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The purpose of this chapter is to compare the descriptive adequacy of alternative
theories of decision making. The common consequence paradox of Allais, which is
evidence against expected utility theory, can be interpreted as a joint test of branch
independence (a weaker version of Savage’s axiom), coalescing (equal outcomes can
be combined by adding their probabilities), and transitivity. Thus, this paradox can
be explained in several ways. One class of theories (including subjectively weighted
utility theory and original prospect theory) retains branch independence but violates
coalescing, and thereby violates stochastic dominance. Another class of theories
(rank-dependent and rank- and sign-dependent utility theories including cumulative
prospect theory) retains coalescing and stochastic dominance but violates branch
independence. New independence properties, distribution independence and cumulative
independence, are proposed to test original prospect theory and cumulative prospect
theory. Violations of distribution independence refute original prospect theory and a
multiplicative configural weight model. Experimental results also show violations
of cumulative independence and stochastic dominance, contrary to rank-dependent
utility theories, including cumulative prospect theory. Empirical results are
consistent with a weight tax configural weight model that accounts for the Allais
paradoxes, violations of branch and distribution independence, violations of
cumulative independence, violations and satisfactions of stochastic dominance, and
violations of coalescing.
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PROBLEMS FOR EXPECTED UTILITY THEORY

By 1954, Expected Utility (EU) theory was in trouble as a descriptive theory of
decision making. The EU model can be written as follows:

EU(G) = X pju(x;) D

where G is a gamble with probabilities p; to win monetary outcomes x;; EU(G) is
the Expected Utility of gamble G; the summation is over all possible outcomes of

the gamble; X p; = 1; and u(x;) is the utility of outcome x;. Let > represent the

preference relation between gambles. In a choice between two gambles, it is assumed
that G > G if and only if EU(G1) > EU(G9).

Edwards (1954, p. 393), in his review of EU theory wrote,

“If this model is to be used to predict actual choices, what could go wrong
with it? It might be that the probabilities by which the utilities are
multiplied should not be the objective probabilities; in other words, a
decider’s estimate of the subjective importance of a probability may not be
the same as the numerical value of that probability. It might be that the
method of combination of probabilities and values should not be simple
multiplication. It might be that the method of combination of the
probability-value products should not be simple addition. It might be that
the process of gambling has some positive or negative utility of its own. It
might be that the whole approach is wrong...”

EU theory had several difficulties with data that were discussed by Edwards (1954)
and later reviewed by Camerer (1989), Edwards (1992), Kahneman and Tversky
(1979), Luce (1992), Schoemaker (1982), Starmer (1992), Stevenson, Busemeyer,
and Naylor (1991), von Winterfeldt and Edwards (1986), and Wu and Gonzalez
(1996). The most serious of these difficulties were the paradoxes of Allais
(1953/1979), known as the common ratio and common consequence paradoxes. They
were termed “paradoxes” because seemingly rational people were willing to defend
choices that were in violation with EU theory.

Common Ratio Paradox
The common ratio problem can be illustrated by the following pair of choices:
Choice 1: Would you prefer A or B?

A: $3,000 for sure B: .80 probability to win $4,000
.20 probability to win $0

Choice 2: Would you prefer A’ or B'?

A" .25 probability to win $3,000 B" .20 probability to win $4,000
.75 probability to win $0 .80 probability to win $0
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Most people prefer A over B in the first choice and B’ over A’ in the second choice,
contrary to EU theory. This combination of preferences violates EU theory, which
implies that people should choose either A and A’ or B and B’

According to EU theory, setting #(0) = 0, A > B holds if and only if,

u(3000) > .8u(4000),

where ©(3000) and 1(4000) represent the utilities of $3,000 and $4,000, respectively.
However, the second choice (A’ < B") implies,

.25u(3000) < .20u(4000).
Multiplying both sides of this inequality by 4 reveals a direct contradiction. Because
the second choice is derived from the first by multiplication by a common factor
(.25), these problems are known as common ratio problems.

EU theory implies ratio independence, which asserts that choices should be
independent of the common ratio, a, as follows:

A= (,p;0,1-p)~B=(y,4;0,1-¢)
if and only if
A'=(,ap;0,1-ap)>B’'=(y,aq; 0,1 - aq).
where (x, p; 0, 1 — p) denotes a gamble that yields $x with probability p and $0
otherwise. Because choices violate the property of ratio independence, they are
considered paradoxical.

Common Consequence Paradox

Choices 3 and 4 illustrate the common consequence paradox:

Choice 3:

C:  $.5 Million for sure D: .10 probability to win $1 Million
.89 probability to win $.5 Million
.01 probability to win $0

Choice 4:

C": .11 probability to win $.5 Million D" .10 probability to win $1 Million
.89 probability to win $0 .90 probability to win $0

Most people express the following preferences: C > D and D’ > C’ in problems of

this type, contrary to EU theory. According to EU theory, a judge should prefer C
and C’ or D and D’, but it is a contradiction to choose C and D’ or D and C".
According to EU, where u(.5M) and u(1M) are the utilities of $.5 Million and $1
Million, C > D if and only if,
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u(.5M) > .10u(1M) + .89u(.5M);
therefore, Jd1u(.5M) > .10u(1M),

which holds if and only if C’> D’, contrary to the empirical choice.

Common Consequence Independence

More generally, EU theory implies common consequence independence, which can be
defined as follows:

C'=x,p;0,1-p)>D"=(y,q;0,1-¢q)
if and only if

C=(,p,z,rn0,1-p-r>=D=(u,q,2,r;0,1-qg-r),

where (z, r) is the common branch. It is useful to define Allais independence as the
special case of common consequence independence where y > x = z > 0, and the equal
outcomes of x and z are coalesced. The Allais paradox occurs when a decision maker
systematically violates Allais independence.

Analysis of the Allais Paradox

The common consequence paradox of Allais (1953) was presented as a test of
Savage’s “sure thing” or independence axiom (Allais, 1953/1979; Allais & Hagen,
1979; Slovic & Tversky, 1974). According to the “sure thing” principle, if two
gambles give the same consequence for a given state of nature, then that consequence
should have no effect on the choice between the two gambles. The common
consequence paradox is evidence against EU; however, it can be explained by several
different psychological theories. It is useful to analyze Allais independence into
simpler components to understand possible psychological explanations for the effect.

Transitivity, Coalescing, and Branch Independence
Let G = (x, p; ¥, q; z, r) represent a three-outcome gamble that yields a consequence

of x with probability p, y with probability ¢, and z with probability r =1 -p - g,
where the probabilities are nonzero. Let > represent the preference relation, and ~

represent indifference.

1. Transitivity of preference means A > B and B >~ C implies A > C.

2. Coalescing means that equal outcomes can be combined by adding their
probabilities; for example, for three outcome gambles,

&, px,q;z,r)~(x,p+q;z,r)and (x,p; ¥, 4,5, 1) ~ (X, p; ¥, g +1).
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3. Branch independence requires that if two gambles have a common branch (the same
outcome produced by the same event with known probability), then the preference
between the gambles will be independent of the outcome on that common branch.
The term “branch” also designates that the probability-outcome combination is
distinct in the problem presentation.

For three outcome gambles, branch independence requires
Py, g5z, 1)~ (X, p5 Y. 45 2,7)
if and only if
x.psy, g2, ) =&\ ph Y. g 2, ).

where (z, r) is the common branch, the outcomes (x, y, z, x’, y’, z') are all distinct,
the probabilities are not zero and sum to 1 in each gamble. This principle is weaker
than Savage’s independence axiom because it holds for branches of known probability
and also because it does not presume coalescing.

Common Consequence Independence Deduced

Common consequence independence can be derived as follows: C > D is the same as
($.5M, 1) > ($0, .01; $.5M, .89; $1M, .10); by coalescing, ($.5M, 1) ~ ($.5M, .01;
$.5M, .89; $.5M, .10); by transitivity, ($.5M, .01; $.5M, .89; $.5M, .10) > (80,

01; $.5M, $.89; $1M, .10). By branch independence, the common branch ($.5M,
.89) can be changed to ($0, .89); therefore, ($0, .89; $.5M, .01; $.5M, .10) > ($0,

.01; $0, .89; $1M, .10); coalescing equal outcomes on both sides, we have, ($0, .89;
$.5M, .11) > (30, .9; $1M, .10), which is the same as C’ > D".

The Allais paradox thus contradicts the combination of transitivity, coalescing,
and branch independence—the three properties used above to derive the conclusion that
C > D iff C' > D’. Therefore, it is possible to explain the paradox with a theory

that satisfies branch independence but violates coalescing, as in Subjectively
Weighted Utility (SWU) theory (Edwards, 1954; 1962; Karmarkar, 1978; 1979) and
Original Prospect (OP) theory (Kahneman & Tversky, 1979). It is also possible to
explain the paradox by a theory that retains coalescing but violates branch
independence, as is done in rank-dependent utility (RDU) theories (Quiggin, 1982;
1985; Luce & Fishburn, 1991; 1995; Tversky & Kahneman, 1992). Finally, it may
be that branch independence and coalescing are both violated, as is the case in
configural weight utility (CWU) theories (Birnbaum & Stegner, 1979; Birnbaum &
MclIntosh, 1996; Birnbaum & Navarrete, 1997).

This analysis has an interesting relation to that of Savage (1954/ 1972, p. 101-
103), who converted the Allais problem into a problem satisfying branch
independence. He did this by devising a lottery in which there were 100 equally
likely tickets, numbered from 1 to 100. The prize for ticket 1 was $.5M in lotteries
C and C’ versus $0 in lotteries D and D", the prizes for tickets 2-11 were $.5M in
lotteries C and C’ versus $1M in lotteries D and D’ and the prizes for tickets 12-100
was either .5SM in both C and D, or $0 in both C’ and D’. Savage’s analysis
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implicitly used coalescing and explicitly used a translation of probabilities into
event-probability branches. Savage confessed that his own choices had been
paradoxical until he conducted his analysis, and that after analysis his choices became
consistent with the sure thing axiom.

Keller (1985) found that the incidence of paradoxical choices was less when the
problems were presented in an uncoalesced format, similar to Savage’s representation,
than when the problems are presented in their usual, coalesced, verbal form. Perhaps
the Allais paradox is due to a violation of coalescing, as predicted by subjectively
weighted utility (SWU) models.

SWU MODELS ACCOUNT FOR ALLAIS PARADOXES

Edwards (1954) recognized that subjectively weighted utility models of the form,
SWU(G) = Z S(p))u(x;.) V)

could account for observed choices, but that these models had problems of their own.
A special case of this model in which u(x) = x had been suggested by Preston and
Baratta (1948). In early work, the S(p) function was considered a psychophysical
function that related subjective probability to objective probability. However,
Edwards (1954; 1962) considered cases in which S(p) was restricted to follow the
laws of probability and also cases in which it was allowed to violate them.

According to SWU, the common ratio problem can be explained as follows: with
u(0) = 0, the choice of A implies,

S(1)u(3000) > S(.8)u(4000)
and the choice of B’ over A’ implies,

S(.25)u(3000) < S(.20)u(4000).
It follows that,

S(1)/8(.8) > u(4000)/u(3000) > S(.25)/S(.2)

which is not a contradiction (though it would be if S(p) = bpY). In general, common
ratio violations should occur, according to SWU, whenever the ratios of S(»)/S(g) and
S(ap)/S(aq) “straddle” the ratio of utilities, u(y)/u(x).

In the common consequence problem, according to SWU, C > D if and only if

S(Du(.5M) > S(.10)u(1M) + S(.89)u(.5M)

Similarly, D’ > C’ holds if and only if S(.10)u(1M) > S(.11)u(.5M).

Combining both preferences, it follows:

S(1) - S(.89) > S(.11); therefore, S(1) > S(.89) + S(.11).
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Edwards (1954) noted that if it were assumed that S(1) = 1, then results like these
contradict the idea that the subjective probabilities of complementary events should
sum to 1, suggesting that S(p) should not be regarded as a subjective probability. As
Edwards (1954, p. 398) put it,

“One way of avoiding these difficulties is to stop thinking about a scale of
subjective probabilities and, instead, to think of a weighting function
applied to the scale of objective probabilities which weights these objectlve
probabilities according to their ability to control behavior... There is no
reason why such weighted probabilities should add up to 1 or should obey
any other simple combinatory principle.”

Edwards’ (1954) analysis of decision weights was extended in Edwards (1962) to
allow weights to differ for different categories of prospects. Edwards (1962 p. 128)
suggested a configural extension of the subjectively weighted utility model in which
different welghtmg functions for probabilities of different events might require
different pages in a book of weights,

“The data now available suggest the speculation that there may be exactly
five pages in that book, each page defined by a class of possible payoff
arrangements. In Class 1, all possible outcomes have utilities greater than
zero. In Class 2, the worst possible outcome (or outcomes, if there are
several possible outcomes all with equal utility), has a utility of zero. In
Class 3, at least one possible outcome has a positive utility and at least one
possible outcome has a negative utility. In Class 4, the best possible
outcome or outcomes has a utility of zero. And in Class 5, all possible
outcomes have negative utilities.”

Original Prospect (OP) theory (Kahneman & Tversky, 1979) is a special case of
the model suggested by Edwards (1962), in which Classes 1 and 5 are collapsed into
one category and Classes 2-4 into another category. As in Edwards’ (1954, 1962)
treatment, in OP theory, utility functions were defined as changes from a reference
level, the framing or format of the problems is considered important, and Equation 2
was retained for up to two nonzero outcomes.

To understand how Equation 2 behaves, it helps to illustrate it with a numerical
example. These examples will use the weighting formula of Lattimore, Baker, and
Witte (1992),

Spy=—®P
) cp¥+ (1 -p) ®

where ¢ and v are positive constants. This model assigns S(0) = 0 and S(1) = 1, and
S is a strictly increasing monotonic function.

SWU (Equation 2), with Equation 3, assuming that u(x) = xB, where B is the
exponent of the power function, and with the values ¢ =y =P = .4 can account for
the common ratio and common consequence paradoxes. For the common ratio
problem, SWU(A) = 24.6 > SWU(B) = 11.33; furthermore, SWU(A") = 5.04 <
SWU(B’)- = 5.16.  For the common consequence problem, SWU(C) = 190.4 >
SWU(D) = 127.16; additionally, SWU(C") = 28.12 < SWU(D") = 35.8. Thus, the
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model accounts for both the common ratio and common consequence paradoxes. But
that’s not all that Equation 2 does; it also violates stochastic dominance (Fishburn,
1978).

Stochastic Dominance and SWU

For Gambles G # G, G stochastically dominates G, if and only if
P(x; >t IGI)_Z P(xl- >t IG2) for all ¢, where P(x; > tG j) is the probability of
receiving an outcome greater than ¢ given Gamble Gj.

The statement, “choices satisfy stochastic dominance” means that if G stochas-
tically dominates G5, then G| > G,. It would be a violation of stochastic

dominance when a judge prefers the dominated gamble. As shown below, stochastic
dominance can be viewed as the combination of several simpler properties, including
transitivity, coalescing, and outcome monotonicity (improving an outcome holding
everything else constant should improve any gamble).

Equation 2 violates dominance in transparent situations such as Choice 5.

Choice 5:

E: .5 probability to win $100 F: 99 probability to win $100
.5 probability to win $200 .01 probability to win $200

E clearly dominates F because the outcomes are the same, but the probability of the
better outcome ($200) is higher in E than in F. However, SWU(E) = 4.18 <
SWU(F) = 5.01, so this model predicts a violation of dominance that few humans
would commit. Similarly, consider Choice 6.

Choice 6:

G: .5 probability to win $110 H: .01 probability to win $101
.5 probability to win $120 .01 probability to win $102
98 probability to win $103

Clearly, G dominates H because all of its possible outcomes exceed all possible
outcomes of H; however, SWU(G) = 3.81 < 4.94 = SWU(H), so this SWU model
predicts that subjects should choose H over G! If SWU were to be retained as
descriptive of empirical choices, it would have to be modified to avoid these
predictions.

Editing Rules in Prospect Theory

In their paper on prospect theory, Kahneman and Tversky (1979) proposed a number
of editing rules to avoid such unwanted predictions. In addition to defining utility
with respect to changes from a status quo and adopting Edwards’ (1954) concern for
the psychophysics of the display or “framing” of the problem, prospect theory
includes six additional editing principles to allow the subject to simplify gambles and
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choices between gambles prior to evaluation by the SWU equation. These editing
principles are as follows:

1. Combination: probabilities associated with identical outcomes are combined. This
principle corresponds to coalescing.

2. Segregation: ariskless component is segregated from the risky component.

“the prospect (300, .8; 200, .2) is naturally decomposed into a sure gain of
200 and the risky prospect (100, .8) (Kahneman & Tversky, 1979, p. 274).”

3. Cancellation: Components shared by both alternatives are discarded from the
choice.

“For example, the choice between (200, .2; 100, .5; -50, .3) and (200, .2;
150, .5; —100, .3) can be reduced by cancellation to a choice between (100,
5; =50, .3) and (150, .5; =100, .3) (Kahneman & Tversky, 1979, p. 274-
275).”

If subjects cancel common components, then they will satisty branch independence
and distribution independence, which will be taken up in a later section.

4. Dominance: Transparently' dominated alternatives are recognized and eliminated.
This principle eliminates the troublesome predictions for Choices 5 and 6 above.

5. Simplification: rounding off probabilities and outcomes.

6. Priority of Editing: Editing precedes and takes priority over evaluation. Kahneman
and Tversky (1979, p. 275) remarked,

“Because the editing operations facilitate the task of decision, it is assumed
that they are performed whenever possible.”

Without the editing operations, the algebraic model of prospect theory predicts
dominance violations of the kinds that would not be descriptive of human behavior.
Because S(p) is nonlinear, it is possible to take a certain branch and divide it into
smaller pieces in such a way that the total weight can be increased, creating
dominance violations. Another way to avoid some (but not all) violations of
stochastic dominance is to use an averaging model instead of an additive model.

SUBJECTIVELY WEIGHTED AVERAGE UTILITY

The subjectively weighted average utility (SWAU) model can be written as follows:
SWAU(G) = X S(ppulx)/Z S(p;) @

By dividing by the sum of the weights, the sum of relative weights [S(p;)/Z S(p;)]
will be 1 within each gamble. This means that although S(p) is a function of p, the
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relative weight of a given probability depends on the distribution of probabilities in
the gamble. The models of Karmarkar (1979), Viscusi (1989), and Lattimore, et al.
(1992) are of this type.

The SWAU model (Equation 4), with the S(p) function of Equation 3, u(x) = xB,
and ¢ = y= B = 4, predicts the common consequence effect, the common ratio effect,
and does not violate transparent stochastic dominance in Choices 5 and 6. For

gambles A, B, A’, and B’, the predicted certainty equivalents (u‘l(SWAU(G)), are
$3,000 > $1,566 and $215.2 < $218.8, respectively; for C, D, C’, and D’, they are
$500,000 > $474,156, and $13,432 < $24,011; for E and F they are $145 > $106,
and for G and H they are $115 > $103, respectively. Although Equation 4 satisfies
dominance for Choices 5 and 6 (E versus F and G versus H), it does violate
coalescing and stochastic dominance in other situations (Quiggin, 1985), which will
be taken up in a later section.

Tversky and Kahneman (1986) discussed the issue of violations of dominance.
They argued that stochastic dominance will be satisfied when it is “transparent,” due
to editing, but that it might be violated when the relation is “masked” by the framing
of the problem. They reported a choice problem in which 58% of the subjects chose
the dominated gamble. The dominance relation between two gambles was masked by
making it seem that the “same” event always gave either a higher or equal outcome
under the dominated gamble (the events were colors of marbles drawn from an urn,
and the events were not really the same, because the numbers of different colored
marbles were not equal in the two urns). Although 58% was not quite significantly
different from 50%, it was quite different from the percentage of violations given in
another framing of the choice, in which the numbers of marbles of each color were
the same in the two urns, and the outcomes for the same events were always higher
for the dominant gamble.

Some authors did not consider the evidence of Tversky and Kahneman (1986)
convincing, and theories were developed that could account for violations of the
Allais paradox without violating stochastic dominance. These rank-dependent
theories weaken Savage’s independence axiom but preserve coalescing.

RANK-DEPENDENT UTILITY THEORIES

Quiggin (1982, 1985) proposed a rank-dependent utility theory that sparked
development of a number of related theories. Quiggin’s (1982) original development
required that the weight of a probability of 1/2 would be 1/2. However, models were
soon proposed that did not impose this requirement. These theories, which weakened
the independence axiom, included rank-dependent and rank- and sign-dependent utility
theories, including cumulative prospect theory (Lopes, 1990; Luce, 1992; Luce &
Fishburn, 1991; 1995; Luce & Narens, 1985; Machina, 1982; Miyamoto, 1989;
Schmeidler, 1989; Starmer & Sugden, 1989; Tversky & Kahneman, 1992; Tversky
& Wakker, 1995; Wakker, 1989; Wakker, Erev, & Weber, 1994; Wakker & Tversky,
1993; Weber, 1994; Yaari, 1987). These developments were discussed from different
perspectives in the book edited by Edwards (1992).

A key property of rank- and sign-dependent utility (RSDU) theories is
comonotonic independence, which is either a basic assumption (Wakker & Tversky,
1993) or a consequence of the axiom system (Luce & Fishburn, 1991; 1995).
Comonotonic independence requires that branch independence holds whenever the
outcomes maintain the same ranks in the gambles.
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Rank-dependent utility (RDU) theories, including cumulative prospect theory
(CPT) (Tversky & Kahneman, 1992) and rank- and sign-dependent utility theory
(Luce & Fishburn, 1991; 1995), represent the psychological value of a gamble with
nonnegative outcomes as follows:

RDU(G) = X [W(P;) - W(Q)Iu(x;) ©)

where RDU(G) is the rank-dependent utility of the gamble, P; is the (decumulative)
probability that an outcome is greater than or equal to x;; Q; is the probability that
the outcome is strictly greater than x;. W(P) is a strictly increasing, monotonic

function that assigns W(0) = 0 and W(1) = 1. For three positive outcomes, 0 < x <
y < z, and nonzero probabilities, p + g + r = 1, the utility of G = (x, p; y, ¢; z, r) can
be written as follows:

RDU(G) = W(r)u(z) + [W(g + r) - W(n)]uQ) + [1 - W(g + n)]u(x) ©)

With decumulative probability, P, substituted for p and W(P) substituted for S(p)

in Equation 3 (with ¢ =1y = 4), and u(x) = x'4, this rank-dependent (or cumulative
prospect) theory accounts for the common ratio and common consequence paradoxes
without violating stochastic dominance for gambles E and F or G and H. For this
model, the predicted certainty equivalents for gambles, A, B, A’, B’, are $3,000 >
$432, and $57 < $60, respectively; for C, D, C’, and D’, they are $500,000 >
$252,525, and $4,194 < $7,657, respectively; and for E, F, G, and H, they are $124
> $105, and $113 > $102.

More generally, Equation 5 (and the special case in Equation 6) must satisfy
stochastic dominance and coalescing for all gambles (Birnbaum & Navarrete, 1997;
Luce, 1997). When W(P) = P, then RDU theory reduces to EU theory. However,
when W(P) # P, the theory implies systematic violations of branch independence.
Because the SWU and SWAU theories both satisfy restricted branch independence, the
test of “pure” branch independence (apart from the coalescing property that is
confounded with it in the Allais common consequence problem) is a test between
these two classes of theories.

Restricted Branch Independence

Branch independence was tested in judgments (Birnbaum, Coffey, Mellers, & Weiss,
1992; Weber, Anderson, & Birnbaum, 1992), and systematic violations were found.
Such violations are not consistent with SWU. The particular form of branch
independence tested in those studies refuted SWU but might be explained by SWAU.
Furthermore, such violations, like violations of monotonicity, might occur only in
judgment and not also in choice (e.g., Bimbaum & Sutton, 1992). Wakker, Erev, &
Weber (1994) tested branch independence in choice and did not find systematic
violations of comonotonic or noncomonotonic branch independence. However, their
study was designed on the basis of predictions of the model and parameters of
Tversky and Kahneman (1992), and their experimental design may have missed
gambles that would show violations.

Birnbaum and MclIntosh (1996) tested a restricted form of branch independence in
choice, in which the probability distributions are the same in all gambles compared.
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They used a design in which a factorial "net" was cast to check for possible
violations in a region of the space of gambles likely to show violations on the basis
of Birnbaum, et al. (1992). For three outcome gambles, restricted branch
independence can be written as follows:

S=0,py.¢z0=R=,p;¥,q,z71)
if and only if )
S =0y g2, =R =, p; ¥\ q; 2, P).

where the outcomes are all distinct, and all probabilities are nonzero. Restricted
branch independence is implied by both SWU and SWAU models (note that in SWU,
the term for the common branch, S(r)u(z), can be subtracted off both sides and
replaced with S(r)u(z); in SWAU, the denominators are the same in all four gambles,
so both sides can be multiplied by this constant; one can then subtract the common
terms and add new common terms, and divide by the common denominator
(Birnbaum & Beeghley, 1997).

Constraints on Weighting Function

Birnbaum and McIntosh (1996) tested restricted branch independence with gambles
composed of three equally likely outcomes, denoted (x, y, z). They showed that
branch independence can be violated in two ways for gambles composed of outcomes
selected such that 0 <z < x'<x<y<y <z. The SR’ pattern (§ > R and §'< R")

occurs if and only if

WL < u(y’) - u(y) <M ®)
WM u(x)-u(x) WH

where wy , wy;, and wyg are the weights of the lowest, middle, and highest of three

equally likely outcomes, respectively. According to RDU, the weights are as follows:
wy = W(1/3), wy = W(2/3) - W(1/3), and w =1 - W(2/3).

The RS’ pattern of violations, S < R and S’ > R’, occurs if and only if

WL S uQy’) - u(y) s ¥YM )
WM u(x)-u(x) WH

An experimental tactic employed by Birnbaum and McIntosh was to systematically
manipulate both the common outcome, z, and the contrast [(x, y) versus (x’, y)] to
find outcomes that would be “straddled” by the ratios of weights.

The inverse-S weighting function, used by Tversky and Kahneman (1992) has the
property that for three equally likely outcomes, the middle outcome has the least
weight. If wy, <wyp , wy then %VL_ >1> KWIM-;, as in Expression 9; therefore, this

M
weighting function combined with CPT implies the RS" pattern of violations.
However, empirical choices show the opposite pattern of violations from that
predicted by the inverse-S weighting function.
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Choices 7 and 8 illustrate these violations of branch independence with gambles
in which each outcome has a probability of 1/3.

Choice 7:

S: 1/3 to win $5 R: 1/3 to win $5
1/3 to win $40 1/3 to win $10
1/3 to win $44 1/3 to win $98

Choice 8:

S 1/3 to win $40 R": 1/3 to win $10
1/3 to win $44 1/3 to win $98
1/3 to win $107 1/3 to win $107

Birnbaum and McIntosh (1996) found that most subjects preferred S to R but
most subjects preferred R’ to §”. In all twelve variations examined, the frequency of
the SR’ pattern of violations was greater than the frequency of RS’ choices. A
similar pattern of violations of restricted branch independence was also observed by
Birnbaum and Chavez (1997) and Birnbaum and Navarrete (1997), who used choices
between gambles with unequal probabilities (but the same in each gamble compared).

Similar (but distinct) violations of branch independence were observed in
judgments of buying and selling prices of three and four outcome gambles by
Bimbaum and Beeghley (1997) and Birnbaum and Veira (1998).

Problems for the Inverse-S Weighting Function

The pattern of violations of branch independence found in all of these studies [S > R
and S’ < R'] is opposite that predicted from the inverse-S weighting function, W(P),

estimated by Tversky and Kahneman (1992) and Wu and Gonzalez (1996). Either the
W(P) function changed between studies, or something is wrong with the RDU
models.

This SR’ pattern can be fit by RDU, with u(x) = x, with W(1/3) = .16, W(2/3) =
49. The pattern is consistent with Expression 8 rather than Expression 9. The SR’
pattern is not consistent with any inverse-S weighting function in which the weight
of the middle outcome is least.

Birnbaum and MclIntosh (1996) interpreted the contradiction as evidence of a
configural weighting model, which is equivalent to the RDU model in the
experiment of Bimbaum and McIntosh (1996), but which can be tested against RDU
in other experiments.

In summary, violations of restricted branch independence rule out SWU and
SWAU models, but they can be explained by RDU models. However, the weighting
function used by RDU to explain the violations of branch independence is quite
different from that used to explain the Allais paradoxes. This apparent contradiction
in the weighting function does not pose a problem, however, for configural weight
models.
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CONFIGURAL WEIGHT THEORY

Configural weighting models were proposed by Birnbaum, Parducci, & Gifford
(1971), Birnbaum (1973; 1974) and Birnbaum and Stegner (1979; 1981) to account
for violations of additive independence in psychophysical and evaluative judgments.
Shanteau (1974; 1975) observed similar violations of the additive model in
judgments of risky gambles. Configural weight models are similar to RDU in that
the weight of a stimulus can be affected by the rank of the stimulus in the
configuration of stimuli to be combined. They do not, however, impose the “pure”
rank-dependence of RDU (Equation 5) that requires stochastic dominance. The
models are configurally weighted averages, and like SWAU, they imply violations of
coalescing and stochastic dominance; however, like RDU they predict violations of
branch independence.

To compare various configural models, it will be helpful to introduce a brief
taxonomy. The configurally weighted, average configural value model can be written
as follows:

CWACV(G) = X w(xj, Gu(x;, G)/Z w(x;, G) (10)

where w(x;, G) and u(x;, G) are the weight and utility of outcome x; in gamble G.

If w(x;, G) = w(p;) in Equation 10, the model is termed a configural value model;
if w(p) = p, this model reduces to lottery-dependent utility (Becker & Sarin, 1987;
Currim & Sarin, 1992; Daniels & Keller, 1992). Previous investigations of lottery-
dependent utility have further restricted the lottery-dependent utility models to ensure
stochastic dominance.

When u(x;, G) = u(x;), Equation 10 is termed a weighted averaging model. If
w(xj, G) = w(x;, p;), and u(x;, G) = u(x;), the model is termed a differentially
weighted averaging model. A special case of differential weighting is constant
weighting, also called SWAU, where w(x;, G) = w(x;, p;) = w(p;). Constant weight
and differentially weighted models have not proved as successful in experimental tests
of judgment as configurally weighted models in which the weights of the outcomes
are affected by their relative positions in the gamble rather than by their values
(Birnbaum, 1973; 1974; Birnbaum & Stegner, 1979).

A special case of such configural weighting is RDU, discussed earlier, in which
the configural weights depend on a functional of decumulative probability. Two
other configural weight models in which weights are affected by the ranks of the
outcomes, the RAM model and TAX model, are discussed in the next section.

Rank Affected Multiplicative Configural Weighting

A configural weighting model in which weights are the product of a function of the
rank of the outcome and a function of the probability of the outcome will be termed
the Rank Affected Multiplicative (RAM) model. This model can be written as
follows:

w(x;, G) = a(V, rj, sj, n)S(p;) , (11)
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where the weight of outcome x; in Gamble G depends on the product of a function of

probability, S(p), and a configural weight that depends on the judge’s viewpoint (V),
the rank of the outcome among the other outcomes (here rank depends on the values
but not the probabilities of the outcomes; rank is counted from r 7 = 1 = highest, to

r, = n = lowest outcome; s; is the augmented sign of outcome x; (it takes on the

levels, —, 0, and +); and n is the number of outcomes in the gamble. If the
experiment is restricted to a single viewpoint (e.g., choice), all positive outcomes,
and three-outcome gambles, the model has three values of a, of which one can be
fixed (Birnbaum, 1997).

Birnbaum and McIntosh (1996) estimated the values of a to be .51, .33, and .16
for lowest, middle, and highest of three equally likely outcomes in a choice
experiment. To fit the Tversky and Kahneman (1992) data, Birnbaum and McIntosh
(1996) estimated a = .63 and .37 for lowest and highest of two positive outcomes,

and S(p) = p'6. The Birnbaum and McIntosh (1996) model also used the
approximation, u(x) = x, for 0 < x < $150. The same model was fit by Birnbaum
and Beeghley (1997) to judgments of the buying prices (what is the most a buyer
should pay to purchase the gamble?) and selling prices (what is the least that a seller
should accept to sell the gamble, rather than play it?). Birnbaum and Beeghley
(1997) found that in the buyer’s viewpoint, the values of a were .56, .36, and .08 for
the lowest, middle, and highest of three equally likely outcomes; from the seller’s
viewpoint, the values were .27, .52, and .21. [These parameter estimates are for
group data; however, they are also representative of individual subjects. Information
on individual subject parameters is given in Birnbaum and McIntosh (1996),
Birnbaum and Beeghley (1997), and Bimbaum and Chavez (1997).]

Configural Weight, TAX Model

Bimbaum and Stegner (1979) had considered a different configural weight model that
is equivalent to the RAM model fit by Birnbaum and McIntosh (1996) when the
experiment uses a fixed probability distribution and a fixed number of outcomes
(e.g., as in Birnbaum & MclIntosh), but which makes different predictions when the
number and probabilities of common outcomes is manipulated. The Birnbaum and
Stegner “revised” model assumes that weight is transferred among stimuli according
to the ranks of the utilities of the outcomes in proportion to the weight of the
stimulus that is losing weight. This model will be termed the fax model to indicate
that the weight transferred is a proportion of the weight to be reduced. The weight
TAX model violates asymptotic independence and can violate distribution
independence (Bimbaum, 1997), unlike the multiplicative viewpoint by probability
model. However, both configural weight models can explain violations of
cumulative independence and stochastic dominance.
This TAX model can be written for positive outcomes as follows:

n n i-1
Y, SEut) + Y, .Zl [u(x) - w(x)lod, j, G)

U(G)=i=l ’=2i= (12)
1

Z S(pi)
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where w(i, j, G) is the configural weight transferred from the lower outcome j to a
higher outcome i.

A simplifying assumption that gave a reasonable fit to the experiment of
Bimbaum and Chavez (1997) is as follows:

G, j, G) = 8S(p)/(n + 1) if § <0 (13a)
o, j, G) = 8S(p/(n + 1) if § 20 (13b)

where d is the single configural parameter. If 8 < 0, weight is transferred from a
higher outcome to a lower outcome as an increasing function of the probability of
the higher outcome. If & = -1, this model yields configural weights of 2/3 and 1/3,
for the lower and higher of two equally likely outcomes, 3/6, 2/6, and 1/6 for lowest,
middle, and highest of three equally likely outcomes, and 4/10, 3/10, 2/10, and 1/10
for the lowest to highest of four equally likely outcomes.

Both of these configural models imply violations of cumulative independence and
stochastic dominance, unlike RDU theories. The multiplicative, RAM model (Eq.
11) also implies distribution independence, unlike the TAX model.

CUMULATIVE INDEPENDENCE AND STOCHASTIC DOMINANCE

Rank- and sign-dependent utility theories imply two cumulative independence
conditions derived by Bimbaum (1997).
Gambles are selected such that 0 < z<x'<x<y<y'<zandp+qg+r=1.

Lower Cumuilative Independence:
fS=Grxpy,q> R=@rx,py,q9

Then "= (', r;y,p+q)>=R" =&, r+p;y,q) (14)

Upper Cumulative Independence:

fS'=0p;y.q2, V<R =xp;y,q,z,1

rer

Then S =(,p+q,y, < R"=,p;y,q+71) (15)

Any theory that satisfies comonotonic branch independence, monotonicity,
transitivity, and coalescing must satisfy both lower and upper cumulative
independence (Birnbaum, 1997; Birnbaum & Navarrete, 1997). Thus, RSDU and
CPT, which reduce to RDU in the domain of gains both imply cumulative
independence.
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Violations of Cumulative Independence

Birnbaum and Navarrete (1997) tested 27 variations of lower and upper cumulative
independence and branch independence, using different probability distributions and
different values of the outcomes. One such test of lower cumulative independence is
illustrated in Choices 9 and 10.

Choice 9:

S: .8 probability to win $3 R: .8 probability to win $3
.1 probability to win $48 .1 probability to win $10
.1 probability to win $52 .1 probability to win $98

Choice 10:

S .8 probability to win $10 R™ .9 probability to win $10
.2 probability to win $52 .1 probability to win $98

Most subjects chose S over R in Choice 9; however most subjects preferred R”
over §” in Choice 10. Overall, tests of lower cumulative independence found that
the majority of judges showed more choices in the SR” pattern (S > R and R” > §"),

which violates lower cumulative independence, than in the RS” pattern, which would
be consistent with it.

Upper cumulative independence was also systematically violated, as illustrated in
Choices 11 and 12.

Choice 11:

S .1 probability to win $40 R" .1 probability to win $10
.1 probability to win $44 .1 probability to win $98
.8 probability to win $110 .8 probability to win $110

Choice 12:

S .2 probability to win $40 R™: .1 probability to win $10
.8 probability to win $98 .9 probability to win $98

Most subjects chose R’ over S’ in Choice 11; however, most subjects chose S
over R in Choice 12. Overall, there were more subjects who had more choices in
the order R'S”, which violates upper cumulative independence than in the order,
SR, which would be consistent with it.

Such systematic violations of cumulative independence are inconsistent with
RDU theories, including RSDU and CPT. These theories also fail to predict
systematic violations of stochastic dominance.
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Violations of Stochastic Dominance

Birnbaum (1997) noted that the model of Birnbaum and McIntosh (1996) predicts
violations of stochastic dominance in choices between three-outcome gambles

generated from the following recipe. Start with a two outcome gamble, GO = (x, p;
¥, q), where 0 < x<yand p + ¢ = 1. Create a strictly worse, three-outcome gamble

by splitting the branch with the higher outcome, where the new outcome (y™) is
slightly worse than y: G~ = (x, p; y~, r; ¥, ¢ — r). Then create a strictly better
gamble, G by splitting the branch in GO with the lowest outcome, where the new
outcome (xT) is slightly better than x: G* = (x, p - r; x*, r; 5, ). Choice 13
illustrates an example of this recipe in which G* dominates G—.

Choice 13:

G*: .05 probability to win $12 G .10 probability to win $12
.05 probability to win $14 .05 probability to win $90
90 probability to win $96 .85 probability to win $96

Most judges (73% in this case) chose the dominated gamble (G™) over the dominant

gamble (G"‘) in direct choice. Similar results were obtained with other choices
constructed from this recipe (Birnbaum & Navarrete, 1997).

This violation of stochastic dominance could result from a violation of
transitivity, monotonicity, or coalescing. The property that seems most likely to be
crucial is coalescing. Imagine the following Gedanken experiment: Suppose the
gambles above were presented as four-outcome gambles with all events split, as in
Savage’s representation of the Allais paradox. It seems quite unlikely that judges

would select the split version of G, ($12, .05; $12, .05; $90; .05; $96, .85) over
the split version of G, ($12, .05; $14, .05, $96, .05; $96, .85).

Coalescing and Event Splitting Effects

It seems unlikely that judges would fail to recognize coalescing in a direct test. For
example, they should easily recognize that ($12, .1; $96, .9) is the same as ($12,
.05; $12, .05; $96, .9). However, when gambles are compared indirectly by
comparing their choices against a third gamble, the combination of coalescing and
transitivity has been violated. Starmer and Sugden (1993) and Humphrey (1995)
found such violations of coalescing, called “event-splitting” effects.

Suppose that S, is the split version and § is the coalesced version of the same

gamble. Similarly, let R be the coalesced version of R,. Coalescing implies that
Sp~S1 and R ~Ry; therefore, by transitivity, S > R if and only if Sy > Ry.

Choices 14 and 15 are from Humphrey (1995), except outcomes are in dollars
instead of pounds.
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Choice 14:

Sy .7 probability to win $8 Ry: .3 probability to win $24
.3 probability to win $0 .7 probability to win $0

Choice 15:

So: .3 probability to win $8 Ry: .3 probability to win $24
4 probability to win $8 4 probability to win $0
.3 probability to win $0 .3 probability to win $0

Choice 14 is the same as Choice 15 if coalescing and transitivity hold. Humphrey
(1995) found that more subjects had the order Ry > §; and Sy > R, than the

opposite, as if the split branch has more weight. Starmer and Sugden (1993) and
Humphrey (1995) noted that their results were inconsistent with the editing principle
of combination, and they interpreted their results as consistent with a SWU model.
Violations of coalescing are also inconsistent with RDU models, including CPT
with or without the editing principle.

Event-Splitting Independence

The SWU model implies event-splitting independence (Birnbaum & Navarrete,
1997). Event-splitting independence assumes that if a branch with a positive outcome
is split, the effect of splitting an event should be independent of the relative position
within the gamble of the outcome associated with that event. SWU models imply
event-splitting independence, but averaging models do not.

In averaging models, including SWAU and the configural weight models, when
S(p + q) < S(p) + S(q), splitting a branch with a positive outcome can either increase
or decrease the value of a gamble, depending on the whether the outcome split was
the highest or lowest outcome in the gamble, respectively. Judgment data collected in
collaboration with Sherry Yeary and Teresa Martin suggest that event splitting
independence, cumulative independence, and stochastic dominance are all violated;
however, event-splitting independence has not yet been tested in choice.

Violations of Distribution Independence
Distribution independence asserts that preference should be independent of the
probability distribution of common branches (Birmbaum & Chavez, 1997). For four-
outcome gambles, distribution independence can be written as follows:
S=@.p0¢5nv,)>R=Kp;Y,q 21, v,5)
if and only if (16)

S'=0,p;y.q2rv,8Y>R' =", p;¥,q;, 2,1 v,5")
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where s=1-p-qg-rands’=1-p-qg-r'. As contrasted with branch
independence, distribution independence assumes that the probabilities of common
outcomes should have no effect on the choice, whereas branch independence assumes
that holding the probabilities fixed, the outcomes on the common branches should
have no effect on the choice. If coalescing and transitivity are assumed, then
distribution independence follows from branch independence.

EU, SWU, SWAU, OP, and the RAM model used by Bimbaum & McIntosh
(1996) all imply distribution independence, when 0 <z <x’'<x<y<y'<v, and all
probabilities are positive. RDU and the configural weight, TAX model of Birnbaum
& Stegner (1979) violate distribution independence.

An example problem from Birnbaum and Chavez (1997) testing distribution
independence is given in Choices 16 and 17.

Choice 16:

S: .59 probability to win $4 R: .59 probability to win $4
.20 probability to win $45 .20 probability to win $11
.20 probability to win $49 .20 probability to win $97
.01 probability to win $110 .01 probability to win $110

Choice 17:

S .01 probability to win $4 R" .01 probability to win $4
.20 probability to win $45 .20 probability to win $11
.20 probability to win $49 .20 probability to win $97
.59 probability to win $110 .59 probability to win $110

Note that Choices 16 and 17 have common branches that if “trimmed” before
comparison would leave the same contrast. Birnbaum and Chavez (1997) found
systematic violations of distribution independence. More subjects had the preference
pattern SR’ than the pattern RS". This result was observed for all 12 variations of
the above choices. Birnbaum and Chavez also found systematic violations of branch
independence. ,

Furthermore, violations of distribution independence and branch independence were
compatible with each other, according to either RDU or the weight tax model.
Branch independence and distribution independence are ruled out by the editing
principles of OP. Distribution independence is implied by original prospect theory
with or without the editing principles. Thus, violations of distribution independence
rule out not only EU and the editing principle of cancellation, but also OP and the
RAM model.

The violations of branch independence and distribution independence were
consistent with the findings of Birmbaum and McIntosh (1996) and inconsistent with
the inverse-S weighting function used in CPT to account for the Allais paradoxes.
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SUMMARY AND CONCLUSIONS

In summary, the paradoxes of Allais refute EU theory, but they can be explained by a
number of models proposed to account for them. These models make different
predictions for a series of new independence conditions that can test among rival
theories. Table 1 shows that two properties, branch independence and coalescing
segregate the models into four categories: EU and EV models satisfy both properties;
SWU and SWAU violate coalescing but satisfy restricted branch independence; RDU
violates branch independence, but satisfies coalescing; and CWU theories violate both
of these properties.

Table 1. Two Properties that Test among Decision Theories

Branch Independence
Coalescing Satisfied Violated
Satisfied EU RDU
Violated SWU CWU

Theories with editing principles, OP and CPT, are more difficult to place in the
table. Without the editing principles, OP is in the same category as SWU, and CPT
is in the same category as RDU. The editing principle of cancellation implies no
violations of branch independence or distribution independence, and the editing
principle of combination implies coalescing. CPT satisfies coalescing with or
without the editing principles.

Evidence shows systematic violations of restricted branch independence in both
judgment and choice (Birnbaum & Beeghley, 1997; Birnbaum & Chavez, 1997;
Bimbaum & MclIntosh, 1996; Birnbaum & Navarrete, 1997; Birnbaum & Veira,
1998). Systematic violations of restricted branch independence are inconsistent with
EU, SWU, and SWAU models. They also rule out the editing principle of
cancellation as a theory of what people do when confronted with common branches in
choice problems.

Problems for RDU and RSDU

Systematic violations of branch independence are consistent with the RDU models.
If CPT drops the editing principle of cancellation, then the representation of RSDU
used by CPT can explain violations of branch independence. However, the pattern of
violations observed is opposite that predicted by the inverse-S weighting function
used in CPT to account for certainty equivalents of binary gambles (Tversky &
Kahneman, 1992) and to account for violations of Allais independence (Wu &
Gonzalez, 1996).

This contradiction within CPT between the Allais paradox and restricted branch
independence can be tested within a single study by the two properties of cumulative
independence. Both cumulative independence conditions appear to be systematically
violated by empirical choices (Birnbaum & Navarrete, 1997). Furthermore, choices
systematically violate stochastic dominance in the manner predicted by configural
weight models. Violations of cumulative independence and stochastic dominance
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appear to be due to violations of coalescing, a conclusion that is also consistent with
research on event splitting effects (Starmer & Sugden, 1993; Humphrey, 1995).
However, because cumulative independence and stochastic dominance are
combinations of simpler properties, further research on the property of coalescing is
needed, especially to test the predicted violations of event-splitting independence
implied by configural weighting models.

These results suggest that there are two separate causes of the Allais paradox:
subjects violate both branch independence and coalescing. Both the multiplicative
form of configural weighting of the RAM model and the TAX model of Birnbaum
and Stegner (1979) as modified by Birmbaum and Chavez (1997) can account for
violations of branch independence and coalescing. Both of these models can explain
violations of cumulative independence and stochastic dominance. The RAM model
cannot account for violations of distribution independence, however, which the TAX
model can.

All of the models except the configural weight TAX model are inconsistent with
one or more of the experiments reviewed here. Although SWU and SWAU can
account for the Allais paradoxes, they fail to predict violations of branch
independence or distribution independence. Original prospect theory, with the editing
principle of cancellation implies no violations of branch independence, and with or
without the editing principle, it predicts no violations of distribution independence.
RDU and RSDU, including CPT, imply no violations of stochastic dominance, no
event-splitting effects, and no violations of cumulative independence. The RAM
model used by Bimbaum and McIntosh (1996) can account for all of the phenomena
except violations of distribution independence.

TAX Model Account of the Phenomena

The configural weight, TAX model of Equations 12 and 13 can account for all of the
results reviewed here with the same parameters. Although the model allows a
nonlinear u#(x) function, it is possible for this model to account for all of the choices

reviewed here with the assumption that u(x) = x. Suppose that S(p) = p-7., and that
6 = -1. Equations 12 and 13 then yield the following predicted certainty equivalents
for the gambles:

For Choices 1 and 2, U(A) = $3,000 > U(B) = $1,934 and U(A") = $633 < U(B") =
$733, thus accounting for the common ratio effect. The model predicts the common
consequence paradox in Choices 3 and 4, because U(C) = $500,000 > U(D) =
$405,106, and U(C’) = $62,643 < U(D") = $117,879.

The TAX model correctly predicts satisfaction of stochastic dominance in the
transparent Choices 5 and 6, U(E) = $133 > U(F) = $103 and U(G) = $113 > U(H) =
$102. The model accounts for violations of restricted branch independence in
Choices 7 and 8, U(S) = $23.17 > U(R) = $22.16 and U(S") = $52.49 < U(R") =
$55.51. For violations of lower cumulative independence in Choices 9 and 10, U(S)
= $14.05 > UR) = $11.67 and U(S") = $17.69 < U(R") = $20.37. Violations of
upper cumulative independence in Choices 11 and 12 agree with the predictions:
U(S") = $65.03 < U(R") = $69.59 and U(S"") = $68.04 > U(R") = $58.29. Although
the model satisfies stochastic dominance in the obvious cases of Choices 5 and 6, it
correctly predicts violations in Choice 13: U(G™) = $45.77 < U(G™) = $63.10.

The configural weight, TAX model accounts for violations of coalescing (event-
splitting effects) in Choices 14 and 15, U(S1) = $3.44 < U(R1) = $5.69 and U(S2) =



49

$4.14 > U(R2) = $3.72. 1t also explains the violations of distribution independence
in Choices 16 and 17, since U(S) = $21.70 > U(R) = $20.56 and U(S") = $49.85 <
UR" = $50.03. In summary, this model accounts for the following phenomena
with the same parameters: the common ratio and common consequence paradoxes of
Allais, violations of branch independence, violations of lower and upper cumulative
independence, violations of distribution independence, violations of coalescing (event
splitting effects), and cases where stochastic dominance is satisfied and violated by
empirical choices.

The original question posed by Edwards (1962) thirty-five years ago is still
relevant to theorists in behavioral decision making: how many pages are there in the
book of weights? The answer will depend on the theory in which the weights
operate. Evidence reviewed here suggests that the theory that requires the shortest
book to account for existing data is the configural weight, TAX model. For positive
outcomes, this model would require a single page of S(p) weights and a single page
describing how the configural parameter, 3, depends on the subject’s point of view.
Perhaps there is only one configural parameter, 3, for the viewpoint of choice. Such
a model remains standing as a viable null hypothesis for future research. It seems
unlikely that this model, or any model, can remain standing in the face of empirical
data as long as Edwards’ original, and clear statement of the issues facing behavioral
decision theory.
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