55 different subjects in each condition). The design for these tasks was
a7 xX7XxX2x2,AXBXC XD, inwhich levels of C were levels five (40 dots)
and seven (90 dots) and for D they were one (8 dots) and four (27 dots).

Experimental Results

Figures 17.11, 17.12, and 17.13 show the results for the six tasks, plotted for
comparability with Figs. 17.8, 17.9, and 17.10. However, note that data for
“‘ratios,’’ and ‘‘ratios of ratios’’ are plotted against the antilog, of the estimated
scale value, unlike Figs. 17.8 through 17.10.

The data were fit to the theories in Table 17.1, with the result that the
subtractive theory gave the best overall fit. The predicted curves in Figs. 17.11,
17.12, and 17.13 are based on the following model (subtractive theory of Table
17.1 with J specified):

Ry = agexp(¥y) + by - (C.1)
Dy = ap(¥y) + bp (C.2)
RR;;, = agrexp(Wy — i) + bgg (C.3)

~

RD ., = agp(Wyi/¥i) + bro (C.4)
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DRy = apr Wi — YY) + bpr (C.5)
f)Dijkl = app Wy — Vi) + bDD (C.6)
W, = 54, — sg; and ¥y = Sc, ~ Sp, (C.7)

Note that the unit of the ¥ values is determined by Eq. C.1. The same unit was
assumed for Eq. C.3, as it was expected that judges would be consistent with

their previous ‘‘ratio’’ judgments.
For each task, a proportion of variance unaccounted for was defined as fol-

lows:

_ (Xt — Xp)? (C.8)

T S(Xr— Xp)?

where Pr is the proportion unexplained, X7 is the cell mean judgment, X1 the
prediction (from Egs. C.1 through C.7), and Xt the mean judgment for task T
(over all cells). The summation is over all cells in the design for Task T. For the
“ratio’” and ‘‘ratio of ratios’’ tasks, X is the log cell mean response, X T 18 the
log of the predicted response, and X is the mean log response.
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FIG. 17.11. Judgments of ‘‘ratios”’ and ‘‘differences’ of darkness of dots.
Dashed lines are based on the subtractive theory, fit to data of all six tasks
simultaneously. Note that *‘ratios’” are plotted against 2* rather than s, whereas
«differences’’ are plotted against s. Therefore, these data are not like predictions
of Fig. 17.8, but instead are consistent with subtractive theory (dashed lines).
From Bimbaum (1980d).
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FIG. 17.13. Obtained A-by-C-by-D effects for four-stimulus tasks, plotted for
comparison with Fig. 17.10. For DR and DD tasks, data are for first level of B
only. For RR and RD tasks, data are averaged over levels of B. Dashed lines are
predictions of subtractive theory, constrained to fit all six sets of data simultane-
ously. Abscissa for RR task is 2°. From Birnbaum (1980d).

An overall index, L, was defined as follows:

L= iPT’
T=1

where L is an index of badness of fit that is the sum over all six data arrays. The R
and D arrays are each 7 X 7, symmetric A by B factorials; the RR, RD, DR and
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DD arrays areeach 7 X 7 X 2 X 2, A by B by C by D factorials. Therefore, there
are 882 cells to be fit. In addition to the 12 linear constants in Eqs. C.1 through
C.7, there were six scale values for A and B to estimate (the scale values for s,
and sp, are fixed to 1.0) and three scale values to estimate for C and D. Therefore,
there are 21 parameters to be estimated from 882 data cells.

The same scale values are assumed for A (and B) throughout all six tasks. The
estimated values for the seven levels of A (and B) are 1.00, 1.45, 2.00, 2.47,
3.00, 3.54, and 4.08. The estimated values for C are 3.83 and 4.90, and for D
they are 1.0 and 2.58.

The values of Py for the six tasks for the subtractive theory were .012, .014,
.027,.026, .023, and .042 for the D, R, DD, DR, RD, and RR tasks, respectively.
Attempts to fit the other theories in Table 17.1 led to poorer overall fits. For
example, the sum of squared deviations for the DR task for the ratio theory and
two-worlds theory was more than 2.7 times as great as for the subtractive theory,
with the fit of the other tasks about the same or worse. The subtractive theory
gives a reasonable account of the data in Figs. 17.11, 17.12, and 17.13 as shown
by the similarity of the solid curves (data) and dashed lines (predictions). The
largest deviations, for the RR task, may be due in part to the unnecessarily strict
restriction that the unit of the exponential in Eqs. C.1 and C.3 were the same. A
better fit was obtained by the following: aggexplcgp(¥y; — Vi)l + bgpg» Where
cgrr 18 less than 1.0. :

The subtractive theory assumes that ‘‘ratios of differences’’ can be repre-
sented by a ratio of differences model even though ‘‘ratios’’ and *‘ratio of ratios”’
are represented by subtraction (Birnbaum, 1978; Hagerty & Birnbaum, 1978;
Veit, 1978). Consistent with this assumption, and with the corresponding as-
sumptions concerning J in Egs. C.1 through C.6, the RD data are nearly linearly
related to scale values estimated from the other tasks, whereas the R and RR data
are nearly exponentially related.

The other theories make distinct predictions that are not fulfilled by the data.
For example, the ratio theory predicts that ‘‘differences between ratios’’ would
fit a difference of ratios model. The data in Figs. 17.12 and 17.13 show that the
DD and DR data are nearly identical and do not resemble the predictions of the
difference of ratios model (Figs. 17.9 and 17.10).

The indeterminacy theory predicts that the RD data could be represented by
subtraction. Instead, Figs. 17.12 and 17.13 show the appropriate pattern of
parallelism for the A by B interaction and a cross-over interaction for the A by (C
— D) interaction. Eisler’s (1978) transformation theories (which are discussed in
more detail in Section G) predict that DD and DR should be different and that DD
should resemble the RD data, fitting a ratio of differences model.

In sum, the data of six tasks appear consistent with the pattern predicted by the
subtractive theory. This result agrees with the conclusions of Birnbaum (1978,
1979), Veit (1978), and Hagerty and Birnbaum (1978). The results are consistent
with the proposition that two stimuli are compared by subtraction whether the
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instructions are to report a ‘‘ratio’’ or a ‘‘difference.’’ To argue that ‘‘ratio”
judgments are represented by the ratio model appears to require a complex
sequence of arguments (Birnbaum, 1978, 1979).

More Evidence

Rose and Birnbaum (1975) asked judges to divide a line segment to represent
either the ‘‘ratio’’ or ‘‘difference’’ of two numbers. The pattern of responses was
largely independent of the task. If it was assumed that the responses were repre-
sented by a ratio rule:

§i
S + §;

then the scale values, s, were found to be a positively accelerated function of
numerical value. On the other hand, if the subtractive model was assumed, the
scale values were found to be a negatively accelerated function of physical
number. The scale values for number estimated from the subtractive model were
approximately a linear function of scale values estimated from range-frequency
theory (Bimbaum, 1974c) and scale values estimated by other procedures (Rule
& Curtis, 1973).

Elmasian and Birmbaum (1979) found that the subtractive theory applied to
judgments of ‘‘ratios’’ and ‘‘differences’” of pitch led to scale values that were
compatible with the musical scale, whereas the ratio theory led to scale values
that were nonlinearly related to the musical scale of pitch.

Bimbaum and Mellers (1978) asked judges to estimate ‘‘ratios’” and ‘‘dif-
ferences’’ of easterliness and westerliness of U.S. cities. The task is a particular
“‘inverse’’ judgment for which the inverse appears an unattractive theoretical
interpretation. They used a factorial design that permits segregation of scale
values from the response function for ‘‘inverse’” judgments. As shown in Fig.
17.5, “‘ratios’’ were nearly exponentially related to ‘‘differences’’ for both eas-
terliness and westerliness, consistent with the hypothesis that only one operation
is involved for both tasks. The data can be well-described by the model:

DE, =s; — s (C.10)
DW; =s; — s (C.11)
RE; = expla(s; — s;)] (C.12)
RW;; = expla(s; — s;)] (C.13)

where DE;; and DW; are the predicted ratings of ‘‘differences’’ in easterliness and
westerliness, and RE;; and RW,; are the predicted magnitude estimations of
“‘ratios’’ of easterliness and westerliness, respectively. This theory requires only
one cognitive map and one comparison operation (subtraction). Note also that the
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distinction between easterliness and westerliness is merely one of direction.
Because exp(s; — s;) = llexp(s; — s:), it follows that magnitude estimations of
“‘ratios’’ of easterliness and westerliness are reciprocally related.

Figure 17.14 shows a summary of ‘‘mental maps’’ (scale values) derived from
the data of Birnbaum and Mellers (1978). The figure shows that mental maps
based on the ratio model depend on direction of judgment and are nonlinearly
distorted relative to the actual map. The subtractive model (Egs. C.10 through
C.13) is preferred because it produces a single map for all four tasks that is
independent of direction and resembles the actual map closely.

In summary, the ratio theory does not give an adequate account of the four-
stimulus results, it leads to an unattractive psychophysical function for number, it
contradicts the musical scale of pitch, and it yields mental maps that depend on

A. Ratio Model: Easterliness C. Subtractive Model: One Map

< West

¢ Rescaled
ML A A ) | } L oA
SFSLChenKC CU  Col Phil SF SLC Den KC CU Col Phil
SF SLC Den KC CU Col Phil SFSLCDen KC CU Col Phil
TS K A9T TS ¥ YN
A T3
o Actual
a Centroid
Response
B. Ratio Model: Westerliness D. Actual Map and Centroids

FIG. 17.14. Mental maps of the U.S. derived from ratio model applied to
“‘ratios’’ of easterliness (Panel A) and ‘‘ratios’’ of westerliness (Panel B). The
subtractive model can represent all four sets of data (including *“differences’’) by
means of a single map (Panel C). Actual map of U.S. is shown in Panel D.
Subtractive theory is preferred over ratio theory because it uses a single map that
resembles the actual map, whereas ratio theory requires different maps for dif-
ferent directions that are reciprocally related to each other and nonlinearly related
to the actual map. From Birmbaum and Mellers (1978).



the direction of judgment and are nonlinearly related to the actual map. The
subtractive theory gives a far simpler summary of these data.

D. CONTEXTUAL EFFECTS IN COMPARISON AND
COMBINATION

There are several possible loci for contextual effects in stimulus comparison and
combination (Birnbaum, Parducci, & Gifford, 1971) that can be discussed in
terms of Fig. 17.7. Contextual effects could operate on the scale values prior to
comparison or combination (i.e., on the function H in Fig. 17.7). They could
operate within the set of stimuli presented for judgment (i.e., on C in Fig. 17.7).
Contextual effects could operate on the between-set distribution of ¥ or 6 in Fig.
17.7 (on the J function). Bimbaum and Mellers (1980b) and Mellers and
Birnbaum (1980a, 1980b) have investigated possible loci of contextual effects
and reached the following tentative conclusions:

1. When stimuli of the same modality are compared, the distribution of
stimulus levels seems to have minimal effects on the scale values.

2. When stimuli from different modalities are compared or combined, the
distribution of stimulus levels has large effects on the scale values in the
general directions predicted by range-frequency theory.

3. When the context between sets was manipulated in a social judgment task,
results were similar to those of Birnbaum et al. (1971, Exp. 5): The
contextual effects could be attributed to changes in the judgment function

).

Context Effects in Within-Mode Comparison

As shown in Fig. 17.3, the judged ‘‘ratio’” of darkness of stimulus No. 7 (Fig.
17.1, 90 dots) relative to that of stimulus No. 9 (12 dots) can receive a mean
judgment anywhere from 3.4, if the largest example is *‘3”’, to 8.0 if the largest
example is “‘9”’. Although this effect was attributed to the judgment function,
which describes the relationship between subjective comparisons and overt
“‘ratio’’ responses, experiments in which the stimuli are varied in one factor (as
in Fig. 17.3) do not permit unambiguous identification of the loci of contextual
effects.

Given only the results of Fig. 17.3, it is possible that contextual effects
operate on the scale values (on H) instead of the judgment function (J). When
asked to judge the ““difference’’ or ‘‘ratio’’ of two stimuli, as in Fig. 17.1, will
the observer first judge each stimulus (with contextual effects) and then compare
two implicit judgments? Or will contextual effects occur only after stimulus
comparison?
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These two ideas can be formalized as follows: Let Dy, and Ry, be the judged
“‘difference’’ and ‘‘ratio’’ between stimuli j and i in context k. Suppose J
represents the contextual effect (range-frequency). Model 1 states:

Dy = jDk[Jk(Sj) = Ji(s)] (D.D)
Rix = Jr [u(s) = Julsd)] (D.2)

where Jp and Jg are the judgment functions (presumably based on the distribu-
tion of subjective differences), and J, is the judgment function for the single
stimuli (presumably based on the distribution of s).

Note that if this model holds, then the rank order of ‘‘difference’’ judgments
obtained for the positively skewed context (stimuli on the left of Fig. 17.1) would
be quite different from the rank order of ‘‘differences’’ for the negative context
(on the right). In other words, the estimated scale values [/ (s;)] would depend
on the stimulus distribution.

Model 2 is a special case of Model 1 that assumes that the scale values are
independent of context and that context influences only the transformation from
subjective differences to overt judgments. This model can be written:

Dijk = JDA_[S,- - Si] (D.3)
Rijk = JR* [Sj - Si] (D4)

According to this model, the rank order of ‘‘difference’” and *‘ratio”’ judgments
should be independent of stimulus spacing because the scale values are indepen-
dent of context.

To test these theories, Mellers and Birnbaum (1980b) asked four groups
(about 20 undergraduates per group) to judge either *‘differences’” or ‘‘ratios’’ of
the darkness of dots spaced in either a positively or negatively skewed context (as
in Fig. 17.1). Nested within each 11 X 11 design was a 6 X 6 design of stimuli
common to both distributions.

Figure 17.15 shows mean *‘ratios’’ plotted against mean *‘differences’’ with a
separate point for each divisor/subtrahend, plotted as in Fig. 17.4 and Fig. 17.5.
Data are shown for the 6 X 6 common design, with the results for the positively
skewed condition on the left and the results for the negatively skewed condition
on the right. Note that the data appear reasonably consistent with the premise that
one operation underlies both tasks, i.e., that ‘‘ratios’’ are approximately a
monotonic function of ‘‘differences.”’

Accordingly, the two data sets for each context were fit to the subtractive
model:



Dy = ap, [Sik — sa) + bDA (D.5)
ﬁuk = aRkexp[s,-k — Sl + bRA (D.6)

where the k subscript on the scale values indicates that different scale values are
permitted for each context (though the same scale values and comparison process
is assumed for both *‘ratio’” and ‘‘difference’’ tasks). The proportions of var-
iance unaccounted for were computed as in Eq. C.8, and the sum of these
proportions was minimized. Parameter estimates were derived from the entire 11
X 11 design in each case. Similar results were obtained when only the 6 X 6
common stimuli were used to fit the model. For the common design, the overall
indexes (as in Eq. C.8) were .011 and .014 for positively and negatively skewed
conditions, respectively, indicating that the model deviations constitute about
half of 1% of the variance for each of the four matrices.

Figure 17.16 shows estimated scale values from two sets of both 11 X 11
matrices. The solid points fall nearly on the identity line, indicating minimal
contextual effects. The broken line shows the predicted relationship based on the
single judgments for the 100-point scale (Fig. 17.2). The scale values shown in
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FIG. 17.15. Estimations of ‘‘ratios' plotted against estimations of *‘dif-
ferences,’ as in Fig. 17.5. Data on the left are for the positively skewed context
(see Fig. 17.1). Positively skewed context data are shifted 40 units to the left
relative to the abscissa labels. Curves are best-fit solutions to a special case of the
one-operation theory. From Mellers and Birnbaum (1980b).
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Fig. 17.16 do not differ as much as would be expected from Model 1, assuming
the expected range-frequency compromise. Instead, it appears that one can give a
good approximation to the data by the simpler theory (Eqs. D.3 and D.4) that
scale values for the subtractive model (applied to both ‘‘differences’’ and
“‘ratios’’) are independent of stimulus spacing.

Figure 17.2 shows that for the positively skewed condition the difference in
judgment between stimulus 90 and 40 is less than the difference in judgmént
between 27 and 12, whereas for the negatively skewed distribution the order of
these differences in judgment is reversed. However, when judging ‘‘differences’’
(or *‘ratios’’), the judged ‘‘difference’’ (and “‘ratio’’) between 90 and 40 exceeds
the ‘‘difference’’ (and ‘‘ratio’’) between 27 and 12 for all four comparisons of
means for the negative skew and three of four for the positive skew.

Thus, these data do not provide evidence that contextual effects operate on s
in within-mode stimulus comparisons. Instead, it appears that the rank order of
“ratios’’ and ‘‘differences’’ can be reproduced by assuming that judges compute
differences between scale values that are independent of the stimulus spacing.

Cross-Modality Combination and Comparison

Aside from the psychophysics laboratory, cross-modality questions such as
“Who was the greater, Babe Ruth or Roman Gabriel?,’’ ‘‘Does the punishment
fit the crime?,”’ *‘Is this salary fair for this job?’’ are often asked. It seems likely
that responses to such questions would not depend solely on absolute values but
would depend on the joint distribution of the two modalities.

Krantz (1972) discussed mapping and relation theories of cross-modality
“‘matching.’’ According to the mapping view, sensations in different modalities
are somehow mapped into a common scale of magnitudes that can be compared.



According to the relation view of dhepard (19 /%) ana Kraniz (1Y /<), relauon-
ships (e.g., ratios) between pairs of stimuli can be compared. In other words, it is
possible to compare the ratio of two heavinesses to the ratio of two loudnesses.
By analogy with physical measurement (in which lengths cannot be compared
with masses, but ratios of lengths can be compared with ratios of masses), the
relation theory seems sensible.

Another view can be called psychological relativity theory (Birnbaum &
Mellers, 1980b). In this theory, each stimulus is compared to its distribution, and
the relative positions of the two stimuli in the two modalities are compared.
Thus, a loudness will be ‘‘matched’’ to a brightness when the two stimuli hold
the same position in the distributions of their respective modalities.

To study possible dependence of the scale values on the stimulus distribution,
Birnbaum and Mellers (1980b) investigated two tasks: cross-modality *‘dif-
ference’’ judgments and ‘‘total’’ intensity judgments. ‘‘Total’’ intensity judg-
ments have been studied by Feldman and Baird (1971) and Anderson (1974a).

A typical stimulus presentation is shown in Fig. 17.17. The ‘‘difference’’ task
was to compare the size of the circle to the darkness of the dot pattern and judge
which is greater and by how much. The ‘‘total”’ task was to combine the size of
the circle and the darkness of the dot pattern. On some trials, only one stimulus
(dot pattern or circle) was presented. On these occasions, the unpresented
stimulus value was assumed to be zero.

The experimental design paired each of six circles, varying from 8 to 25 mm
in diameter factorially with six common dot patterns geometrically spaced from
12 to 90 dots. In two conditions, the positively and negatively skewed distri-
butions (of Fig. 17.1) were factorially combined with the six circles. In two other
conditions, more extreme patterns of 10 and 135 dots were added for the medium
range; or patterns of 6 and 180 dots were added for the wide range.

The models were as follows:

Dyx = ap (¢; — du) (D.7)
T = ag (c; + du) + by (D.8)

where Dy, and Ty, are the judgments of “‘difference’’ and *‘total intensity’’ of
circle j and dot pattern i in context k, c; and d ;. are the scale values of the circles
and the dot patterns, respectively, and ap , dr , and by are linear constants for
each context. v )

FIG. 17.17. Example stimulus . .°,
array for one trial of cross-modality .
comparison. From Birnbaum and L
Mellers (1980b).
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In the subtractive model, when the response is ‘‘no difference’’ it is assumed
that ¢; = dy, i.e., a cross-modality *‘match.”’ In the additive model, the addi-
tive constant, bT, is determined by the constraint that when a stimulus is not
presented its valué is zero. Therefore, Tiox + Toje — Tiyr = by, where Ty and
To; are judgments of the ith dot pattern alone and jth circle alone in context k.

Scale values for the dot patterns were estimated separately for ‘‘totals’’ and
““differences’’ for each context. Inasmuch as the distribution of circles was the
same for all conditions, circle scale values were assumed to be the same for all
conditions. Because the scale values for the circles are assumed to be the same
across conditions, once the unit of the circle scale values is fixed, the estimated
scale values for dot patterns in the different contexts are uniquely determined for
the ‘‘total’’ task. Similarly, once the unit and additive constant for the scale
values of circles is fixed, the scale values of the dot patterns for the ‘‘difference”
task are uniquely determined by the data.

Estimated scale values are shown in Fig. 17.18 as a function of log ® with
separate curves for each context. Note that for both *‘differences’” and “‘totals,”’
the slopes are greater for the narrow-range conditions (positive and negative
skew) than for the medium- or wide-range conditions. The wide-range condition
was the lowest in slope. Note also that the scale value of a medium-level dot
pattern (e.g., 27 or 40) receives a greater scale value in the positively skewed
context than it does in the negatively skewed context. These contextual effects,
which are in the general direction of the usual contextual effects in ratings,
cannot be attributed to the J functions between W and response, for different
circles are judged to ‘‘match’’ the same dot patterns in different contexts.

In previous tests of cross-modality ‘‘matching,’” experiments have controlled
the stimulus distributions to be comparable in the magnitude estimation and
cross-modality ‘‘matching’’ experiments. It seems likely that if the stimulus and
response ranges were systematically manipulated, then the conclusions of cross-
modality matching experiments would be altered. Let AR be the log response
range and AS be the log stimulus range, then the power-function exponent in
a magnitude-estimation experiment will be b = AR/AS. If AR is a constant
(Teghtsoonian, 1971), then exponents for two modalities will be b; = AR/AS, and
b, = AR/AS,. Thus, the predicted cross-modality exponent is b;/b, = (AR/AS,)/
(AR/AS,) = AS,/AS,. In other words, one should be able to predict cross-modality
exponents either from the stimulus ranges or from the magnitude-estimation
exponents.

To unconfound these different interpretations, cross-modality ‘‘matching’’
experiments should systematically manipulate the stimulus and response ranges.
For force of handgrip, the response range is not under the experimenter’s control
but rather under the subject’s control. A better procedure would be to use a dimen-
sion such as loudness for the response and to vary the range and taper of the con-
trol knob. It seems likely that the cross-modality *‘matching’’ function will depend
heavily on the range and distribution of responses under the subject’s control. As
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another example, the response could be lifted weight. The experimenter could
present a number of bottles with the judge’s task being to select the bottle whose
heaviness ‘‘matches’’ the stimulus. The distribution of weights is clearly under

the experimenter’s control.
In summary, experiments show that in cross-modality comparison or combi-

nation, the range and spacing of the stimuli affect the scale values. It is as if
stimuli must be judged within the context of other stimuli in the same modality
before they can be compared across modalities. This result is compatible with a
relativity theory of cross-modality “‘matching’’ rather than the mapping or rela-
tion views.

Contextual Effects in Social Information Integration

Mellers and Bimbaum (1980a) applied the approach of Birnbaum et al. (1971,
Experiment 5) to a social judgment task in which judges evaluated the perfor-
mance of students on the basis of their scores on two exams.

The joint distribution of exam scores for the positively skewed context is
shown in Fig. 17.19. Each symbol represents the exam scores of one or more
hypothetical students. The solid squares show the common stimuli that were
presented in both contexts. The common stimuli consist of the union of 4 by 7
and 7 by 4, first exam by second exam, factorial designs. Each open circle
represents a contextual trial; each open triangle represents three such trials. Thus,
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the total of both exam scores ranges from 10 (i.e., 5 + 5) to 70 (i.e., 35 + 35).
The distribution of total score and the marginal distributions of each exam score
are positively skewed. The open triangles show that 42 students (of the total of
160) had scored scores between 10 and 15 for the positively skewed distribution.
There were none in this open interval for the negatively skewed context, which
had a mirror-image distribution, reflected about the axis, exam 1 + exam 2 = 40.

Assuming the scores are combined by an additive (or parallel-averaging)
model, the general model of context can be written:

G = JiE[Jr(s) + Jr(s)] (D.9)

where Gy, is the evaluation of the student with scores i and j in context k, J§ is
the judgment function (presumably based on the distribution of W), and J,
represents the contextual effect on the scale values. In general, if J, is nonlinear,
then the rank orders for different contexts will be different.

A variation of the model that assumes parameter invariance but does not
assume additivity can be written

G = JE¥[¥y) (D.10)

where W ; is the integrated impression, which may or may not be additive. This
model implies that the rank order of the data should be independent of context.

There were four groups. Half of the judges received either the positively or
negatively skewed distributions. Half of each of these groups were given histo-
grams depicting the marginal distributions of exam 1 and exam 2 to use while
making their judgments. It was thought that presentation of these histograms
might enhance any tendency to evaluate performance first and then combine, as
in Eq. D.9. There were about 25 subjects in each of the four groups.

The mean judgments are plotted in Fig. 17.20 as a function of the score on
exam 1 with a separate curve for each level of exam 2. Parallelism would be
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curves converge for positively skewed distribution (left panels), and they diverge
for the negatively skewed distribution (right panels). From Mellers and Birmbaum
(1980a).
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(To check this, another group of subjects was asked to judge performance based
on exam | only. Indeed, when these judgments were substituted into Eq. D.9,
the rank order of predictions differed for different contexts.)

The data of Fig. 17.20 were rescaled to parallelism, and scale values esti-
mated from the additive model applied separately to the four conditions were
found to be nearly identical across conditions. These estimates were averaged
and used to compute s; + s5;. The mean responses are plotted in Fig. 17.21 as a
function of s; + s;, with a separate curve for each context. (The data were
averaged over the histogram vs. no histogram manipulation, which showed min-
imal effects in Fig. 17.20.) The mean judgments have been linearly calibrated to
the same zero to one scale in Fig. 17.21. The solid curves show the cumulative
density functions for the two contexts, based on the density of the sum of the
exam scores (see Fig. 17.19).

According to range-frequency theory, if ¥;; = s; + s, then the obtained
values for each condition should be an average of the solid curve for that context
(frequency) and a straight line through the end points (range). The dashed lines
show the predictions of this theory.

The dashed curves give a good approximation to the data. It is also possible to
use range-frequency theory to solve for the values of ¥; in order to determine if
the assumption that ¥;; = s; + s; is reasonable. The model was fit as follows:

Gijx = aF (Gy) + ¥ + ¢ (D.1D)
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where Gy is the rating of a student with test score levels i and j in context k, F.
is the cumulative proportion of students receiving lower judgments (curves in
Fig. 17.21), ¥;; are estimated parameters, and a and c are fitted constants. The
model was fit by means of multiple regression using dummy variables. The
estimated values of W ;; were very nearly parallel (with a very small divergence).
This analysis gave only a slightly better fit than the special case that assumed ¥ ;
=§; + ;. The additive model therefore appears to provide a satisfactory approx-
imation.

In summary, Figs. 17.20 and 17.21 show that the data are consistent with the
hypothesis that manipulation of the distribution of totals (as in Fig. 17.19) can
manipulate the judgment function, according to the principles of range-frequency
theory, applied to the distribution of totals. No evidence was found to require the
interpretation that the scale values for the test scores depended on the marginal
distributions. Indeed, had the scale values changed according to range-frequency
theory, the rank order of the points in Fig. 17.20 would have changed.
~ These results show the potential importance of contextual effects in studies of
information integration in which the parallelism test is of interest for evaluating
theories. In this case, it should be clear that the change from convergence to
divergence was brought about by the change in stimulus distribution and can be
explained in terms of a range-frequency analysis of the judgment function. This
experiment shows that it should often be possible to select stimuli to produce
parallelism, even though the model is not additive. The implications of this
finding for functional measurement are further discussed in Section F.

Contextual Effects in Similarity Judgments

Tversky (1977) argued that distance theories of ‘‘similarity’’ judgments cannot
account for violations of the three basic axioms of a distance function, 6:

Minimality: o(x,y) = d(x,x) =0
Symmetry: 6(x,y) = 6(y,x)
Triangle inequality: &(x,y) + 6(y,2) = 6(x,2)

Tversky notes that judgments of the form, ‘‘North Korea is like Red China’’ often
violate symmetry because ‘‘Red China is like North Korea’’ is less preferred. He
has also questioned the other axioms. Tversky’s (1977) theory, which extends
developments of Restle (1959), is that judgments of ‘‘x is like y’’ depend on the
common psychological features of x and y, the features that x possesses that are
absent from y, and those features belonging to y but not x. In Tversky s theory,
measures of these sets are permitted to depend on the context, but no theory is
advanced to describe the effects of context.

Krumhansl (1978) argued that the distance concept can be saved by introduc-
ing a particular theory of contextual effects in *‘similarity’’ judgments. 'Her
theory assumes that ‘‘similarity’’ judgments depend on both distance In a
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context-free multidimensional space (that satisfies the axioms) and also on local
stimulus densities in the regions of the points.

There are many possible loci for contextual effects in the distance model.
Investigating them empirically would require a large experimental effort. Figure
17.19 can be relabelled to facilitate discussion of possible loci of contextual
effects. Suppose the abscissa represents (psychological) dimension I, and the
ordinate represents (psychological) dimension II. There are then three likely loci
for contextual effects: (1) projections of points on the dimensions (scale values);
(2) distance calculations (¥;); (3) the judgment function relating overt judg-
ments of similarity to subjective distances.

Suppose, for example, the judge’s task was to rate the ‘‘similarity’’ between
pairs of squares that vary in size and reflectance. There are three kinds of
distributions to consider: (1) the marginal distribution of square sizes and the
marginal distribution of square darknesses; (2) the joint distribution of sizes and
darknesses; (3) the distribution of distances (which depends on the pairs pre-
sented for similarity judgment).

Manipulation of the marginal distributions in such a task seems analogous to
the cross-modality experiments of Mellers and Birnbaum (1980a). It seems likely
that manipulation of the range and spacing of the levels will affect the scale
values (projections on the axes). It also seems likely that the difference in size
coordinates between two given squares will vary with the total range of squares
and the number of squares intermediate in size. Variation in stimulus spacing
would presumably produce nonlinear changes in the projections (of the stimuli on
the axes) in the usual multidimensional scaling solution.

Variation in the joint distribution would be expected to affect distance judg-
ments so as to increase the judged dissimilarity between two points that have a
large number of points ‘‘between’’ them in space. Krumhansl’s (1978) model
attempts to deal only with this aspect of contextual effects. However, her model
does not reduce to range-frequency theory in one dimension, because it deals
only with the densities in the regions of the points rather than in the space
between them. It may be preferable to define the density term as a weighted
integral of the stimulus density within an ellipsoid (based on the two points x and
y as foci) where the weights are a function of the distance from x. It seems likely
that the judged distance between two points will be greater when the stimulus
density in this region ‘‘between’’ points is greater. This version would reduce to
range-frequency theory in one dimension with suitable ellipse and weighting
function.

E. SYSTEXTUAL DESIGN

There is a fundamental difference between physics and psychophysics that has
long troubled psychologists (Baird & Noma, 1978; Luce, 1972). In classical
physics, the measuring devices do not ‘‘remember”’ their previous mea-



surements. Measurements of length or mass, for example, do not depend on the
other lengths or masses previously measured. However, human Jjudges give
different responses to the same stimulus depending on the other stimuli forming
the context for judgment, as illustrated in Sections A and D. Obviously, nu-
merical judgments of subjective values cannot be regarded as analogous to the
readings of voltmeters or thermometers. Figures 17.2 and 17.3, for example,
show that category ratings and magnitude estimations of single stimuli depend on
the stimulus spacing and response range. Figure 17.18 shows that scale values
derived from cross-modality comparisons and ‘‘total’’ intensity judgments de-
pend on the stimulus distribution. Figure 17.20 shows that the test of parallelism
depends on the distribution of combinations.

Because the results of psychological experiments depend on the distribution of
treatments to which the subject is exposed, psychologists have become con-
cerned with the implications for generalization. At least four distinct methodo-
logical positions have emerged: standardized design, representative design,
between-subjects design, and systextual design. In standardized design, the con-
text is fixed to some conventional value. In representative design, the aim is to
survey the environment and use the context to which generalization is desired.
Between-subjects designs hope to ‘‘avoid’’ the context by allowing each subject
to choose his or her own context. Systextual design systematically manipulates
context.

Standardized Design

In standardized design, procedures for the conduct of research are agreed upon. If
scientists all agree to do the same experiment, they should all obtain the same
results. This position assumes that certain variables can cause a nuisance when
left uncontrolled by different experimenters. In physics, for example, a calorie
has been defined as the amount of heat required to raise one gram of water one
degree Celsius at 4°C. Because the heat required to raise water temperature by a
given amount depends on the temperature, it is necessary to qualify the tempera-
ture, that is, to agree to standardize our measurements. Much can be said in favor
of the reasonableness of this approach. If psychology can develop consistent laws
that hold in some restricted domain (no matter how restricted), we will have the
beginnings of a science.

One unfortunate offshoot of the approach of standardization has been what
can be called a standardization of circularity (perhaps analogous to the use of
persuasive definition in philosophy). The circular standardization argues that the
“‘right’’ way to do research is by the method that yields results compatible with a
pet theory and therefore anyone who deviates from the approved method cannot
be taken seriously. For example, it is possible to adjust the spacing of the stimuli
so that the data for a magnitude-estimation study actually approximate a power
function of physical value. It is also possible to select the stimulus spacing to
produce deviations from a power function (as in Fig. 17.3). Because the power
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function was once thought to be the ‘‘right’’ function, any procedure that
maximized the fit of it was deemed a ‘‘good’’ procedure. As Poulton (1979) has
remarked, finding a stimulus spacing that produces a fit to the power function
does not provide support for the power function; it merely demonstrates that the
researcher has knowledge (at some level, perhaps implicit) of the stimulus spac-
ing effect. Surprisingly, Poulton (1979) advocates geometric spacing as the
“‘right’’ procedure, though he offers no theoretical justification. Stevens, Ander-
son, and others have given (conflicting) pronouncements concerning proper pro-
cedures for psychophysical studies, and their suggestions have unfortunately
become orthodoxy to many persons.

Perhaps a time may come for psychologists to agree to adopt a set of stan-
dardized procedures. However, such agreement should not (and hopefully will
not) occur until the scientific questions under investigation have been settled.
Until that time, there is a danger that a theory will be accepted prematurely and
will bring with it a set of orthodox, ‘‘right’’ procedures that will prevent its
modification or falsification.

Criteria for Evaluating Methods

A set of criteria for evaluating psychophysical methods would seem useful. The
following criteria, which have been implicitly suggested, do not seem appro-
priate ones:

1. Proper methods are those that yield results consistent with the power law.
(Problem: The power law may not be appropriate.)

2. Proper methods are those that yield data that are parallel (fit the additive
model). (Problem: The model predicting parallelism may not be valid.)

3. Proper methods are those that avoid the possibility of testing invariance
properties of the scales. (Problem: By avoiding the possibility of testing
the invariance properties, one does not establish invariance, one merely
avoids the issue.)

The following considerations seem more useful for evaluating psychophysical
methods and theories.

1. A psychophysical scale consists of a set of scale values used to reproduce
the rank order of empirical data in terms of a theory.

2. The value of the scale is enhanced if it can be shown that the scale values
cannot be arbitrarily transformed (beyond the uniqueness of the model)
and still reproduce the rank order of the data. In other words, the more the
scale is constrained by the data the better. (One can consider the scale
values to be parameters estimated from data.)

3. A psychophysical scale should not only operate in a single situation, but it
should show generality across situations (scale convergence). Thus, a
theory involving one set of scale values and a pair of theories for two
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empirical situations is preferred to one using two different scales and two
different theories.

Methods that allow one to assess the scales in terms of these three considerations
should be preferred over methods that do not permit these tests.

Consider Poulton’s (1979) suggestion to use equal geometric spacing of the
stimuli in magnitude-estimation experiments. How can one decide if this sugges-
tion is reasonable? How do we know we are obtaining the ‘‘true’’ result? The
experimental design precludes the possibility of establishing contextual invar-
iance or demonstrating that the ‘‘true’’ result has been obtained.

Between-Subjects Design

Poulton (1979) has listed many of the factors that influence the outcome of direct
scaling studies (as in Figs. 17.2 and 17.3) and has argued that contextual effects
(which he regards as ‘‘biases”’) can and should be “‘avoided.’’ Poulton (1973)
suggested that such effects can be ‘‘avoided’’ by using a special type of stan-
dardized design in which the observer is presented with only one level of the
treatment. A standardized design in which each subject receives only one treat-
ment combination is called a between-subjects design.

The idea behind between-subjects designs (and certain other suggestions by
Poulton for experimental procedure) is that there is an ideal laboratory condition
that can and should be achieved in psychology. In physics, for example,
Galileo’s law of falling bodies would not be verified in the atmosphere. Galileo’s
critics noted that when two objects are dropped, the coin strikes the earth before
the feather. In Galileo’s time, nature still abhorred the vacuum, so it was not
possible to conduct the experiment under reduced atmospheric conditions. But
today, many museums demonstrate a low pressure tube in which coin and feather
do fall together. Being confident in Galileo’s premise, we now feel that the
vacuum is the ‘‘right’’ context for conducting the study.

Poulton’s (1973, 1979) suggestions to “‘avoid’’ contextual effects seem based
on the proposition that they are analogous to friction in the physics lab. For
example, in response to the stimulus spacing effects and effects of examples in
the instructions (as in Fig. 17.3), Poulton (1979) recommends presenting the
subject with only one stimulus and giving the subject no examples. Unfortu-
nately, we cannot achieve a psychological vacuum in our judges’ minds by
presenting them with only one stimulus. Just because we have not presented
other stimuli for judgment does not mean that our subjects, who are usually
adults, have never before experienced a stimulus. There are two kinds of con-
texts: the context the subject brings to the laboratory and the context provided in
the laboratory. Subjects’ judgments depend on both. Therefore, when a subject is
given a single stimulus to judge, the subject brings extralaboratory contexts to the
task. It is even possible that when a different stimulus is presented to each subject
that the context will be confounded with the stimulus.
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Confounding of Contexts in Between-Subjects Designs

It may be that many of the counterintuitive findings so well-liked in social
psychology are merely results of the confounding of contexts that can occur in
between-subjects designs. To explain this point, consider an experiment by Jones
and Aronson (1973) on the judged fault of rape victims. Which victim is most at
fault for her own rape: the housewife, virgin, or divorcée? Jones and Aronson
(1973) presented each subject with only one case history and found that the
divorcée was rated least at fault and the virgin and married woman were more at
fault (see Fig. 17.22). They interpreted this result in terms of a “‘just world”’
hypothesis. In a *‘just world,”” you get what you deserve. What you deserve
(presumably) depends on who you are and what you do. If the victim did not
deserve to be raped because of who she was (e.g., respectable, married), she
must have done something to deserve it, and therefore, according to this theory,
the more respectable victim should be rated more at fault.

It is difficult, but possible, to replicate the Jones and Aronson (1973) experi-
ment using a between-subject design. In 1973 at Kansas State University, the
effect was observed in a between-subject design only if the fault of the defendant
was not rated, but the effect was reversed if both victim and defendant were rated
(see Fig. 17.23). At the University of Illinois, at a time when a local rapist was
causing great concern on campus, in a between-subjects design it was found that
10.5%, 10.4%, and 4.7% of 76, 67, and 85 subjects thought the virgin, house-
wife, and divorcée, respectively, were at fault exceeding 15 (on a 1-20 scale) for
their own rape.

I | |

Jones and Aronson '73
Between-S

FIG. 17.22. Judged fault of rape
victim as a function of victim’s re-
spectability in a between-subject de-

Fault of Victim
o

Attempted sign (Jones and Aronson, 1973). One

-5k Rape — group of subjects rated the fault of the
divorced victim to be less than the

-6 | [ | average rating of fault given by

another group of subjects who rated
only the raped virgin. From
Victim Birmbaum (1980c).

Divorced Virgin Married
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However, in a within-subject design (Birnbaum, 1980c), it has been found
that the judged fault of a victim decreases with increasing victim respectability.
Judged fault of the victim is also greater when the defendant is higher in respec-
tability and is lower for more severe crimes. These results are shown in Fig.
17.24, which plots judged fault as a function of the respectability of the victim,
with a separate curve for each level of respectability of the defendant. It there-
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FIG. 17.24. Mean judgments of fault of victim as a function of victim’s respec-
tability in within-subject design, with a separate curve for each level of respectabil-
ity of the defendant and a separate set of curves for each level of crime. From

Birnbaum (1980c).
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fore appears that the conclusion of Jones and Aronson (1973) can be reversed by
changing from a between-subject to a within-subject design.

One can understand the finding that results change for between- vs. within-
subject designs in this case by realizing that in the between-subjects design, the
stimulus and the context are completely confounded. It is like the old stand-up
joke:

Person 1. ‘‘How’s your wife?”’
Person 2. ‘‘Compared to what?"’

Similarly, in a between-subjects experiment, the judge may ask him or herself,
‘‘How much at fault is this (former) virgin for her own rape? Compared to what?
Compared to other virgins, perhaps.”’

Figure 17.25 shows a range-frequency analysis, assuming that virgins on the
average are perceived to be more ‘‘innocent’’ than divorcées. In this analysis, a
raped virgin is more innocent than a raped divorcée (see arrows on abscissa).
But, she will be rated less innocent (more at fault) because relative to the
distribution of virgins, a raped virgin is less innocent than a divorcée is relative
to the distribution of divorcées. The curves show the predictions of range-
frequency theory applied to the (presumed) distributions for this social judgment
task. This interpretation explains how within- and between-subjects designs can
give different results.

E Virgin
o Context
>
ks
3 Divorcee FIG. 17.25. A range-frequency
b Context analysis of social judgment in
9 between-subject designs. Stimulus
5 value and context are confounded in a
« between-subject design. In this case,
Virgins Divorcees the raped virgin is psychologically
less at fault than a divorcée, but rated
A more at fault in a between-subjects
| | design. Distributions show assumed
Innocence / Blame  contexts for different groups; curves
Raped Raped are based on range-frequency theory.

Virgin Divorcee From Birmbaum (1980c).
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It is not unusual in a between-subject design for the smaller stimulus to be
judged greater. For example, in Figs. 17.2 and 17.3, the 27 dot pattern (in the
positive context) is judged darker than is the 40 dot pattern (in the negative
context). However, within each context (i.e., within subjects), the 40 dot
stimulus is always judged darker. Therefore, comparing judgments of stimuli
between groups of subjects who experience different contexts can be misleading.

Representative Design

Brunswik (1956) contended that the effects of psychological variables could
depend on the experimental design—that is, on the range, spacing, and intercor-
relations of the independent variables. Brunswik was concerned because in the
natural environment, variables are correlated; whereas, in systematic research,
variables are made independent in order to test theories of causation. He argued
that if the correlation between variables is crucial to the subjects’ performance
and if the correlation is altered in the lab, then the results of systematic experi-
ments would not generalize beyond the lab.

As an alternative to systematic design, Brunswik (1956) suggested representa-
tive design (see also Petrinovich, 1979, for a recent review). In representative
design, the experimenter surveys the ecology (the subject’s environment) and
attempts to sample from it representatively. Brunswik also introduced the idea of
hybrid design, discussing an example in which a factorial design of facial fea-
tures (with schematic faces) was altered to produce a more representative correla-
tion between two facial features.

Representative design is based on two ideas. First, it is based on the theory
that the results of psychological investigations depend on the experimental de-
sign. This contention is reasonable in light of experimental evidence, including
that presented in Section D. Second, it is based on the assumption that the
foundation of generalization is representative sampling. In order to generalize
from a political survey to an election, for example, pollsters attempt to obtain a
representative sample. Statistical theory gives a rational basis for making in-
ferences about population parameters on the basis of statistics computed from
random samples. Problems of attempting to generalize from biased samples are
well-known. Representative design emphasizes that treatments and situations
should be sampled as well as subjects.

From these two ideas, Brunswik (1956) argued that psychologists should be
willing to sacrifice experimental control for the sake of representativeness. He
contended that systematic experiments are necessarily nonrepresentative because
they are designed to unconfound variables that are actually confounded in nature.

There are two major problems with representative design. First, without ex-
perimental control, inferences of causation are unsound and dangerous. Second,
the key element for generalization is not representative sampling but theory.
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Let us consider, for example, a possible representative design for the study of
health as a function of medical care. In each 6 month interval, the number of
visits to a doctor and the state of the patient’s health are recorded. In a representa-
tive design, people who see doctors more often have poorer health. This apparent
harmful effect would persist even if the patient’s diagnosis was partialed out; for
example, among cancer patients, those seeing the doctor more often are in worse
health. Only in a very peculiar and nonrepresentative sample, in which patients
are randomly assigned to treatment vs. placebo conditions, is it possible to detect
a beneficial effect of modern medicine. This example shows that correlations in
representative samples can show relationships opposite of the direction of causa-
tion as inferred from systematic experimental research.

Reviewing the history of science, one finds many good examples of research
that could not have succeeded with representative design. For example, the
development of penicillin, television, the electric generator, Mendel’s laws of
genetics, and atomic and subatomic theory could not have occurred in representa-
tive research. These successes occurred because scientists were able to control
simple situations in their laboratories and create new situations that do not occur
in nature. It is difficult to find good counterexamples, where representative
observation led to important results. The contributions of Jenner and Semmel-
weiss may fall in this category, but even their discoveries, which at first were
based on observation of correlations, were doubted until verified by systematic
research.

Two Notions of Generalization: Sampling vs. Theory

Let us consider two notions of generalization for an example experiment. An
experimenter has tested a new drug using five fixed levels of concen-
tration: .01, .02, .04, .08, and .16 moles/liter. Of the rats who have ingested Ig
per kg body weight of this mixture, the percentage who die within 1 hour is
2.5%, 16%, 50%, 84%, and 97.5% for the five levels of increasing dosage.
According to the logic behind representative design, there is no basis for
generalizing to levels intermediate in value or beyond the levels tested. There is
also no basis for generalization from rats to humans. However, few people would
be willing to ingest Ig per kg body weight of a.32M concentration of this drug.
The reason for this reluctance is that one generalizes to levels not tested from a
theory, such as the following:

Proportion killed = F (dosage) (E.)

where F' is a monotonic function. We also theorize that if the drug kills rats, it
would likely kill humans even though the drug has never been tested on humans
before. This prediction is based on the very primitive theory that what kills one
mammal is likely to kill another, a theory supported by considerable evidence.
Furthermore, we might be willing to fit F to a particular function (cumulative
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normal log dose) and predict that if a concentration of .0566 moles/liter were
used, about 69% of the rats would die. Such prediction and extrapolation is based
on theory, not representative sampling.

Let us return to the problem of psychophysical judgment and examine the
consequences of different design strategies. Suppose we were interested in ob-
taining judgments of the heaviness of lifted weights. A standardized design
would use a given stimulus range with a given stimulus spacing (a large range
with geometric spacing has been advocated). A between-subjects design would
present each subject with only one weight to lift. A representative design would
survey the objects lifted in everyday life. This could be done by following people
around and asking them to judge the heaviness of every object they happened to
lift. The experimenter would then record the weights and other characteristics of
the objects. By means of multiple regression, one would establish the effect of
weight, size, etc. on heaviness judgments.

What can be made of the equation that predicts heaviness as a function of
weight and other characteristics of the objects? Providing it is based on sufficient
data, the function for weight obtained from this study can be used to give a
reasonable statistical estimate of heaviness judgments as a function of weight in
the population of objects from which the experiment can be considered a random
sample. One cannot generalize beyond this population to other populations.
Thus, representative design holds the context fixed to the context to which
generalization is desired, and it provides no basis for generalization beyond the
context studied. In order to generalize to all contexts, systematic manipulation of
the contexts and development of contextual theory are required.

Systextual Design

Systextual design refers to systematic manipulation of the context (Birnbaum,
1975). The logic of systextual design is based on two premises: (1) it is necessary
to manipulate the context in order to learn its effect; (2) one needs to develop a
theory of context in order to generalize across contexts.

In the physics example, the approach of systextual design would be to develop
a theory of the friction and thereby to predict observed departures from simple
physical laws. By means of the theory, one could extrapolate to the frictionless
situation or predict the results in a friction-filled one.

In the case of psychophysics, Parducci’s research can be seen as an example
of systematic manipulation of the range, stimulus spacing, frequency, response
procedure, and so on. Parducci’s range-frequency theory provides the possibility
of predicting the judgment of a stimulus in any context—not just the standard
context, or a subject’s personal context, or the ecological context—but in princi-
ple it allows prediction to results across different contexts. Birnbaum (1974c) has
shown how one can use range-frequency theory to derive a psychophysical scale
from contextual effects in a fashion that demonstrates the invariance of the
derived scale as a byproduct of fitting the theory.
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In Bimbaum’s (1974c) experiment, subjects judged the magnitude of numbers
presented in one of nine stimulus spacings. Because the stimulus end points are
fixed and because the psychophysical function was assumed to be strictly
monotonic and error free, Birmbaum’s (1974c) development of range-frequency
theory yields:

Cie = aF (@) + s, (E.2)

where C;;, is the rating of stimulus { in context k, F(®)) is the cumulative
proportion of stimuli less than ®; in context k, a is the weight of the frequency
principle, and s; is the scale value of stimulus i/ (calibrated on a linear scale).
Once a has been estimated (which can be done using multiple linear regression
with dummy variables for s), the equation can be written:

s; = Cy — aF (D)) (E.3)

Thus, by subtracting aF . (®;) from each category rating, it should be possible to
derive a scale of psychological value that is the same for all contexts. Plotting C;,
— aF . (®;) versus @, should produce a set of curves for different contexts that all
coincide, as in Birnbaum (1974c¢, Fig. 5).

Another example of systextual design is given in Bimbaum (1975). Judges
were asked to press down on one end of a lever, lifting a weight at some distance
from the fulcrum, and judge the force required to do so. The judge who under-
stands the physics of the lever should expect the force required (to lift a weight)
to vary directly with the distance of the weight from the fulcrum. However, in the
systextual design, different weights were used to produce different correlations
between force and position for different groups. A factorial design of force and
position was embedded in an overall positive, negative, or zero correlation. In
accord with Birnbaum and Veit (1973) and Birnbaum, Kobernick, and Veit
(1974), it was theorized that judgments reflect a contrast between required force
and expected force and that expected force depends on both the position and the
subjective correlation between force and position. The model can be written

Eisr = Qi — P;R, (E.4)

where E;;; is the judgment of the effort required, P; is the position (distance from
the fulcrum), R, is the subjective correlation in context k£, and Q; is the effect
due to actual force required. The results were consistent with the model and
showed that the effect of position can indeed be reversed by reversing the correla-
tion between force and position.

This experiment together with those of Bimmbaum and Veit (1973) and
Bimbaum et al. (1974) show that Brunswik was justified in his concern that the
correlations among variables can affect the results of psychological experiments.
Indeed, the effect of position can be reversed by changing its correlation with the
variable to be judged. However, contrary to Brunswik’s contention, it is possible
to nest a systematic factorial design inside an overall correlation between var-
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iables and to systematically manipulate the overall correlation. Furthermore, by
means of such systextual design, it is possible to demonstrate the effect of the
correlation and to develop a theory that permits generalization across correla-
tions.

In summary, systematic design and representative design both hold the con-
text fixed, and between-subject design confounds the context and the stimulus.
Therefore, these designs do not permit tests of the empirical propositions upon
which they are based. Systextual design calls for systematic manipulation of
context and development of theory for generalization across contexts.

F. METHODOLOGY: ON MODEL TESTING AND
MEASUREMENT

Conclusions regarding psychophysical processes are no better than the experi-
mental, theoretical, and methodological foundations upon which they are based.
In the study of psychophysical theories, it is useful to examine the logic of model
testing and measurement carefully.

Anderson’s functional measurement approach has had great impact on recent
developments in psychophysical theory. The approach has many strong points in
comparison with certain other approaches that have been well-expounded else-
where (Anderson, 1970, 1977, 1979; Birnbaum, 1973, 1974b) and need not be
repeated here. Instead, this section takes a critical look at the logic of functional
measurement, from the skeptic’s point of view. It is hoped that progress can be
made by working to detect and strengthen weaknesses.

The following subsections review two substantive issues, impression forma-
tion and the size-weight illusion, to illustrate how weaknesses in the application
of functional measurement led to the erroneous conclusion that these two pro-
cesses could be represented by a parallel-averaging model. These two issues have
been cited by Anderson (1979) to illustrate advantages of functional measurement,
but they also serve well to illustrate limitations of the approach. Papers that have
proposed methods to remedy defects in functional measurement are reviewed to
show that previous conclusions regarding impression formation and the size-
weight illusion do not stand up under improved experimental and analytical
methods.

Six problems with simplistic applications of functional measurement are dis-
cussed. Several of these issues have been acknowledged by Anderson, but they
have not been given sufficient attention. The following conclusions are dis-
cussed:

1. The fit of a model does not simultaneously validate the model, stimulus
scale, and response scale.

2. Functional measurement is not a ‘‘neutral judge '’ between category rating
and magnitude estimation.
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3. Agreement of estimated scale values across tasks does not validate
functional measurement.

4. Marginal means may not be linearly related to scale values even if the
additive model fits the data (when the experiment lacks constraint).

5. The logic of two-stage integration analysis is inconsistent.

6. Methods involving the use of scale convergence and scale-free tests yield
results that contradict previous conclusions from scale dependent research
regarding the size-weight illusion and impression formation.

Parallelism Test

In functional measurement, a key method of analysis is the use of factorial design
and analysis of variance. For example, the subject could be asked to judge the
“‘average’’ sensation produced by two stimuli, A; and B i» where A; and B; have
been factorially combined. The responses are plotted as a function of A; with a
separate curve for each level of B;. Parallelism of the curves is equivalent to zero
interaction between A and B.

In terms of the outline in Fig. 17.7, a set of premises that lead to parallelism
can be listed as follows:

1. stimulus independence (e.g., 54, is independent of j)

2.y, = WoSo + wasa, + WgSB,
' b Wo + Wa + Wpg

3. R,-,-=a‘I’,~j+b

where s, and sp are scale values for the rows and columns, respectively, s, is
the scale value of the initial impression and w, is its weight, w, and wy are the
weights of the row and column factors, respectively, ¥; is the subjective im-
pression, R;; is the overt response, and @ and b are constants. Premise 2 is called
the parallel-averaging model.

This model predicts that when Ry, is plotted against the column marginal mean
(R,) with a separate curve for each row, the curves should be linear and parallel.
Thus, if the curves are not parallel, one should question the premises. If the
curves are parallel, the premises can be retained.

However, parallelism does not validate the model, stimulus scale, and re-
sponse scale all at once. True conclusions can be deduced from false premises.
There are many sets of premises from which parallelism could be deduced. Some
of these alternatives are shown in Table 17.2.

For example, the model could be multiplicative, and the Judgment function
could be logarithmic. It follows that R;; = alog ¥;; + b = alog(sasp) + b =
alogs,, + alogsg + b = sf + s§ + b where sX, = alogs, . Therefore, a multi-
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TABLE 17.2
A Few Ways to Explain Parallelism

Psychophysical Function Combination Function Judgment Function
Theory® H C J
1 (independence) Yy =54+ S8, Ry =a¥, + b
2 (independence) Wy = Sa, S, Ry = alog¥, + b
3 (independence) v, = \/S2A, + 53, Ry =a¥,2+ b
4 s,’x‘m = 54, T ksp,

sém = S, + ksAl \yU = sAun + Sém. RU = awii +b

“Theory 1, 2, 3, and 4 can be titled the additive model, multiplicative model, Pythagorean model,
and change of value model, respectively. These are some of the many alternative representations of
parallelism.

plicative model could produce parallel data if the J function is logarithmic.
Therefore, parallelism does not establish the validity of the response scale unless
the additive (or parallel-averaging) model is assumed. Parallelism does not test
the validity of the additive model unless the linear J function is assumed. Some
additional constraint is needed (beyond arbitrary stipulation) to specify the
functions of functional measurement. '

Suppose the curves are nonparallel. How can nonparallelism be interpreted?
There are two cases. In the first case, it may be possible to reject the additive or
parallel-averaging model on the basis of the ordinal information in the data, when
the data systematically violate independence or double cancellation (Krantz &
Tversky, 1971). In the second case, the numerical data are not parallel, but they
can be rescaled to parallelism by means of a monotonic transformation. In this
case, it is not possible without additional constraint to specify whether the non-
parallelism is due to a nonadditive integration function or to a nonlinear J
function. This point is expanded upon in the discussion of impression formation
and the size-weight illusion.

A debate between proponents of conjoint measurement (Krantz et al., 1971)
and Anderson occurred over the propriety of rescaling data from Sidov’ski and
Anderson (1967) who found an interaction between cities and occupations for
judgments of job desirability. Krantz et al. (1971) rescaled the mean Jjudgments
to parallelism and argued that the interaction analyzed by Sidowski and Anderson
could be without psychological significance.

Thus, if the data are parallel, many combinations of J[C(s;, s;)] are possible.
If the data are not parallel, but can be rescaled to parallelism, many combinations
of J[C(s;, s;)] are still possible. Some have concluded that the parallelism test is
therefore nondiagnostic. However, it does have value because the realm of
possibilities for J and C in the parallel and nonparallel cases are different,
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Is Functional Measurement a Neutral Judge?

Anderson (1972, and this volume) argued that functional measurement serves as
a ‘‘neutral judge’’ between magnitude estimation and category rating. This con-
tention was illustrated with reference to an experiment by Weiss (1972), who
obtained magnitude estimations and graphic ratings of the ‘‘average’’ darkness of
two gray chips. Anderson argued that because subjects were instructed to ‘‘aver-
age,’’ one should postulate a parallel-averaging model. The rating data were
approximately parallel whereas the magnitude-estimation data showed bilinear
divergence. Anderson concluded that ratings are ‘‘valid,’’ but magnitude estima-
tions are ‘‘biased and invalid.”’

At least three other studies have directly compared magnitude estimation with
rating methods in situations employing factorial designs and the same task. Sarris
and Heineken (1976) used these two procedures for the judgment of heaviness of
size-weight blocks. Curtis and Rule (1978) extended the study of Weiss (1972) to
include ‘‘average’’ lightness and darkness using the two-response procedures.
Veit (1978) obtained ratings and magnitude estimations of ‘‘differences.’” Marks
(1979) had subjects rate the ‘‘overall loudness’’ of a multicomponent tone using
magnitude estimation and a graphic rating procedure. In each case, the effect of
the response procedure was represented by changes in the J function. In each
case, magnitude estimations were positively accelerated relative to ratings. In
three of the studies, the assumprion of an additive (or subtractive) model would
lead to the conclusion that the J function for ratings is nearly linear, and the J
function for magnitude estimation is positively accelerated. Marks (this volume)
found that to assume the additive model for loudness summation required nega-
tively accelerated J functions for both response procedures.

The size-weight experiment of Sarris and Heineken (1976) obtained results
similar to those of Weiss (1972). Using magnitude estimations, the data were
nearly consistent with a geometric averaging model (multiplicative). If one as-
sumes that grayness ‘‘averaging’’ and the size-weight illusion can be represented
by the parallel-averaging model (as did Anderson, 1972), one would conclude
that the J function for magnitude estimation is nonlinear. If one were to assume
that grayness ‘‘averaging’’ and the size-weight illusion should be represented by
a geometric averaging model, however, one would conclude that magnitude
estimations are ‘‘valid’’ and that ratings are ‘‘biased.’’ Thus, the situation is
circular. In order to decide on the ‘‘valid’’ scale, one must assume the model. To
choose the appropriate model, one must assume the ‘‘valid’’ scale. Birnbaum
and Veit (1974b) termed this problem *‘scale-dependence,’’ in which the conclu-
sions regarding the model depend on the arbitrary decision to place faith in the
particular dependent variable and the particular context that led to either paral-
lelism or bilinearity.

To argue that Weiss (1972) has shown magnitude estimation to be biased
requires the assumption either that ratings are valid (making the argument com-
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pletely circular) or that the appropriate model is additive (which is semicircular).
Were one to assume that the model is multiplicative (as in a geometric averaging
model), it would be concluded that magnitude estimation is ‘‘valid’’ and cate-
gory rating is ‘‘biased and invalid.’’ Unless the model is assumed, the conclusion
is scale dependent (Birnbaum & Veit, 1974b); unless the scale is assumed, the
conclusion is model dependent.

Therefore, if functional measurement was truly neutral (i.e., did not prejudge
the validity of the response scale or model), then the experiments cited by
Anderson would be inconclusive on the question of the ‘*validity’’ of ratings and
magnitude estimations in experiments like that of Weiss (1972) and Sarris and
Heineken (1976).

Anderson (1977) argued that the circularity of his conclusion regarding mag-
nitude estimation can be ameliorated by considering the success of the paral-
lelism test using category ratings in impression-formation research. However, it
is shown next that the early work in impression formation was inadequate and
reached erroneous conclusions.

Impression Formation

Perhaps no paper has been as often cited to illustrate Anderson’s approach as his
first article on impression formation (Anderson, 1962). Anderson (1962) had 12
subjects judge the likeableness of hypothetical persons described by sets of
adjectives, using a 20-point rating scale. Anderson’s theory of these data can be
written as follows:

k k
\If = 2 WiSi E Wi, (F])
i=0 i=0

where V¥ is the integrated impression, w; and s; are weight and scale value of
adjective i, and wg and sq are the weight and scale value of a postulated initial
impression.

The adjective combinations were generated from a factorial design. Anderson
noted that: (1) if the weights are independent of scale value; (2) if the scale value
of each adjective is independent of the other adjectives with which it is paired; (3)
if the response scale is ‘‘valid’’ (i.e., J is linear); and (4) if impressions are
governed by Eq. F.1, then the data would show parallelism, and there would be
nonsignificant interactions among the adjective factors in analysis of variance.
Anderson (1962) found that the majority of his 12 subjects had nonsignificant
interactions.

What can be concluded from the experiment? It has been contended that the fit
of the model simultaneously ‘‘validates’’ the stimulus scale, response scale, and
model all at once. However, as just noted, this view is oversimplified, for the
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conclusion in principle is scale dependent. Furthermore, it can also be shown that
the basic finding does not replicate.

A Divergent Finding. ~Anderson’s (1962) conclusions regarding impression
formation were challenged by Birnbaum (1974a, Exp. 1), who obtained a large
divergent interaction for ratings of likeableness. The left of Fig. 17.26 shows
mean judgments of likeableness as a function of one adjective with a separate
curve for each level of the other. The means in Fig. 17.26 are averaged over six
different sets of adjectives. Each off-diagonal point is the average of 600 judg-
ments by 300 subjects. Results for individual adjectives are given in Binbaum
(19744, Fig. 2). Although there are other aspects of individual adjective and sub-
Jject data that are of interest (see Birnbaum, 1974a), the divergence shown in Fig.
17.26 was characteristic of individual data.

The interaction obtained by Birnbaum (1974a, Exp. 1) reopens all of the is-
sues of impression formation. Nonparallelism indicates that impression forma-
tion may violate the parallel-averaging model, that J could be nonlinear, that the
scale values of the adjectives could change as a function of the adjectives with
which they are paired, or any of a number of other possibilities. -
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FIG. 17.26. Mean ratings of (combined) likeableness as a function of the level
of likeableness of adjective A, with a separate curve for each level of adjective B.
Mean ratings (left panel) are not parallel, but they can be monotonically rescaled to
parallelism, as shown in panel on the right. Dashed box shows that domain of
Lampel and Anderson (1968) was small in comparison with that of Birnbaum
(1974a). From Bimbaum (1980b).
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A more prosaic possibility is that the difference in results between Anderson
(1962) and Birnbaum’s Experiment 1 (1974a) is due to differences in experi-
mental procedure. It was once argued that the parallel-averaging model held, but
only under very special experimental conditions. Birnbaum (1974a) systemat-
ically varied the experimental procedures to see if any of the following manipula-
tions would remove the interaction experimentally: The category scale labels were
reversed, a 20-point anchored scale was used, a line mark response scale was
used, a matching procedure (analogous to method of adjustment) was used to
eliminate numerical response, and ‘‘equal accuracy and importance’’ instructions
were tried. No evidence was found that the interaction could be removed by
these variations in the experimental procedure. The divergent interaction appeared
with all of these procedures.

Rescaling to Parallelism. In order to rescue the parallelism-predicting aver-
aging model (Eq. F.1), it is possible to rescale the data in the left of Fig. 17.26
to parallelism, as shown on the right of Fig. 17.26. The scale values 0, 4.5, 7.5,
8.5, and 10 for the five levels can be added or averaged to produce the parallel
curves on the right of Fig. 17.26. The rank order of the means can be perfectly
reproduced by the parallel-averaging (or additive) model. Therefore, the diver-
gence in the left of Fig. 17.26 could be explained either by the assumption that
C (the model representing impression formation) contains an interaction, or that
J (the judgment function) is nonlinear and C is a parallel-averaging (or additive)
model.

The Rescaling Debate

It is instructive to discuss a possible debate between a mentalist measurer and a
behaviorist model tester concerning the data in Fig. 17.26. The behaviorist de-
clared that the data on the left of Fig. 17.26 allow one to refute Anderson’s (1962)
additive (or parallel-averaging) model of impression formation. The mentalist
declared the data ordinally consistent with the parallelism model and used the
model to measure scale values for the adjectives, as on the right of Fig. 17.26.

““‘But you're assuming the model I just disproved!”’ the model tester exclaimed.

The mentalist replied, ‘‘The data can be rescaled to additivity, so I see no
problem.”’

“‘But the violation of parallelism in the raw data is inconsistent with the addi-
tive model,’’ the behaviorist noted.

““Only if you assume that J is linear,”’ the measurement mentalist said, be-
coming edgy. *‘It is simpler and more reasonable to assume that the parallel-
averaging model described the combination process. After all, subjects can’t be
trusted to do any more than rank order their impressions.”’

The behaviorist grew confident, ‘I see no reason to postulate a J function at
all. I have operationally defined likeableness in terms of my rating procedure.
As a behaviorist, I want a model that describes the raw data I obtained. The raw
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data do not fit the additive model. As a model tester, [ therefore reject the addi-
tive model in favor of a model with an interaction. You are fudging the data with
your transformation. You are rescaling the data to fit the model and then trying to
tell me that the model fits!”’

The mentalist grew irritated and looked away as he said, *‘I find no reason to
reject the model if the data satisfy the ordinal (rank order) requirements. The data
are perfectly additive, in the ordinal sense that R; > Ry, whenever s; +5; > 5;
+ 5,. You assume that J is linear and are trying to reject the model for no valid
reason. Category ratings are nonlinearly related to magnitude estimations. How
can we be convinced that the ratings shouldn’t be monotonically transformed?’’

‘“Anderson validated ratings by showing that impression-formation data are
parallel,”’ the behaviorist replied weakly.

The mentalist looked him in the eye and snapped, ‘‘Now you’ve contradicted
yourself! You are assuming the model in order to validate the response scale you
must assume for your test, and then you reject the model you assumed in the first
place! Parducci has shown repeatedly that category ratings in two situations can
be nonlinearly related if the stimulus distribution is changed. The change in
stimulus distribution doen’t change the rank order of the points, but it does
change the apparent parallelism. Look at Fig. 17.20 in this chapter! You can’t be
sure that ratings are linearly related to subjective value because ratings in one
context are nonlinearly related to ratings in another context, as in Fig. 17.21.
Therefore, we must allow for nonlinear transformation of the data.”’

Just then, an aged philosopher stepped up with a look of condescension and
said: ‘“You two are arguing over a meaningless distinction. What difference does
it make whether the interaction comes from C or J? You'll never be able to settle
your dispute on empirical grounds, because the two theories are equivalent. ”

The next subsections show that, contrary to the philosopher, it is possible to
design new experiments that can test between the two theories, if one is willing to
accept the principle of scale convergence and the logic behind the scale-free test.

Scale-Convergence Criteria

To decide whether the interaction shown in Fig. 17.26 was ‘‘real’’ (i.e., due to C
in Fig. 17.7) or reflecting only response ‘‘bias,”’ (i.e., due to J) Bimbaum
(1974a) advanced the criteria of stimulus and response scale convergence. The
stimulus scale convergence criterion assumes that the likeableness scale values of
adjectives should be independent of the task, which in this case was to judge
“*differences’’ in likeableness or ‘‘combinations’’ (integrated impressions). The
response scale convergence criterion states that consistent principles determine
the J function. It was postulated that if the same subjects used the same response
procedure to judge the same stimuli on the same dimension presented in the same
distribution, the J functions should be the same for both tasks (see Birnbaum,
1974a).
The stimulus scale convergence theory can be written as follows:
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Dy = Jpls} — s¥] (F.2)
Cy = Jcl¥yl (F.3)

woSo + WaSi T WaS;
Wo + wa + wg

‘I’ij = (F-4)

s¥ = s; (scale convergence) (F.5)

where D;; and Cj; are the ratings of ‘‘differences’’ in likeableness between two
different people, each described by an adjective, and overall (combined) like-
ableness of a person described by both adjectives. Equation F.5 explicitly as-
sumes that s* = s, i.e., that the scale value for the likeableness of an adjective is
the same for both ‘‘combination’’ and ‘‘difference’’ tasks. The response scale
convergence theory would allow s*; and s; to be different, but would assume
that J¢ and Jy have the same functional form, within a linear transformation.
The data of Birmbaum (1974a, Exp. 3) required rejection of both scale con-
vergence criteria if the parallel-averaging model was assumed. However, both
criteria could be retained if the parallel-averaging model was rejected. Figure
17.27 shows the results for the “differences’’ experiment (Birnbaum, 1974a,
Exp. 3). Note that the data for ‘‘combinations’’ show a divergent interaction
(left of Fig. 17.26) whereas the data for ‘‘differences’’ are nearly parallel. To
retain the premise that Jy, and J¢ are both linear would require the rejection of
the parallel-averaging model. To retain the subtractive model of “‘differences’’
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and the parallel-averaging model of ‘‘combinations’’ would require the rejec-
tion of the premise that /; and J- were of the same form. Assuming both models,
J would be positively accelerating, and Jp, would be linear.

However, if both models are assumed, the data violate stimulus scale con-
vergence. To understand this, it is instructive to derive the ordinal constraints
imposed by both the data and the additive model on the scale values and illustrate
the systematic violations. Let a = s, — 5, b =53 — 53, c =54 — Sz, and d = 55
— 54 for the ‘‘combination’’ task. Let a* to d* be defined analogously for the
‘‘difference’’ task. The theoretical representations for the subtractive and addi-
tive models are shown in parentheses in Tables 17.3 and 17.4, together with the
mean judgments.

By comparing the rank order of the ‘‘differences’’ with the theoretical repre-
sentations in Table 17.4, it can be found that the scale for ‘‘differences’’ must
satisfy the following: 0 < ¢* <d* <b* <a* <c* +d* <b* + c* <a* + b*
< b* + c* + d* <a* + b* + ¢* <a* + b* + ¢* + d* which can be
simplified, as follows:

0 < c* <d* < b* <a* <c* + d* | (F.6)
TABLE 17.3
Mean Ratings of Likeableness?
Level of A
Level of B 1 2 3 4 5
1 1.54 2.10 2.50 2.76 3.45

O® @ @b —Tatbto —Tatbtctd
2 2.10 2.92 /3.82 /4.44 5.08

(2a) (2a + b) (2a + b + 0) Ra+b+c+d

3 2.50 3.82 5.15 5.90 6.72
(2a + 2b) 2a +2b +0¢) Ra+2b+c+d

4 2.76 4.4 5.90 6 53 7.25
Qa + 2b + 2) (2a +2b + 2 + d)

5 3.45 5.08 6.72 7.25 7.90

(2a +2b + 2 + 2d)

“Each entry is the mean judgment of likeableness of a person described by both A and B. Each
off-diagonal cell is averaged over six pairs of adjectives; 600 judgments from 300 subjects. Data
from Birnbaum (1974a, Exp. 1). Algebraic symbols give additive representation, C;; = J[si + 551,
with sy = 0, a =52 — 5, b =53 — 52, ¢ = 54 — 53, d = 55 — 54. Arrows represent inequalities
showing that ¢« > b + ¢ and a > ¢ + d. Parallel-averaging model is equivalent to additive model
in this case.
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TABLE 17.4
Mean Ratings of “Differences’”
Level of A
Level of B ) 2 3 4 b)
1 0 1.18 1.86 2.49 3.20
(a*) a* + ¥ 4+ bE 4+ %) (a* + b* + ¢c* + (%)

2 ~1.18 0 92 1.N 2.43

(b%) (b* + c%) (b* + c* + d¥)
3 —1.86 —-.92 0 .53 1.54

(c*) (c* + d%)
4 —-2.49 —-1.64 -.53 0 .85
(d*)

5 -3.20 —2.43 -1.54 ~.85 0

“Each number is the mean judgment of “‘difference’ in likeableness, A-B. Each cell is averaged
over six pairs of adjectives; 180 judgments from 90 subjects. Data from Birnbaum (1974, Exp. 3).
Algebraic symbols give subtractive representation, D;; = Jpls¥ — s¥), with s¥ = 0, a* = 5§ — s¥,
b* = 5§ — 5§, c* = sf —s¥, d* =s¥ — s¥. Arrows represent inequalities showing that
a* < b* + ¢* and a* < c* + g*,

Notice that each difference between successive scale values is less than any
two-step difference. A set of scale values satisfying Expression F.6 would be 0,
10, 18, 24, 31, where g* = 10, b* = 8, c* = 6, and d* = 7.

However, if the additive (or parallel-averaging) model is assumed, the rank
order in Table 17.3 implies the following:

0<c<d<b<b+c<a<b+c+d (F.7)

Note thata >¢ +dand ¢ > » +c, but a* <c* +d* and g% < b* + ¢*, These
contradictions in ordinal relationships for differences in scale value imply that s
is nonlinearly related to s*. In particular, Expressions F.6 and F.7 imply that the
scale values for the additive model of “‘combinations’’ are concave downwards
relative to the scale values estimated from the subtractive model applied to
“‘differences.’’ Thus, even allowing Jc and Jp to be any monotone functions, it
is not possible to retain the theory expressed in Egs. F.2 through F.5.

In summary, to conclude that the parallel-averaging mode] underlies impres-
sion formation and the subtractive model represents ‘‘difference’’ judgment
would require rejection of both stimulus and response scale convergence criteria
in favor of the conclusion that there are two different scales of likeableness, s*
and s, where s* (for ‘‘differences’”) is positively accelerated relative to s, and
two different output functions, Jc and Jp for category ratings, where Jc is
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positively accelerated, and J|, is nearly linear. The next subsection shows that it
is possible to retain the scale convergence criterion and the subtractive model for
stimulus comparison by rejecting the parallel-averaging model in favor of a
configural-weight model.

Configural-Weight Model of Impression Formation

A simple configural-weight model can describe the data in the left of Fig. 17.26,
using the scale values obtained from the fit of the subtractive model to ‘‘dif-
ference’’ judgments. The configural-weight averaging model assumes that the
worst trait of a person receives extra weight. Figure 17.28 shows predictions for
the configural-weight model using scale values of 0, 10, 18, 24, and 31 for the
five levels of likeableness of the adjectives, assuming s, = 17. All weights were
set to 1.0, but the lowest scale value in each set (which could be s, on some trials)
was assumed to have a weight of 2.0. For example, the predicted value for cell
(1,5)wouldbe (2:0 + 1-17 + 1:31)/(2 + 1 + 1) = 12. The predicted value for
cell (3, 3) would be (217 + 1-18 + 1-18)/(4) = 17.5.

The predictions of the configural-weight model in Fig. 17.28 have the same
rank order as the mean ratings in the left of Fig. 17.26, they show a similar
pattern of divergent interaction, and they are based on the same scale values as
for the subtractive model applied to ‘‘difference’’ judgments. The configural-
weight theory differs from the parallel-averaging theory in that it postulates a
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‘real’’ psychological interaction between the adjectives: If a person has one bad
rait, other traits will have less effect. (Configural-weight models are discussed in
yreater detail by Birnbaum [1974a] and Birnbaum & Stegner [1979], who also
liscuss a competing differential-weight averaging model, which can also predict

livergence).
Thus, the following theory remains consistent with the data:
D; = JplsF — sl (F.8)
Cy = Jcl¥il (F.9)
Yy = Ilso, Sis 53] (F.10)
sF =5 (F.11)

where I is an integration rule for impression formation that contains a ‘‘real”’
divergent interaction. Figure 17.28 shows that a configural-weight model can
reproduce the rank order of the combination data using a single set of scale values
for both *‘differences’’ and «‘combinations’’ and using functions for both J and
Jp that are nearly linear. In conclusion, by rejecting the parallelism-predicting
models of impression formation, it is possible to retain scale convergence. To
retain scale convergence requires rejection of the parallelism-predicting models
of impression formation.

Scale-Free Tests of Impression Formation

It could be argued that the stimulus and response scale convergence criteria
should be rejected, rather than the parallel-averaging model. Thus, it could be
argued that there are different J functions and different scale values for the
‘difference’’ and ‘‘combination’’ tasks. Of course, such an argument is compli-
cated, for it provides no theory to explain the change in scale values or J function
beyond perhaps a vague remark that judgment proceeds in stages, so ‘‘why not
insert a few more stages with internal transformations?”’

In response to this possibility, Birnbaum, (1974a, Exp. 4) introduced the
scale-free test. In the scale-free test of impression formation, subjects judge
«:differences’’ in likeableness between pairs of hypothetical persons, each de-
scribed by two adjectives. For example, how much more would you like a person
described as loyal and understanding than one described as loyal and malicious?

These judgments of differences between combinations, DC, can be represented

by the model:
DCip = J[¥y — Vil (F.12)

where J is a monotone function and ¥ ,; and ¥, are the integrated impressions of
likeableness.

If the parallelism-predicting model of impression formation is correct, then
the following two judgments of «differences’’ should be equal:
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. Loyal (L) and understanding (U) vs. loyal (L) and obnoxious (O).
2. Malicious (M) and understanding (U) vs. malicious (M) and obnoxious (0).

According to Eq. F.12, the first ‘‘difference’’ can be represented J[V,, —
¥, ], which according to the additive model can be written Js, +s5y =5, —
Sl =JIsy —s,]. The second ‘‘difference’’ can be expressed J[V,, — ¥,,,] =
Jlsy — s,). Therefore, the Judged ‘‘difference’” between loyal and understand-
ing compared with loyal and obnoxious should be equal to the judged *‘dif-
ference’’ between malicious and understanding compared with malicious and
obnoxious. The alternative hypothesis, that the divergent interaction in the left of
Fig. 17.26 is ‘‘real,” predicts that the first *‘difference’’ is greater than the
second ‘‘difference.’’ This test between a null hypothesis of equality and a
directional inequality assumes only that J is a strictly monotonic function. the
test is termed ‘‘scale-free’’ because the conclusion regarding the additive model
of impression formation is invariant with respect to strictly monotonic transfor-
mations of the *‘difference’’ judgments. All that matters is the rank order of the
“‘difference’’ judgments.

The left side of Fig. 17.29 shows the result for a part of the scale-free test of
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FIG. 17.29. Scale-free tests of additive (or parallel-averaging) model of impres-
sion formation and the size-weight illusion. No strictly monotonic transformation
could rescale these data to parallelism. Subjects judge the “‘difference’” between
HH and HL to be 2.61, but they judge the *‘difference’’ between LH and LL to be
only 1.29. Additive model requires that these two judgments be equal. From
Bimbaum (1980b).
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Experiment 4 of Birnbaum (1974a) for impression formation. For simplicity,
only a portion of the design is presented here, and the means have been averaged
over subjects and adjective replicates. (A constant has been added so that a zero
“‘difference’’ is 0.) Figure 17.29 shows the divergence characteristic of ratings of
likeableness in Fig. 17.26. Thus, the rank order of ‘‘difference’’ judgments in
this case is predictable from differences in mean rating. It should be clear that the
divergence in Fig. 17.29 would persist under any strictly monotonic transforma-
tion of the ‘‘difference’’ judgments.

The assumption of Eq. F.12 can be justified on the basis of Sections B and C
in this chapter. However, even if Eq. F.12 were replaced with a ratio model of
comparison, the conclusions regarding the additive model of impression forma-
tion would be the same (Birnbaum, 1979). Transformation to a ratio model of
comparison would require exponential transformation, which would increase the
divergence.

In sum, the scale-free test refutes the parallel-averaging model of impression
formation.

Size-Weight lllusion

Anderson’s (1972) experiment on the size-weight illusion has also been used
frequently (e.g., Anderson, 1977, 1979) to illustrate his views on functional
measurement and data analysis.

Anderson’s (1972) data are shown in the left side of Fig. 17.30. Judgments of
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FIG. 17.30. Left panel shows mean judgments of heaviness from Anderson’s
(1972) study of the size-weight illusion. Dashed lines between curves show that
the rank order of means does nor constrain the scale values of heaviness. Entire
curves can be shifted up or down without changing rank order of data. Points on
right are monotonically related to original, and they fit the additive model equally
well, yet transformed data imply scale values for heaviness that are a positively
accelerated function of weight. From Birnbaum (1980b).
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heaviness are plotted as a function of the size of the cylinder, with a separate
curve for each level of weight. Although the interaction was statistically signifi-
cant, Anderson attributed it to an experimental problem (he discarded the open
point) and assumed the data were essentially parallel. If the model is additive, he
reasoned, parallelism ‘‘validates’’ the response scale. Furthermore, he assumed
that the spaces between the curves provided a scale of heaviness. Inasmuch as the
spaces between the curves (representing 100 g increments) decreased as weight
increased, Anderson concluded that heaviness is a negatively accelerated func-
tion of weight. Because magnitude-estimation experiments yielded exponents for
heaviness greater than one, Anderson concluded that magnitude estimation must
be ‘‘biased and invalid.”’

However, the data shown in Fig. 17.30 do not warrant such strong conclu-
sions. Even if it were granted that the size-weight illusion is additive (which is
disputed later), the data in Fig. 17.30 do not determine scale values for heaviness.
To see why this is so, study the dashed lines in the left of the figure. These lines
show that the data can be monotonically rescaled to many other equally additive
solutions by shifting entire curves up or down. In other words, the rank order in
Fig. 17.30 places virtually no constraints on the scale values for weight. For
example, the right panel of the figure shows that the data can be rescaled to yield
a positively accelerated psychophysical function for heaviness, in which the
distances between successive curves actually increase with increasing weight.

Unconstrained Scale Values

Although the additive model constrains scale values to interval scale uniqueness
in principle, and although parallelism demonstrates linearity of J in principle (if
the additive model is assumed), the experimental design of Anderson (1972) fails
to provide enough constraint either to test the linearity of J or to constrain scale
values for heaviness. In this case, the failure to ask if the data allowed one to
refute the possibility of a positively accelerated heaviness scale led to the un-
founded conclusion that the additive model for Anderson’s (1972) size-weight
data was inconsistent with the heaviness scales from magnitude estimation.

If one is willing to consider multiplicative models, then even had the data
been highly constrained, perfectly parallel, and shown a log-function for heavi-
ness, the experiment could not in principle yield the conclusion that magnitude
estimation is ‘‘biased and invalid.”” Suppose both the size-weight illusion and
“‘averaging’’ task data were perfectly parallel and suppose the scale values were
identical. Exponential transformation on both sets of data would yield perfect
bilinearity, which would be deemed consistent with a multiplicative model. Fur-
thermore, the so-called ‘‘cross-task validation’’ would still work. As Bimbaum
and Veit (1974a, 1974b) predicted, and as Sarris and Heineken (1976) observed,
when ratings fit additive (or subtractive) models, magnitude estimations tend to
fit multiplying (or ratio) models. Anderson (1972) recognized the possibility of
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data transformation to other models but failed to point out that if magnitude
estimations are exponentially related to ratings, then his conclusion regarding the
validity of magnitude estimation would be an arbitrary decision rather than an
empirical finding.

Scale-Free Test of Size-Weight lllusion

Birnbaum and Veit (1974b) noted that the situation with respect to the size-
weight illusion is perfectly circular in scale-dependent research, such as that of
Anderson (1972). If the additive model] were assumed and ratings were additive,
then ratings would be ‘‘validated.’’ If the ratio model were assumed and mag-
nitude estimations fit this model (as in Sarris & Heineken, 1976), then magnitude
estimation would be ‘‘validated.’’ Unless one model or one response scale is
assumed, no conclusion can be drawn.

In order to go beyond the circular situation of scale-dependent research,
Birnbaum and Veit (1974b) applied the scale-free test of Bimbaum (1974a, Exp.
4) to the size-weight illusion. Birnbaum and Veit (1974b) asked subjects to judge
the ‘“‘difference’’ in heaviness between pairs of size-weight blocks. It was as-
sumed that ‘difference’’ ratings can be represented as follows:

Dy, =J[¥; — ¥,,] (F.13)

where ¥ ; is the heaviness of weight i in block j. It follows from an additive (or
parallel-averaging) model that the ‘‘difference’” in heaviness between two blocks
of the same weight but different sizes should be independent of that weight (7,).
W, =t; +s;, where , is the weight and s; is the size, then Dyu =J0t; +35,;
—t; — s =JIs; —s,]. Thus, the additive model implies that the magnitude of
the illusion should be independent of weight. Similarly, D;,; = J[t;, + s PRl O
=551 = Jlt; —1,].

On the other hand, if the divergent interaction observed by Sjoberg (1969) is
real, then the magnitude of the illusion should increase as a function of weight.
Similarly, if the interaction is “‘real,”’ then the difference in heaviness between
two different weights in blocks of the same size should depend on the common
size (see Birnbaum, 1974a, Fig. 5).

Because these predictions of equality or inequality hold for any strictly
monotonic function J, the test is a scale-free test. In other words, the conclusion
regarding the additive model for the size-weight illusion would be invariant with
respect to strictly monotonic transformation of the data.

Birnbaum and Veit (1974b) found a systematic violation: The difference in
heaviness between two blocks of different sizes was larger when both blocks
weighed 400 g than when both blocks weighed 50 g. Similarly, the judged
difference in heaviness between two blocks of the same size that weighed 50 and
400 g was ranked larger when the block was small than when it was large. Fifteen
of the 16 subjects in Experiment 2 showed these trends in the crucial rank-order
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test. The scale-free estimates of heaviness, derived from the subtractive model of
comparison, are shown in the right of Fig. 17.29,where the numbers in the figure
show the mean ‘‘difference’’ judgments.

Birnbaum and Veit (1974b) used a more extensive design than that just de-
scribed. There were actually 21 size-weight blocks composed of seven levels of
weight in blocks of three different sizes. These were factorially combined with
four size-weight combinations (in the other hand) for comparison. The design
was counterbalanced across the two hands, and there were two replicates, yield-
inga2 X2 X4 x (3x7) = 336-cell design. The 336 data points for each
subject were rescaled to the following model:

.,_I(Dijk[)= \PU - \I’k + € ) (F14)

where J~! is a monotonic function, Dy, is the judged ‘‘difference’’ in heaviness,
W, is the heaviness of size-weight block of size i and weight j (with 21 levels),
W, is the heaviness of the comparison block in the other hand (with four levels),
and e, is an additive effect of hand position and replication (with four levels).

The rescaled judgments were assessed by analysis of variance. Because the
rescaling was based only on the subtractive model of *‘difference’’ judgment, it
was neutral with respect to the size-weight illusion. Therefore, the scale-free
estimates of W;; can be tested for additivity. Figure 17.31 shows the scale-free
values of ¥;; that were derived from the rescaling. They show a similar divergent
interaction to that in the simplified presentation of Fig. 17.29.

11 r 1 I !
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F (2,30)=74.84
ADDITIVE MODEL
F(12,180) = 8.40
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FIG. 17.31. Estimated scale-free values of heaviness from Birnbaum and Veit’s
(1974b) study of the size-weight illusion. Nonparallelism (divergence) implies that
the additive (or parallel-averaging) model is inconsistent with the data, and cannot
be salvaged by strictly monotonic transformation.
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In sum, the scale-free test refutes the additive or parallel-averaging model for
the size-weight illusion and impression formation, contrary to the conclusions of
Anderson (1962, 1972, 1977, 1979). These findings not only require different
models for these two issues, but they also show that the methodology on which
the previous conclusions were based was incomplete. Implications of the size-
weight interaction for heaviness perception are discussed by Birnbaum (1975)
and Bimbaum and Veit (1974b).

Scale-Free Test of Ratio-Difference Theories

The scale free test (as in Fig. 17.29) is also applicable to the ratio-difference
controversy (Section C). If subjects perform differences between ratios when so
instructed, the data should resemble those in the left of Fig. 17.29, that is s,/s, —
S5/S; > s;/54 — 55/54 because:

1 1
— ($7785) >— (5;—55) (F.15)
S 54

On the other hand, if subjects judge differences between differences when in-
structed to judge ‘‘differences between ratios,’’ the two judgments should be
equal, for:

(s7 =5 — (55 —8) = (57 — 84) — (55 — 54) (F.16)

Thus, if observers made implicit magnitude estimations of ‘‘ratios’’ and then
computed differences, the (divergent) inequality of Expression F.15 should hold.
On the other hand, if observers judge differences between differences, the
equality (F.16) should hold. For the darkness experiment described in Section C,
it was found that the corresponding differences were nearly equal for both the
“‘difference of differences’ and ‘‘difference of ratios’’ tasks. This finding is
consistent with the subtractive theory.

The ratio of differences model predicts the opposite ordering (for these pairs)
from that predicted by the difference of ratios model:

S7 781 _ S7 S
S5 — 5 S5 — S84

(F.17)

The data for the “‘ratio of differences’’ task showed the rank order predicted by
the ratio of differences model. Surprisingly, the ‘‘ratio of ratios’’ task also
showed a small trend in the direction predicted by the ratio of differences model.
It would be useful to see further applications of the scale-free test to the ratio-
difference controversy.

On “Two-Stage” Integration

Anderson (1977, 1979) recently argued that when an experiment involves three
or more variables, one can ‘‘validate’’ the response scale by finding nonsignifi-
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cant interactions between two variables and therefore trust that significant interac-
tions among the other variables are ‘‘real’’ and not attributable to nonlinearity in
the judgment function.

To illustrate this idea, Anderson cited a paper by Lampel and Anderson
(1968) in which college women were asked to evaluate hypothetical dates based
on a photograph and two personality traits. The data are shown in Fig. 17.32,
plotted as a function of the level of the first adjective with a separate curve for
each level of the second. Data for low, medium, and high in attractiveness of
photos are shown separately.

The constant-weight averaging model predicts that the two-by-two plots for
each photo should be parallel. The interaction between adjectives was nonsig-
nificant, averaged over levels of photos (although a divergent interaction be-
tween adjectives appears when the photo is high in attractiveness). Anderson
concluded that the supposed lack of adjective-by-adjective interaction ‘‘vali-
dated’’ the response scale, and therefore the interaction between photos and
personality traits was deemed to be ‘‘real’’ and not an artifact of the response
scale.

However, this line of argument is not consistent. If it is to be assumed that
adjectives do not interact, it must be shown that no transformation exists that
eliminates the photo-by-personality interaction and simultaneously preserves (or
produces) adjective-by-adjective parallelism. By this criterion for ‘‘validity,”’
any transformation of the data that yields adjective-by-adjective parallelism
would be deemed a ‘‘valid’’ rescaling. Therefore, if a transformation can be
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FIG. 17.32. Data of Lampel and Anderson (1968) are on the left, and rescaled
data are on the right. Note that the monotonic transformation removes both the
adjective-by-adjective interaction and the photo-by-adjective interaction. There-

fore, these data do not provide convincing evidence that different operations or
stages were involved. From Bimbaum (1980b).
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found that eliminates the photo by adjective interactions and retains parallelism
for the adjective-by-adjective interaction, one cannot use the lack of interaction
between the adjectives in the raw data as evidence that the photo-by-adjective
interactions are ‘‘real.’’

Indeed, such a monotonic transformation exists, as shown in the right of Fig.
17.32. Note that after transformation, all three adjective-by-adjective interac-
tions are parallel (which would be deemed an ‘‘improvement’’ over the raw
data). Furthermore, and most important, all three sets of transformed curves are
congruent (differ by an additive translation), showing that the photo-by-adjective
interactions have been simultaneously removed. This analysis shows that lack of
significant interaction between two variables does not ‘‘validate’’ the “‘reality”’
of a significant interaction. The data are consistent with the hypothesis that the
adjectives combine with each other by the same process as they combine with the
photo. Therefore, there is no evidence for two operations in these data. (It should
be mentioned that the photo-alone data, which are not presented here, would be
predicted to cross the other curves according to either averaging theory under
discussion and are therefore not diagnostic as to the transformation.)

These results call into serious doubt Anderson’s (1974b) interpretation that
the process of combining this information proceeded by “‘stages’’ in which the
adjectives were first integrated by one operation and then combined with the
photos by a second operation. Such a stage theory is certainly possible, but
nothing in the data of Lampel and Anderson ( 1968) requires such an interpreta-
tion.

This discussion is not presented to argue that the divergent photo-by-adjective
interaction is not “‘real.’’ The assumption that adjectives do not interact is itself
highly doubtful. By analogy with the results of Birnbaum (1974a), it seems likely
that if a proper scale-free experiment was performed, the photo-by-adjective
interaction would be confirmed. The purpose of this methodological discussion is
to show that lack of significant interaction does not ‘‘validate’’ the response
scale.

It may seem puzzling that Lampel and Anderson (1968) failed to find an
adjective-by-adjective interaction. However, the dashed box in the left of Fig.
17.26 shows that the domain of their experiment was small in comparison with
the domain of Birnbaum’s (1974a) experiments. Apparently, the results of
Birnbaum (1974a) would imply a small interaction for the small domain studied
by Lampel and Anderson (1968).

A Tale of Two Ancient Philosophers

This comparison of research ranges calls to mind the tale of the two ancient
Greek philosophers arguing over the shape of the earth. One of them made
careful observations of plumb-bob lines separated by 100 paces. There was no
evidence that the plumb-bob lines were not parallel, as they seemed to point to
the same star at the same time. This parallelism was taken as evidence that the
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world was flat and that the star was very far away. The other scientist travelled
partway across the world and discovered that plumb-bob lines do nor point to the
Same stars on the same occasions. Rather, the farther apart two plumb-bob lines
are, the more they appear to diverge. He concluded that the earth is spherical,
that the stars are very far away, and used his measurements to estimate the sjze
of the earth.

During the argument some passers-by provided their suggestions: ‘‘Perhaps
you are both right, and the earth changes shape depending on how one does the
experiment, ’’ “‘Perhaps you are both wrong, and the stars are not very far
away.’’ Today, we feel both flat and spherical models deserve credit—but we do

produce parallel data, thereby choosing the model in advance and finding the
rescaling or response scale to agree with that model. Finally, it should be men-
tioned that Anderson’s data do show divergent interactions.

Anderson has argued that the apparent parallelism for adjectives helped vali-
date the rating scale and thereby form part of the argument concerning the
“‘bias’’ in magnitude estimation. However, it should now be apparent that the

Manipulation of the Interaction

Birnbaum, Wong, and Wong (1976) found divergent interactions for impression
formation and also for a related task in which the Judge was asked to evaluate
used cars. In this study, if one adjective is bad, a person receives a low rating and
the other adjectives have Jess effect. Similarly, if one estimate of a car’s value is
low, the other estimates have less effect on a buyer’s opinion. Birnbaum and
Stegner (1979) manipulated the interaction and actually reversed it from diver-
gent to convergent by instructing the judges to identify with ejther the buyer or
seller of the car. When asked to take the seller’s point of view (judge the lowest
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acceptable selling price), the higher estimate appeared to have greater weight.
When asked to take the buyer’s point of view (Judge the highest price the buyer
should pay), the lower estimate appeared to have greater weight.

A portion of the data from Birnbaum and Stegner’s (1979) Experiment 5 is
shown in Fig. 17.33. Judgments of the value of cars are plotted against the
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FIG. 17.33. Mean judgment of the value of used cars as a function of estimates
from two mechanics who examined the cars. Panels on the left show judgments of
the “*highest price the buyer should pay’’; panels on the right are for ‘‘lowest price
seller should accept’’; center panel shows judgments of *‘fair price.’’ Note that
curves diverge in left and center panels, and they converge in right panels. How-
€Ver, one cannot attribute the nonparallelism or change in shape of the curves to
changes in the judgment function, for the rank order changes systematically across
panels, as predicted by the configural-weight model (lines). From Birmmbaum and
Stegner (1979).
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estimate from one source, with a separate curve for each estimate from the other
source. Buyer’s price and fair-price judgments show a divergent interaction,
whereas seller’s price judgments show a convergent interaction.

Can the results of Birnbaum and Stegner (1978, Exp. 5) be explained by
assuming that the judgment function, J, depends on the judges’ point of view?
Recall that such an interpretation was compatible with the changing interaction in
the grading on the curve experiment described in Section D (Figs. 17.19, 17.20,
and 17.21). The judgment function cannot explain the change in interaction in
Fig. 17.33. Note that the rank order of the points is systematically different in
different panels. For example, from the buyer’s point of view, a car with esti-
mates of $450 and $400 is judged higher than a car with estimates of $650 and
$300, whereas from the seller’s point of view, the $650 and $300 car is judged
about $100 higher than the $450 and $400 car. Because the rank order changes
systematically, the effects of points of view cannot be explained in terms of a
change in J. A simple configural-weight model provides a good description,
using a single parameter to represent point of view, as shown by the lines
representing predictions of this model (see Bimbaum & Stegner, 1979).

In order to claim understanding, one must be able to identify variables that
control the effect to be explained. Thus, the ability to manipulate and even
reverse the interaction by Birnbaum and Stegner (1979) goes a long way toward
clarifying the process of information integration.

G. A BRIEF DISCUSSION OF RELATED THEORIES

Throughout this chapter, an attempt has been made to compare present develop-
ments with the theories of others. Parducci’s range-frequency theory, discussed
in Section A, was extended and elaborated in Section D. Schneider’s work on the
ratio-difference question is compatible with the review of that issue in Section B.
Anderson’s theories of the size-weight illusion, impression formation, and
functional measurement are dealt with in Section F.

Several other theoretical issues, however, deserve further discussion. This
section briefly reviews theories of Rule and Curtis, Eisler, Montgomery, and
Marks. Rule and Curtis have a theory of estimation of ‘‘magnitudes’’ and *‘dif-
ferences’’ that has some points of agreement and some points of disagreement
with the present theory. Eisler and Montgomery have treated the relationship
between category judgment and magnitude estimation in terms of the variability
of the judgments on the two scales. As Montgomery has noted, their findings can
be represented in terms of a single underlying scale of sensation, in agreement
with the present approach. Eisler and Marks proposed that psychophysical scales
change from situation to situation, depending on the subject’s task. This section
shows that evidence cited to argue for changes in psychophysical scales can be
explained by theories that retain the premise of scale convergence.
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Magnitude-Estimation Theory of Rule and Curtis

Rule and Curtis (this volume) assume that ‘‘differences’’ can be represented by
subtraction. The heart of their theory can be stated as follows:

M; = Ju(s)) (G.1
MDU = JM(S,' - Sj) (G2)

where M; and MD;; are magnitude estimations of single stimuli and of *‘dif-
ferences,’’ and Jy4 is the output function for magnitude estimation. In keeping
with Attneave’s (1962) theory, the Jy, function, which Rule and Curtis acknowl-
edge to depend on situational factors and individual differences, is assumed to
represent (on the average) the inverse of the psychophysical function for num-
bers.

Their theory, in agreement with stimulus scale convergence, assumes that the
psychophysical function, s = H(®), is independent of the task to judge ‘‘dif-
ferences’’ or ‘‘magnitudes’’ and that the output function is similarly independent
of these tasks. Approximating the functions H and J by power functions, Rule
and Curtis represented their data as follows:

Mi = an)ikm + bM (G3)
MDiJ' = aD(CD,-k - (I)jk)m + bD (G4)

Rule and Curtis (this volume) have estimated m from Eq. G.4 and found values
between 1.1 and 2.1 with an average value of 1.47. Exponents from magnitude
estimation of single stimuli are found to be close to 1.47 times larger than
exponents for k derived from Eq. G.4, consistent with Eq. G.3. Furthermore,
Rule and Curtis (1973) have observed that exponents for number (estimated as an
input function) are close to the reciprocal of 1.47, consistent with the theory of
Attneave that magnitude estimation represents cross-modality matching of num-
bers to stimuli and that subjective value of number is a negatively accelerated
function of objective number.

In their assumptions that ‘‘differences’’ can be represented by subtraction,
that Jy, is positively accelerated, and that H is independent of the task, Rule and
Curtis are in agreement with the present approach. However, they (Rule &
Curtis, 1980) challenged the conclusions of Veit (1978) that subtraction can be
used to represent both ‘‘ratios’’ and ‘‘differences’’ of the darkness of papers that
vary in reflectance. They noted that actual ratios and differences can be
monotonically related in a small, finite factorial design with a small ratio of the
largest to smallest scale values. Birnbaum (1980a) has shown however, that an
extension of the Rule and Curtis theory to ‘‘ratio’’ and ‘‘difference’’ judgments
could not account for the data of nine experiments, using an exponent of mag-
nitude estimations of ‘‘ratios’’ in the range of values cited by Rule and Curtis
(this volume).
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As shown in the right of Fig. 17.4, even with m = 1.47, (s;/s;)™ 1s not
monotonically related to s; — s; in an evenly spaced seven-by-seven design with
largest ‘‘ratio’’ judgment of 7. Bimbaum (1980a) found that for two operations
to characterize the data in Fig. 17.5, one would have to reject the assumed
invariance of m and use large values of m for which the power function approxi-
mates the exponential. Further comparisons and contrasts with the views of Rule
and Curtis are given by Birnbaum (1980a) and Veit (1980).

Eisler's Transformation Theories

In response to the analyses and conclusions of Birnbaum (1978), reviewed in
Section C, Eisler (1978) presented two theories that would allow one to retain the
ratio model for judgments of ‘‘ratios.’” These theories, like the stage theory of
Marks (1979; this volume), assume internal transformations of scales depending
on the instructions given the subject.

There are two versions of Eisler’s (1978) transformation theories. In one
version, the subject uses only a single operation (as in the indeterminacy theory
in Table 17.1) but can apply a nonlinear transformation to the scale values after
this operation for ‘‘differences.’” In the other version, the subject uses rwo
operations and a transformation that precedes the ‘‘difference’’ operation. When
the ratio model is used to represent the operation for judgments of ‘‘ratios,’’ both
theories would use the logarithmic function for the transformation (T) and would
predict the following:

Task Model
R: A/B (G.5)
D: T(A)—T(B) (G.6)
RR: A/B/C/D (G.7)
] T(A)—-T(B)
RD: —_——T(C)—T(D) (G.8)
DR: [T(A)-T(B)] — [T(C)-T(D)] (G.9)
. T(A)-T(B)
DD: T [ T(O)~T(D) ] (G.10)

In each case, the response is assumed to be a linear function of the value listed
under model.

Note that the theory predicts that DD and DR should have different rank orders
and that DD and RD should have the same order, contrary to the data. To handle this
problem, Eisler (1978) suggested that because [T(A)—-TB)VITC)—-T(D)] could
be negative, subjects ‘ ‘reinterpret’’ the DD task in order to avoid the problem of
negative arguments for the log. According to Eisler (1978), evidence for such a
“‘reinterpretation’’ might be found by comparing the standard deviations for the
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DR and DD tasks. However, no systematic difference appeared for the Hagerty and
Birnbaum (1978) data (Birnbaum, 1979). Furthermore, in the experiment on
darkness reviewed in Section C, subjects in the DD and DR tasks were instructed
to compare the darker of the (A, B) pair to the lighter. This procedure guarantees
that for the experimental design used, the ratio of differences (Expression G.10)
for DD will always be = 0, thereby eliminating part of Eisler’s (1978) rationale
for the ‘‘reinterpretation’’ of DD.

Eisler (1978) remarked that Birnbaum’s (1978) theory makes use of transfor-
mations (for the judgment function). He argues that the logarithmic internal
transformation in his theory is as complex as the exponential output function for
“‘ratios’’ in Birnbaum’s theory. However, the judgment functions in Birnbaum’s
theory do not affect the rank order of the data, so at the ordinal level the judgment
functions can be disregarded, whereas nonlinear internal transformations will
alter rank order. Furthermore, Birnbaum and Veit’s ( 1974a) theory of the judg-
ment function predicts that the range of examples will affect the response range.
Finally, one has to acknowledge judgment functions to account for the changes
that can be induced by means of the context (Sections A and D). Additional
comments on various details of Eisler’s (1978) transformation theories are given
in Birnbaum (1979).

In summary, the transformation theories seem unattractive, not only because
of the postulated internal transformation, but also because of the ‘‘reinterpreta-
tion’’ argument that must be made in order to rectify an otherwise incorrect
prediction of the theory, and thereby make the theory ordinally equivalent to the
subtractive theory.

Stage Theory of Marks

Marks (1979) proposed a stage theory of loudness that has some similarities to
Eisler’s theory. The essentials of his theory can be summarized as follows:

M; = JylLi] (G.11)
MTy = Jp[L; + L] (G.12)
MD;; = Jy[T(L;) — T(Ly)] (G.13)
MDT ;= Jp[T(L; + L;) — T(Ly + L] (G.14)

where M;, MT;;, MD;;, and MDT};;, are ‘‘magnitude estimations’’ of the single
stimuli, magnitude estimations of *‘total loudness’’ of multicomponent (or binaural-
ly presented) tones, magnitude estimations of ‘‘differences’’ between two tones,
and magnitude estimations of the ‘‘difference’’ between two ‘‘summated’’ loud-
nesses, respectively. L; is the subjective loudness of a tone or component, J,
Jr, and Jy, are monotonic output (judgment) functions for magnitude estimation
in these tasks, and T represents the transformation between the so-called *‘L*
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scale and what Marks (1979) terms the ‘D’ scale of loudness, where D = T(L).
In Marks (1979) paper, T is approximated by the square-root function. (Eisler
[1978] would represent T with the log function.) Marks argues that by averaging
exponents across different experiments, the J,, function can be assumed to be a
similarity function. However, he concludes that the Jp function is negatively
accelerated (Marks approximates it by using a power function with exponent of P,
and he presents evidence that the Jp function is positively accelerated for mag-
nitude estimations of ‘‘differences.”” This agrees with Rule and Curtis (this
volume), who approximate Jp, by a power function with an average exponent of
about 1.5.

The theory of Marks (1979) represents binaural and multicomponent summa-
tion by the arithmetic addition operation; it represents ‘‘difference’’ (and perhaps
also ‘‘ratios’’) by the subtraction operation. However, in order to do this, three
systematically different output transformations are required for magnitude esti-
mations, and two different input transformations are used for loudness. (Actu-
ally, the number of transformations and output functions is still larger when one
considers Marks’ treatment of loudness addition within the critical band width,
which is not treated here.)

Marks (1979) theory seems unduly complicated to account for the data he
reviews. First, as is shown later, it is possible to retain a single scale of loudness
for both ‘‘differences’’ and loudness ‘“‘summation.’’ Therefore, the T transfor-
mation appears unnecessary. Second, it can be shown that it is possible to explain
the data using a single J.

A simpler theory that preserves scale convergence can be written as follows:

M; = Jylsi] ' (G.15)
MTy; = Jo[¥] (G.16)
MD;; = Jpls; — 5] (G.17)
MDTy, = -/D[‘I’u = Wl (G.18)

where W; is the overall loudness experience produced by s; and s;, and ¥;; =
C(s;, s;) represents the combination function for loudness ‘‘summation.’’ This
theory preserves scale convergence at the expense of representing combination
by a nonadditive function, as in Birnbaum et al. (1971). It also allows one to
retain the same theory for all of the J functions in Egs. G.15 through G.18.
For simplicity and comparability with the work of others who approximate
data by power functions, a rough approximation could be stated as follows:

¥y =Vsf+si (G.19)

where W; is the ‘‘total loudness’’ of tones having scale values s; and s;.
Equation G.19 is the equation for the length of the sum of two orthogonal
vectors. (Equation G.19 could be generalized to include the angle between the
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vectors or replaced by a similar function predicting a convergent interaction to
provide a more accurate representation.) Figure 17.34 shows ¥ plotted as a
function of s;, with a separate curve for each of several values of s;, ac-
cording to Eq. G.19. Note that this theory of loudness does not predict paral-
lelism, but predicts a convergent interaction, similar to that obtained by Marks
(1979, and this volume).

It may be possible to assume that all of the output functions are governed by
an exponent of about 1.5, consistent with the findings of Rule and Curtis (this
volume). Note that Eqs. G.15, G.16, and G.17 become:

M; = as;'? (G.20)
MTy = agl(s# + s#)°]'3 (G.2D)
MDij = aD[Si - Sj]l'5 + bD (G'22)

It follows that under Marks’ (1979) analysis, the output function for loudness
summation would be .75, so the 4 exponent empirically obtained by Marks
(1979) in his equation

MT,-J-‘”:’ = Li + LJ' (G23)

is predicted by this theory because Eq. G.21 becomes MT;;*3 = 5,2 + ;2.
Furthermore, the relationship between Marks’ ‘‘L’’scale and his “‘D’’ scale
would also be predicted by this theory to be the square function in this approxi-
mation, consistent with the conclusion reached by Marks (1979). In Eq. G.21, s;
corresponds to D and s;* to L. It should also be noted that the present theory
handles ‘‘differences between summated loudnesses’’ without the postulated
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internal T transformation, representing them as monotonically related to subjec-
tive ditferences in ¥ of Eq. G.19:

MDTy, = -]D[‘I’ij - ¥l (G.24)

where MDT;;, is the magnitude estimation of the ‘‘difference’’ in loudness be-
tween two ‘‘summated’’ loudness experiences.

It 1s not seriously suggested that these power functions are the correct theoret-
ical representation. They are used only for simplicity and comparability with the
work of Marks. Any complete theory must be able to predict contextual effects
on the J functions. However, the foregoing theory, oversimplified as it is,
provides at least as good a representation of the data reviewed by Marks’ (1979)
as his theory (Eqs. G.11-G.14). Marks (1979) theory requires two scales (D and
L) and three functions for magnitude estimation. It has no theory to predict the
relationship between D and L and no theory to explain why J, should be
negatively accelerating, Jp, should be positively accelerating, and Ju should be
linear. The suggested theory (Egs. G.15-G.18) uses only one scale (s;) and one
theory for the J function of magnitude estimation.

Loudness Combination

Falmagne, Iverson, and Marcovici (1979) developed a theory of loudness dis-
crimination and combination. They presented the observer with two binaural tone
pairs, (a, x) and (b, y), and asked the observer to report which pair produced the
louder experience. They concluded that their data can be represented by the
equations:

Ve =5, +5, (G.25)
Pa.z‘;by = F[T(‘Pa.t) - T(\I,by)] (G26)

where ¥, is the overall loudness of tones a and x, sq and s, are the loudnesses
of the tones presented to the left and right ears, Porby is the proportion of
responses indicating (a, x) is louder than (b, y), and F is a cumulative density
function. Note that T performs a role similar to that in Marks’ theory.
Falmagne et al. (1979) found that P, ,, decreases as a function of a, indica-
ing either that ¥ ,,. does not equal s, + s, or that T is negatively accelerated.
Falmagne et al. (1979) represented 7 as a logarithmic function (rather than as the
square-root function used by Marks). This interpretation, they noted, represents
choice probabilities as monotonically related to subjective ratios rather than as
differences. If the psychophysical function is also assumed to be a power func-
tion, their theory implies a ‘‘conjoint Weber’s law,’’ in which choice prob-
abilities for (a, x) vs. (b, y) should be the same as (fa, tx) vs. (tb, ty) for any
value of r. It remains to be seen whether the conjoint Weber’s law will prove
more than a rough approximation when tested over a wider stimulus range.
The finding that P,,,,, decreases as a function of a is consistent with the
interaction shown in Fig. 17.34 and the assumption that 7T is an identity function.
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Such an interpretation would be hard to discriminate from the theory of Falmagne
et al. (1979) on the basis of their experiments.

Therefore, it may be simpler to represent loudness summation by vector
addition rather than arithmetic addition. Such a representation permits one to
retain scale convergence for both input (psychophysical) and output (judgmental)
functions, and seems therefore simpler and greater in explanatory power than
Marks’ theory, which requires two scales, three output functions, and has no
theory to explain their relationship. Such a representation would also predict the
major result of Falmagne et al. (1979) in terms of a single scale of sensation and a
subtractive theory for stimulus comparison and discrimination.

A Transformation-Theory Account of Impression
Formation

In Section F, the additive (or parallel-averaging) model of impression formation
was found to be inconsistent with ratings of ‘‘combined’’ likeableness and *‘dif-
ferences’’ in likeableness if the stimulus scale convergence criterion was as-
sumed. It seems reasonable to ask if the transformation theories of Marks and
Eisler could be extended in a consistent fashion (using the same T') to encompass
impression formation.

The following transformation theory can describe the results of Birnbaum
(1974a):

Dy = JplT*(s;) — T*(s))] (G.27)
Cii = Jelsi + 53 (G.28)
DCyxr = JpclT*(s; + 535) — T*(sp + 5))] (G.29)

where Jp) and Jp are approximately linear, but J is positively accelerated, and
T* is positively accelerated. According to the stage theories of Marks and Eisler,
however, all of the J functions should be negatively accelerating, and fur-
thermore, T* should be negatively accelerating. Thus, the stage theory cannot
describe ‘‘differences’’ in terms of the same T* transformation to salvage both
the additive models of loudness ‘‘summation’’ and impression information.
These results, therefore, put the transformation theory in the post hoc position
of requiring different transformations for every situation. As shown in Section F,
a coherent account of the data for impression formation can be given in terms of a
single scale of likeableness for the adjectives and the assumption that all of the J
functions are approximately linear.

Psychophysical Variability

Eisler (1963) has given an account of the relationship between category ratings
and magnitude estimations in terms of the variability of the two scales. This
approach is reviewed by Montgomery (this volume), who notes that the results
can be given a different interpretation from Eisler’s.
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Eisler’s interpretation can be diagrammed as follows:

TIH] sF e C; ~——c}

P, (G.30)

H S; 7Mik €;

where H is the psychophysical function, T is the transformation, s and s* are the
two scales of subjective value, and €* and €; are the error terms, representing
variability. According to Eisler’s early development,the variance of €;* was
assumed constant with respect to s, but the variance of €; was assumed to be
linearly related to s;. This was interpreted as a subjective Weber’s law.

An alternative interpretation can be given as follows:

€;

(G.3D)

This theory (a special case of that discussed by Birnbaum, 1979) uses only one
scale of sensation and one error term, but different Jc and Jy functions for
category rating and magnitude estimation in different contexts. This theory leads
to the general psychophysical differential equation used by Eisler and
Montgomery. It predicts that when the stimuli are scaled in accordance with
Thurstone’s law of categorical judgment, the estimated scale values should be
independent of stimulus distribution or the task to use Category ratings or mag-
nitude estimations. Parducci (1965, 1974) has shown that Thurstone scales are
nearly independent of stimulus distribution. Montgomery (this volume) has
shown that although the relationship between category ratings and magnitude
estimations differs for different individuals, the data can be well-approximated
by the theory of one scale, assuming that the variance of ¢; is independent of s,
that J. is approximately linear for most subjects (for his stimulus spacing), and
that Jy;is nonlinear and varies for different individuals.

Birnbaum (1979) noted that Thurstone’s simplest case (equal variances) could
be applicable to matrices of both category ratings and magnitude estimations. Let
P;; and Q;;. be the cumulative proportion of responses to stimulus ; less than or
equal to category ‘j’’ or magnitude-estimation response “'Xy,”’ respectively.
Then, one can write:

P, = Fl(s; —t;)a] (G.32)
Qi = FI(s; — u,)/b] (G.33)

where F is a cumulative density function (e.g., normal). If there is only a single
error term, as in Expression G.31, and if the variance of €; is independent of s;,
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then a can be set equal to b equal to 1.0. The relationship between ¢; and j
describes J; the relationship between u; and X, describes Jy;. In this special
case (where a = b), it should be possible to find a spacing of magnitude
estimations (X,,) for each subject, such that P;; = Q;;. Montgomery (this volume)
has shown that this prediction may be a reasonable approximation.

In conclusion, the assumption that there is a single scale of sensation with a
single source of subjective variability provides a reasonable theoretical repre-
sentation of the empirical relationship between means and standard deviations of
category ratings and magnitude estimations. Analyses of ‘‘differences,’’
“‘ratios,’” and ‘‘totals’’ may provide further insight into the loci of psychophysi-
cal and judgmental variability.

CONCLUDING COMMENTS
This chapter offers the following resolutions to the measurement controversies:

1. Overt judgments can be regarded as a monotonic function of subjective
value, where the nature of the monotonic function depends lawfully on the
stimulus and response distributions. The range and frequency distribution of both
stimuli and responses affects the nature of this function.

2. Judgments of ‘‘ratios’’ and ‘‘differences’’ for most continua can be repre-
sented by the subtractive model using the same scale values for both tasks:

R = JglA — B]
D =Jp[A — B]
3. Judgments of ‘‘ratios of ratios,”’ ‘‘differences of ratios,’” ‘‘ratios of dif-

ferences,’’ and ‘‘differences of differences’’ can be represented by the subtrac-
tive theory:

RR = Jggl(A — B) — (C — D)]
DR = Jy,[(A — B) — (C — D)]
RD = Jop[(A — B)/(C — D)]

DD = Jy,l(A — B) — (C — D)]

4. The judgment functions are approximately linear for category ratings and
approximately exponential for magnitude estimation when the stimuli are
geometrically spaced, the category-response examples are equally spaced, and
the magnitude-estimation examples are geometrically spaced.

5. Scale values estimated from the subtractive theory of (within-mode)
stimulus comparison appear largely independent of stimulus spacing.
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6. The judgment function in information-combination experiments appears to
depend on the distribution of subjective combinations.

7. Scale values estimated from cross-modality comparison and combination
depend on the stimulus distribution.

8. One should neither select a standardized method for conducting experi-
mental research on the basis of a priori considerations, nor attempt to ‘‘avoid”’
contextual effects by holding context fixed to some arbitrary value. Instead, it
seems reasonable to manipulate procedures and contexts systematically and to
base generalizations on empirically established laws of judgment.

9. The fit of a model does not simultaneously validate the response scale and
model. Previous conclusions that impression formation and the size-weight illu-
sion obey a simple averaging model (additive) were based on inappropriate
conclusions from functional measurement. Methods involving scale convergence
and the scale-free test should be applied to provide more strenuous tests of
algebraic models.

10. Theories assuming that measurements of subjective value transcend the
tasks from which they were derived should be preferred to theories assuming
different scales. In particular, by representing loudness additivity with Pythago-
rean addition rather than arithmetic addition, it may be possible to retain scale
convergence for stimulus combination and comparison. Similarly, by represent-
ing impression formation with a configural model, it is possible to retain the
premise of scale convergence for combination and comparison.

Despite generations of controversy concerning the theoretical representation
of subjective value and even the appropriate models and methods for measure-
ment of subjective value, a number of empirical findings emerge that show
lawful regularity. The lawfulness of stimulus comparison and combination and
the regularity of contextual effects constitute results that must be explained by
any viable theory. The premises just listed may provide the beginnings of a
coherent solution to the controversies of psychological measurement.
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