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Abstract 

This paper contrasts two approaches to analyzing transitivity of preference and other 

behavioral properties in choice data.  The approach of Regenwetter, Dana, and Davis-Stober 

(2011) assumes that on each choice, a decision maker samples randomly from a mixture of 

preference orders in order to determine whether A is preferred to B.  In contrast, Birnbaum 

and Gutierrez (2007) assumed that within each block of trials the decision maker has a “true” 

set of preferences, and random “errors” generate variability of response.  In this latter 

approach, preferences are allowed to differ between people; within-person, they might differ 

between repetition blocks.  Both approaches allow mixtures of preferences, both assume a 

type of independence, and both yield statistical tests.  They differ with respect to the locus of 

independence in the data.  The approaches also differ in the criterion for assessing the 

success of the models.  Regenwetter et al. (2011) fit only marginal choice proportions and 

assumed choices are independent, which means that a mixture cannot be identified from the 

data. Birnbaum and Gutierrez fit choice combinations with replications; their approach 

allows estimation of the probabilities in the mixture.  It is suggested that we should separate 

tests of the stochastic model from the test of transitivity.  Evidence testing independence and 

stationarity assumptions are presented. Available data appear to fit the assumption that errors 

are independent better than they fit the assumption that choices are independent.  
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Regenwetter, Dana, and Davis-Stober (2011) presented a theoretical analysis, reanalysis of 

published evidence, and a new experiment to argue that preferences are transitive in a 

situation that was previously theorized to produce systematic violations of transitivity.  

Tversky (1969) argued that some participants use a lexicographic semiorder to compare 

gambles and this process led them to systematically prefer A over B, B over C, and C over A.  

Regenwetter, et al. reanalyzed Tversky’s (1969) data and concluded that they do not refute a 

mixture model in which each person on each trial might use a different transitive order to 

determine her or his preferences.  In this note, I will contrast their approach with a similar one 

that my collaborators and I have been using recently. I will provide arguments and evidence 

against the method of analysis advocated by Regenwetter et al. (2011). 

 Morrison (1963) reviewed both weak stochastic transitivity (WST) and the triangle 

inequality (TI) as properties implied by various models of paired comparisons.  He argued 

that both properties should be analyzed.  Tversky (1969) cited Morrison but reported only 

tests of WST.  Regenwetter, et al. reanalyzed Tversky’s data and showed that violations of 

the TI are not “significant” for Tversky’s data, according to a new statistical test.  They 

argued in favor of mixture models that can be tested via marginal (binary) choice proportions 

and concluded that these mixture models are compatible with published evidence in the 

literature and with results of a new experiment.  Although I agree with much of what 

Regenwetter, et al. said concerning previous literature, including the Iverson and Falmagne 

(1985) reanalysis of Tversky (1969), and I agree with their conclusion that evidence against 

transitivity is underwhelming, I will review points of disagreement between their approach 

and one that I prefer. 

The Problem of Using Marginal Choice Proportions 
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 I agree with Regenwetter, et al.’s criticism of WST, which is the assumption that if 

p(AB) >  ½,  and p(BC) > ½, then p(AC) > ½, where p(AB) represents the probability of 

choices in which B is preferred to A.  As has been noted by them and others, if a given person 

has a mixture of transitive orders, WST can be violated even when every response pattern is 

transitive.  Let us consider an experiment in which a participant is asked to make all pairwise 

comparisons of three stimuli, A, B, and C.  Suppose these three choices are presented 

intermixed among filler choices in blocks of trials, and each choice appears once in each of 

100 blocks.  Each block contains all three choices and is called a repetition. 

In Table 1, 0 represents preference for the first item listed in each choice and 1 

represents preference for the second item; A f B denotes A is preferred to B.  Note that in 

Example 1, only three transitive patterns have nonzero frequency.  In 33 repetitions, the 

person preferred A f B, B f C and A f C (pattern 000); 33 times this person chose C f A, A 

f B and C f B (pattern 011); and in 34 cases, this person chose B f C, C f A and B f A 

(pattern 101). When we aggregate across data patterns, however, WST is violated in the 

marginal proportions, P(AB) = .66, P(BC) = .67, and P(CA) = .67, and given enough data, 

such findings allow one to reject the hypothesis that the corresponding binary choice 

probabilities satisfy WST.  By combining across data patterns and using WST, we might 

reach the wrong conclusion that this person was violating transitivity, when in fact, the 

person has a mixture of transitive choice patterns.  

Insert Table 1 about here 

 According to the triangle inequality, 0 ≤ p(AB) + p(BC) - p(AC) ≤ 1.  In this case, the 

sum of the corresponding binary choice proportions is 1 (i.e, .66 + .67 - .33 = 1), so the TI 

condition is satisfied by the proportions and therefore we cannot reject the hypothesis that 
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this relation holds for the corresponding probabilities.  Thus, the TI correctly diagnosed 

Example 1 as compatible with a mixture of transitive patterns.  For this reason, Regenwetter 

et al. (2011) argue that we should use the TI to determine if transitivity is acceptable, rather 

than WST. 

However, it is easy to construct examples in which every response pattern is 

intransitive and the TI is satisfied.  In Example 2 of Table 1 the TI is satisfied and the 

marginal choice proportions are virtually the same as in Example 1; however, these data are 

perfectly intransitive.  Example 3 shows that TI can also be satisfied when there is a mixture 

of transitive and intransitive patterns.  (Note that if we know the distribution over preference 

patterns, we can compute the marginal choice probabilities (e.g., p(AB) = p(000) + p(001) + 

p(010) + p(011), but we cannot use binary choice probabilities to identify the relative 

frequencies of response patterns.) 

The moral I draw from these examples and others is that we should be analyzing data 

patterns rather than marginal choice proportions.  In my opinion, Regenwetter et al. (2011) 

have not gone far enough in their criticism of WST by extending their criticism to other 

properties like the TI that are defined on binary choice proportions.   

Unfortunately, the Tversky (1969) data have not been saved in a form that allows us 

any longer to analyze them as in Table 1.  From marginal choice proportions alone, it is not 

possible to know if his data resembled Examples 1, 2, or 3.  

Regenwetter, et al. (2010) considered the possibility of examining data as in Table 1, 

but concluded that it would require more extensive experiments than have yet been done on 

this issue.  In the next section, two rival stochastic models for such data are presented. Both 
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allow for a mixture of mental states; they both lead to statistical tests, but they differ with 

respect to the locus of the independence assumptions.  

Two Stochastic Models of Choice Combinations 

Random Utility Mixture Model: Independent Choices 

 As noted by Regenwetter, et al. (2011), the term “random utility model” has been 

used in different ways in the literature.  Further, the term “mixture model” will not 

distinguish two approaches I compare here.  I use the term “random utility mixture model 

(RUMM)” here to refer to the model and statistical independence assumptions in 

Regenwetter et al. (2011).  They included filler items between choices and arranged their 

study so that a participant could not review or revise his or her previous choices, based on the 

theory that these precautions would make the data satisfy independence and stationarity 

(Regenwetter, Dana, & Davis-Stober, 2010).   

I will focus on two types of independence that are assumed in this approach that I find 

empirically doubtful: First, responses to the same item presented twice in different trial 

blocks (separated by filler trials) should be independent.  That is, when presented twice with 

the same item, response to the second presentation should be independent of the response to 

the first.  Second, responses to related items, separated by fillers, should be independent; that 

is, when choosing between A and B, the probability to choose A should be independent of the 

response given in the choice between A and C.  In addition, the statistical assumption of “ iid 

= independent and identically distributed” implies that the probability to choose A over B 

does not change systematically over trials during the course of the study; I use the term 

“stationarity” to refer to this latter assumption. 
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 Regenwetter et al. (2010, 2011) did not test the effects of the filler trials nor did they 

test the assumptions of independence and stationarity; they fit their model to binary choice 

proportions.  They noted that RUMM together with its statistical assumptions can be tested, 

but that model is not identifiable; that is, we cannot identify the distribution over preference 

orders that a person might have in her or his mental set.  In other words, when the transitive 

model fits, there are many possible mixtures of preference orders that might account for a 

given set of binary choice proportions.   

Table 2 shows hypothetical data for a case in which three stimuli have been presented 

for comparison on 200 repetitions. The marginal choice proportions are P(AB) = 0.795, 

P(BC) = 0.600, and P(AC) = 0.595; they satisfy the TI.  Therefore, these data satisfy the 

transitive RUMM, according to the methods advocated by Regenwetter, et al. (2010, 2011).  

However, an analysis of response patterns, as shown below, leads to very different 

conclusions.                                          Insert Table 2 about here.  

 In RUMM, the theoretical probability that a person chooses A over B is the 

probability of the union of all preference patterns in which A f B.  Because the patterns in 

Table 2 are mutually exclusive, we can sum probabilities over all patterns in which 0 appears 

in the first position in Table 2 (i.e., for which A f B); the theoretical probability to prefer A 

over B is given as follows: 

  

! 

pAB = p
000

+ p
001

+ p
010

+ p
011

    (1) 

Equation 1 is a bit more general than Equation 5 of Regenwetter et al. (2011), who do not 

consider intransitive preferences to be allowable; this expression is the general case, and a 

special case in which 

! 

p
001

= p
110

= 0  is called the transitive special case).   
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Assuming independence, the probability of any particular preference pattern is the 

product of the probabilities of the individual terms; for example, the predicted probability of 

the 001 (intransitive) preference pattern is given as follows: 

! 

p(001) = pAB pBC (1" pAC )     (2) 

where 

! 

p(001)  is the predicted probability of observing pattern 001, which is distinguished 

from 

! 

p
001

, the theoretical probability that a person truly has this intransitive mental state. 

Even if a person never has this intransitive mental state, the intransitive response pattern can 

occur; i.e., even when 

! 

p
001

= 0, it can easily happen that p(001) > 0.   

In order to fit the RUMM to observed frequencies, we can minimize the following 

Chi-Square index of fit.  

   

! 

" 2(4) = ( fi # ti)
2
/ ti

i= 000

111

$     (3) 

where 

! 

fi  are the 8 observed frequencies of the 8 possible response patterns in Table 2 

(  

! 

i = 000, 001,K,111), and 

! 

t
i
 are the 8 corresponding predicted frequencies, calculated as 

follows:  

! 

ti = n " p(i) , where n = number of repetitions.  The predicted probabilities are 

calculated from Equation 2. There are only 7 degrees of freedom (df) in the data because the 

eight frequencies sum to n; three parameters are estimated from the data (

! 

pAB , 

! 

pBC , and 

! 

pAC ), leaving 7 – 3 = 4 df in the test.  So far, this is a test of independence, which was 

assumed but not tested by Regenwetter, et al (2011).   

 Model 1 shows a best-fit solution of the parameters in which all of the eight patterns 

were allowed to have positive probability.  This solution was found via the solver in Excel.  

This solution is not unique, because even though it appears that there are “eight” parameters 

that can be estimated (constrained to sum to 1), the assumption of independence means that 
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all solutions with the same marginal probabilities make the same predictions.  Therefore, we 

have used only three degrees of freedom (

! 

pAB , 

! 

pBC , and 

! 

pAC ) to make the predictions.  The 

assumption of independence does not fit these data well, since the critical value of 

! 

" 2(4) = 

13.3, with α = 0.01, and the observed value is 26.71. 

 The property of transitivity implies that 

! 

p
001

= p
110

= 0 .  If we add this constraint to 

independence, we can solve for the maximum probability to observe the intransitive 001 

pattern: 

 

! 

p(001) = pAB pBC (1" pAC )

! 

= (p
000

+ p
010

+ p
011
)(p

000
+ p

100
+ p

101
)(1" p

000
" p

010
" p

100
) . 

When this equation is maximized, 

! 

p
000

= 1
3, p

011
= 1

3, p
101

= 1
3 , so 

! 

pAB = 2
3 , 

! 

pBC = 2
3 , and 

! 

pAC = 1
3 ; therefore, the maximal probability to observe the predicted intransitive pattern is 

0.296.  In a binomial with n = 200 and p = 0.296, the probability to observe 71 or more 

violations of transitivity is 0.043. If α = 0.01, 71 falls short of “significant.”  However, the 

best-fit solution of independence to these data yields a predicted value of t(001) = 54.96; i.e., 

p = .2748.  By a binomial, 71 is significantly greater than this figure at the .01 level.  By 

forcing the independence assumption on the data, we imposed greater constraint, allowing 

rejection of the combination of independence and transitivity. 

 Another way to test both independence and transitivity is to set 

! 

p
001

= p
110

= 0 , and 

solve for the other six probabilities in the mixture to minimize the Chi-Square index.  Model 

2 in Table 2 shows a best-fit solution; in this case, the index of fit is not affected by adding 

transitivity to independence; i.e., forcing transitivity does not impose a worse fit.  Many other 

solutions fit equally well, but none better could be found using the solver in Excel with 

multiple starting values.  If someone assumed (and did not test) independence, they might 

easily reach the wrong conclusion that transitivity was acceptable for these data because the 
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fit does not change between Models 1 and 2 in Table 2.  In cases where the fit changed, a 

constrained statistical test such as in Davis-Stober (2009) could be applied. 

In principle, therefore, one should conduct at least two statistical tests: first, test the 

stochastic model (in this case, independence) and then test the property of transitivity as a 

special case of that assumption. Table 2 illustrates an example in which methods used in 

Regenwetter et al. (2010, 2011) would conclude that transitivity is satisfied, but where 

analysis of response patterns refutes both independence and transitivity.  

True and Error Model: Independent Errors 

 Unlike the RUMM, the true and error model (TE) does not assume that responses 

made by the same person in a block of trials are independent, except in special cases.  

Instead, it is assumed that a person has a fixed set of “true” preferences within a repetition 

block that are perturbed by independent “errors”. “True” preferences may or may not be 

transitive.   

 Unfortunately, this model has been criticized because of the forms in which it was 

applied in previous papers.  Harless and Camerer (1994) assumed that error rates for all 

choices are equal.  Sopher and Gigliotti (1993) applied an under-identified version that 

allowed unequal errors but which assumed transitivity.  Both of these cases have been 

criticized because these confounded assumptions might lead to inappropriate conclusions 

(Birnbaum & Schmidt, 2008; Wilcox, 2008).   

However, Birnbaum (2008), Birnbaum and Gutierrez (2007) and Birnbaum and 

Schmidt (2008) show that it is possible to use preference reversals in response to the same 

problem by the same person to estimate error terms.  This frees the estimation of error rates 

from arbitrary assumptions of equality or of transitivity. This development converted this 
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approach from an under-identified model to one that I think is both more plausible and 

theoretically defensible than the random utility model that assumes independence.  In 

addition, when the TE model fits, one can estimate the probability distribution in the mixture 

of preference patterns, which RUMM cannot do. 

 Error rates can be estimated from reversals of preference.  Suppose that a person is 

presented with a choice between a “safe” gamble, S, and a “risky” gamble, R.  Suppose this 

choice is presented twice in each block, separated by fillers.  The predicted probability of 

choosing the “safe” gamble on both presentations is as follows: 

  p(SS') = p(1 – e)(1 – e) + (1 – p)ee     (4) 

Where p is the “true” probability of preferring “safe”, and e < ½ is the error rate for this 

choice.  This response pattern can occur in two ways: either the person truly prefers S and 

makes no error on either choice or the person truly prefers R and makes two errors. Similarly, 

the predicted probability of choosing the risky alternative on both occasions is p(RR') = (1 – 

p)(1 – e)(1 – e) +  pee.  The probability of a preference reversal is p(SR') + p(RS') = 2e(1 – 

e).  There are four response combinations, SS', SR', RS', and RR'.  Their frequencies sum to n 

(they have 3 df).  There are two parameters to estimate, p and e, leaving one df to test the 

model.                                     Insert Table 3 about here.   

 To apply the TE model to three choices testing transitivity (as in Table 3), there are 8 

equations predicting the probabilities of observed response patterns, including the following 

for the intransitive pattern 001: 

! 

p(001) = p
000
(1" e

1
)(1" e

2
)e
3

+ p
001
(1" e

1
)(1" e

2
)(1" e

3
) + ...+ p

111
e
1
e
2
(1" e

3
)  

where 

! 

e
1
, 

! 

e
2
, and 

! 

e
3
 are the probabilities of error on the first, second, and third choices, 

respectively.  If the “true” pattern is 000, a person can show the 001 pattern by making no 



  Transitivity of Preference 12 

errors on the first two choices and making an error on the third; if the “true” pattern is 001, 

the person can show this pattern by making no error on all three choices; etc.  When each 

choice is presented twice within each repetition block, one can analyze the frequencies that a 

person shows each pattern twice; this provides additional df in the data and provides greater 

constraint on the solution for the mixture of preference patterns (Birnbaum & Gutierrez, 

2007; Birnbaum & Schmidt, 2008).   

 The TE model implies independence when the mixture has only one “true” preference 

pattern, in which case p in Equation 4 is either 0 or 1. In Table 3, it means exactly one of the 

eight “true” patterns has probability 1. In general, however, choices will not be independent. 

Model 3 in Table 3 shows the fit of the TE model with one “true” pattern.  In this 

case, the single “true” pattern is the intransitive pattern, 001.  Estimated error rates are 

! 

e
1

=  

0.21, 

! 

e
2
 = 0.41, and 

! 

e
3
 = 0.41. This model uses the same number of df (three), makes the 

same exact predictions, and thus has the same fit as Model 1 in Table 2, the RUMM. 

Depending on one’s intuitions (tastes?), Model 3 (TE) might seem “simpler” than 

Model 1 (RUMM) because the person has only one “true” preference pattern, perturbed by 

random errors.  In contrast, Model 1 might seem “simpler” because it assumes that people 

never make an “error” and that this person randomly samples on each trial from four 

different preference patterns.  But keep in mind that neither of these equivalent models 

(Models 1 and 3) gives an acceptable fit to these data.   

Model 4 is a mixture of two “true” patterns in the TE model, using one additional df 

and achieving a better fit, 

! 

" 2(3) = 0.10.  The difference in Chi-Squares is 

! 

" 2(1) = 26.61, so 

Model 4 fits significantly better than Model 3 (or Model 1). Unlike the RUMM, the best-
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fitting solution for the TE mixture probabilities in Model 4 is identified.  In this case, it is a 

mixture of an intransitive pattern (

! 

p
001

 = 0.66) and a transitive pattern (

! 

p
010

 = 0.34).  

Model 5 assumes that both intransitive patterns have zero probability; in addition, the 

three patterns with the lowest frequencies are assumed to have true probabilities of zero.  

This model does not achieve an acceptable fit.  Even when all transitive patterns are allowed 

to have nonzero frequency, the Excel solver with multiple starting configurations was unable 

to find a solution with an index of fit less than 32.8. 

The finding that Models 1 and 3 do not fit shows that we cannot retain the assumption 

of independence for these data.  Because Model 4 yields an acceptable fit and Model 5 does 

not, the TE model can be retained, but the assumption of transitivity cannot.  

Tables 2 and 3 illustrate another suggestion for testing theories: present data and 

predictions in a form that reveals where a model’s predictions fail to describe the data.  When 

statistical tests are presented alone, it is difficult for investigators to learn from the results 

precisely where a model has gone wrong. Tables 2 and 3 show that independence and 

transitivity are violated. 

Other examples show that transitivity and independence can be distinguished. For 

example, if the frequencies were 14, 30, 29, 60, 7, 15, 15, and 30, respectively, the data 

would be compatible with both independence and transitivity; if the frequencies were 28, 84, 

9, 29, 10, 28, 3, and 9, they would be compatible with independence but not transitivity; if 

the frequencies were 44, 22, 14, 43, 15, 43, 5, and 14, they would be consistent with 

transitivity but not independence.  

Empirical Evidence Comparing Models 

Evidence Against Independence of Choices Across Participants 
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 Regenwetter et al. reanalyzed data from a number of studies with the statement, “it 

seems reasonable to treat the respondents as an iid sample.” They acknowledged that some of 

these studies did not use decoys or prevent people from reviewing their choices, which they 

noted might threaten the assumptions of their model.   However, they did not mention a 

problem I consider even more important when combining data across people: namely, real 

individual differences create dependence in the data.  It is true that people act independently 

of each other, but once we know some choices for a given person, we can predict that 

person’s other choices better than we can another’s choices.  

 Data from Birnbaum and Gutierrez (2007), which were re-analyzed with the 

assumption of iid by Regenwetter et al. (2011), are tested for independence in Table 4. Data 

are shown for the condition from Experiment 1 in which each of 327 participants chose 

between modified versions of the Tversky gambles, with prizes 100 times greater than those 

of Tversky, and thus similar to the conditions in Regenwetter, et al. (2011).   Because 

independence was never considered a plausible model in Birnbaum and Gutierrez (2007), 

this analysis has not been previously published.       Insert Table 4 about here.   

In these studies, each choice between S and R was presented twice.  Let SS' refer to 

the case in which the person chose the “safe” gamble on both presentations (S on the first 

presentation and S' on the second).  If the responses are independent, the frequencies of four 

response patterns, SS', SR', RS', and RR', can be reproduced by two parameters:   

p(SS') = p(S)p(S'),     (5) 

 Where p(S) and p(S') are the probabilities of choosing S on the first and second presentations 

of the same choice (the assumption of iid implies not only Equation 5 but also p(S) = p(S') for 
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any pair of repetitions). Chi-Square tests of independence have one df, for which the critical 

value is 6.63 with α = 0.01. The smallest observed value is χ2(1) = 76.75.  

In contrast, χ2(1) for the TE model (Equation 4) fit to these same frequencies, with 

the same number of parameters and the same df, are all less than the critical value.  Clearly, 

these data are better fit by the assumption that errors are independent than by the assumption 

that repeated choices are independent.  Similar results have been obtained in other data sets 

analyzed in this way (e.g., Birnbaum & Schmidt, 2008).   

Birnbaum and Gutierrez (2007) reported another source of individual differences; 

namely, people differ with respect to the amount of “noise” in their data.  Of these 327 

participants, for example, there were 183 whose data showed either perfect consistency 

between two presentations of the same 10 choices or only one preference reversal out of 10.  

For these data, estimated values of p = 0.81, 0.90, 0.91, 0.90, 0.85, 0.90, 0.91, 0.81, 0.88, and 

0.78; estimated e = 0.03, 0.01, 0.00,0.02, 0.03, 0.02, 0.01, 0.03, 0.02, and 0.04, respectively. 

Tests of independence were all significant (smallest 

! 

" 2= 110.6) and tests of the TE model 

were all non-significant (largest 

! 

" 2= 2.43).  Similar results were obtained for the 144 less 

reliable participants analyzed separately, except these had error rates much higher: estimated 

e = 0.30, 0.13, 0.09, 0.17, 0.32, 0.19, 0.16, 0.25, 0.23, 0.25; estimated p = 0.50, 0.76, 0.73, 

0.78, 0.50, 0.86, 0.72, 0.51, 0.67, and 0.34; respectively. The correlations between estimates 

of p and e in the two groups were 0.93 and 0.89, respectively.  Independence was 

significantly violated in all but one case (

! 

" 2 ranged from 3.0 to 58.0), and tests of the TE 

model were not significant (

! 

" 2 ranged from .03 to 4.19).  

Evidence Against Independence and Stationarity Within Subjects 
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 The percentage agreement between each pair of repetitions was calculated for each 

participant in Regenwetter et al. (2011) and for each of the 190 pairs of repetitions (20*19/2 

= 190).  The mean percentage agreement between pairs of repetition blocks was then 

correlated with the distance between repetitions (also correlated with difference in time).  It 

turns out that 15 of the 18 participants had negative correlations (the median Pearson 

correlation coefficient was -0.58); i.e., the farther apart, the less similar the behavior.  If there 

were true independence and stationarity, there should not be a greater resemblance between 

two repetitions that are close together than between two that are farther apart.  From the 

binomial distribution, assuming half of these correlations are negative, the probability of 

finding 15 or more that are negative out of 18 is .004, which is significant evidence against 

the hypothesis that the assumptions of iid are tenable for the Regenwetter et al. data.  The 

average correlation was also significantly different from zero by a t-test (t(17) = -3.20, p < α 

= 0.01. 

 Birnbaum and Bahra (2007) also tested transitivity in a design similar to that of 

Tversky (1969), Birnbaum and Gutierrez (2007), and Regenwetter, et al. (2011).  Trials were 

blocked and each block was separated by at least 75 filler trials that included choices 

between two, three, and four branch gambles and between gambles and sure cash amounts. 

There were a few individuals whose data were perfectly compatible with a transitive order 

for two or more replicates (counting 20 trials per replicate) and at a later time showed perfect 

compatibility with the opposite preference order for two or more replicates.  This type of 

behavior is extremely unlikely given a RUMM, but is compatible with a model in which each 

person might have different true preferences in different blocks of trials.  

Discussion 
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A Simple Model of Non-Stationarity and Dependence 

 To illustrate how one might represent a pattern of nonstationarity and dependence in 

the data, consider a person whose “true preferences” satisfy a weighted utility model of the 

following form: 

    U(x, p; 0) = u(x)w(p)     (6) 

Where U(x, p; 0) is the overall utility of the gamble; u(x) is the utility of the cash prize, x, 

and w(p) is the weight of probability p of winning that prize (the gamble otherwise pays 0).  

For simplicity, assume that u(x) = x for 0 < x < $100, and suppose the probability weight is 

as follows: 

 

! 

w(p) =
2p

"

3[p
"

+ (1# p)" ]
,     (7) 

where γ is the only parameter, for simplicity. This expression has been found to describe 

modal choices of undergraduates with 

! 

" = 0.7  (Birnbaum, 2008; 2010; Birnbaum & 

Gutierrez, 2007).  Suppose that a person selects the gamble with the higher U(x, p; 0) as 

given in Equations 6 and 7, apart from random error. 

The stimuli used by Regenwetter et al. (2011) are: A = ($22.4, 0.46; $0), B = ($23.8, 

0.42; $0), C = ($25.2, 0.38; $0), D = ($26.6, 0.33; $0), and E = ($28, 0.29; $0).  With 

parameters as above (

! 

" = 0.7), the predicted preference order is A f B f C f D f E.  Indeed, 

the most common pattern by individuals in the data of Regenwetter, et al. (2010, 2011) 

appears consistent with this preference order, apart from error. 

Now suppose that γ decreases gradually from 0.7 to 0.4 for some participant. This 

participant starts out with the “true” preference order, A f B f C f D f E.  Partway through 

the study, γ = 0.6, and the preference order is now B f C f A f D f E; later, when γ = 0.5, 
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the “true” order is D f C f E f B f A.  Finally, when γ = 0.4, the order would be completely 

reversed to E f D f C f B f A.  Data from two repetitions close together would be more 

similar than those from two repetitions that are far apart because the parameter changed 

systematically during the study. 

 The RUMM does not allow for systematic changes in a person’s true preferences.  

The TE model allows a person to have different “true” preferences in different blocks of 

trials, but TE might not fit these changes exactly, unless the parameter value crossed the 

mathematical thresholds creating different preference orders during the 75 intervening trials 

between blocks.  A person might instead change preference order within a block.  A more 

accurate fit to a person’s data might therefore be obtained by estimating from data the trial 

numbers at which the person’s parameters changed enough to produce different “true” 

preference patterns.    

 A participant may come to a better understanding of his or her own preference 

structure after considering the choices and responses made to them. Learning effects include 

contextual effects produced by the distribution of stimuli presented (Parducci, 1995).  If there 

are such systematic changes, two choices closer together in time will be more similar than 

two choices separated by a greater interval.  

Stochastic Models with and without Error 

 Unfortunately, in the economics literature, the TE model is sometimes called the 

“trembling hand” model, as if the source of error had its origin entirely in the physical 

process of pushing a button to indicate one’s choice.  A better metaphor might be of a 

“trembling brain,” but there are other sources of error as well, including the eye.  
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Why might someone ever select a choice that is not his or her “true” preference?  The 

participant in this research must read descriptions of two gambles, remember both gambles, 

evaluate them, compare them, decide which one seems best, remember the decision, and 

push the button indicating the remembered preference.  In order to do this without error, 

there must be no error in vision, no error in reading, no variability in the utility of cash 

prizes, no error in the evaluation of the utility of the gambles, no error in the memory for the 

utility of the first gamble when evaluating the second one, and no error in remembering and 

controlling which button to press.  Errors in seeing, reading, evaluation, aggregation, 

memory, as well as in motor responses could all lead to cases in which a person might make 

different choices when presented the same choice problem again, even if the “true” 

preference was invariant. 

Unlike economists, who often assume that people are perfectly rational and never 

make any type of error, psychologists have a long tradition of studying cases in which people 

make perceptual, judgmental, or memory “errors” when comparing loudness of two tones, 

heaviness of two weights, or magnitudes of two numbers (Thurstone, 1927; Luce, 1959; 

1994; Link, 1992; Busemeyer & Townsend, 1993). Whereas an economist assumes that any 

person offered a choice between two gold coins-- 100 g and 105 g--would always prefer the 

105 g coin, psychologists know that if the participant is allowed to lift each coin once, there 

is about a 20% chance that the lighter coin will be judged “heavier,” which would lead to an 

“irrational choice” from the perspective of economic theory and which would also apparently 

violate the assumptions of the model of Regenwetter et al. (2011).  The TE model allows for 

this kind of variability that is assumed in these models without imposing the transitive 

structure that psychophysical models such as Thurstone’s (1927) or Luce’s (1959) imply.   
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The RUMM does not allow for perceptual, judgmental, memory, or decision errors.  

However, when we present a choice in which one gamble clearly dominates the other, there 

is a nonzero probability that some people choose the transparently dominated gamble, even 

though no one theorizes that this is a “true” preference for that person (e.g., Birnbaum, 2008, 

Table 1, Choice 3.2).  Perhaps it is because of such cases that Regenwetter et al. (2011) 

conclude their paper with a brief acknowledgement that an error model might be a useful 

addition to the RUMM they use. 

 In the examples of Tables 1, 2, and 3 the method of Regenwetter et al. (2011) was too 

lenient in allowing data that systematically violate transitivity and independence to be 

considered acceptable.  However, I think that RUMM may also make it too easy to refute 

theories, because RUMM allows no error.  Without errors, any violation rate, no matter how 

small, of a critical test would refute a theory, if it is statistically significant. 

 For example, consider a test of stochastic dominance such as between A = ($95, .5; 

$12) and B = ($84, .5; $10).  The issue is as follows: What percentage of violations is 

required to refute all theories (including Equation 6) that imply satisfaction of transparent 

dominance? Would 10% violations refute the mixture model? 

Suppose, for example, that we find that a person shows 18% preference reversals 

between two presentations of this choice.  According to the TE model, this finding [0.18 = 

2e(1 - e)] indicates that the error rate for this item is e = 0.10.  That means that if there were 

no “true” violations, we should expect to see 10% violations in a given test.  By the RUMM 

of Regenwetter, et al. (2010, 2011) applied to Equation 6, however, it is simply a matter of 

collecting enough data to convince ourselves that 10% exceeds 0.   According to RUMM, 
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there should be no preference reversals in such cases; A person using this approach might too 

easily reject a mixture model. 

It seems that investigator using the RUMM without error, would reject the class of 

mixture models as applied to any critical property (axiom or theorem) that should produce 

zero violations.  An investigator using the TE model might take the same data and conclude 

that a mixture model can be retained in cases where the rate of violation does not exceed the 

rate expected from the rate of preference reversals between repeated presentations of the 

same choice to the same person in the same block of trials. 

 As Wilcox (2008, p. 275) remarked, “ stochastic models spindle, fold, and in general 

mutilate the properties and predictions of structures, and each stochastic model produces its 

own distinctive mutilations.”  I would add experimental design to the list of factors that 

interact with theory and stochastic specification to confuse the experimenter; in particular, 

when using RUMM to test axioms or theorems that allow no violations, the RUMM without 

error might be too-easily rejected in cases where TE allows retention of a mixture model.   

Comments on Experimental Procedure 

It is possible that the type of blocking of trials and selection of “fillers” and “decoys” 

might affect the pattern of dependence or independence that is obtained.  If the same choice 

were presented 20 times in a row, someone might give exactly the same response in all 20 

repetitions.  The idea of randomizing trial orders and using fillers between related 

presentations seems appealing, in an attempt to get more information from the participant. 

However, Regenwetter, et al. (2010, 2011) seem to argue that we can cause the independence 

assumption to become true by inserting a sufficient number of decoys.  It is not clear that 

three intervening trials or even 75 would guarantee independence.  Nor is there is a 
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noncircular way to say what experimental procedure is the “correct” one, as long as we 

consider our models to be empirical rather than a priori.  I think these empirical hypotheses 

concerning experimental methods should be tested rather than assumed.   

Concluding Comments on Transitivity 

 After re-examining the data of Regenwetter et al., I think that there is very little 

evidence for the kind of intransitivity claimed by Tversky. The most common pattern of data 

in Regenwetter et al. (2011) appears to be consistency with a single transitive order perturbed 

by error. Regenwetter, et al. (2010) found that most cases they tested were consistent with 

both TI and WST. None of the 18 cases tested by Regenwetter et al. (2011) showed the 

complete, systematic pattern of violations of WST in choice proportions reported by Tversky 

(1969).  

However, Participant #4 of Regenwetter et al. (2010, 2011) showed a significant 

violation of WST for four of the five stimuli.  For this participant, binary choice proportions 

are P(BC) = 0.80, P(CD) = 0.85, P(DE) = 0.90, and yet P(BE) = 0.20. This person showed 

this intransitive pattern (C f B, D f C, E f D, and yet B f E) on 12 of the 20 repetitions.  

Assuming independence and transitivity, the maximal probability to show this intransitive 

pattern is 0.316.  Had only these four stimuli been tested, these results would be considered 

significant (binomial probability to observe 12 or more such violations out of 20 is 0.008).  

Because five stimuli were tested, there are five ways to select subsets of four choices, so this 

result may or may not be “real.”   

Regenwetter et al. were correct to criticize the use of WST as a definitive test of 

transitivity, but I think they went too far by dismissing violation of WST as a potential 

indicator of where intransitive patterns might be found in a detailed analysis of response 
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patterns.   In addition, I think they did not go far enough in their criticism when they retained 

the policy to analyze properties of choice defined on marginal choice proportions such as the 

TI.  The argument for analyzing binary choice proportions rather than data patterns was 

largely based on practical considerations of the difficulty of collecting sufficient data.  The 

examples presented in Tables 1-3 convince me, however, that we need to carry out such 

studies in order to avoid reaching wrong conclusions. 

Birnbaum and Gutierrez (2007) reported that a strong majority of participants appear 

to have a single “true” preference order that was transitive. It was estimated that only 1% 

were truly intransitive in this condition for a triad of choices analyzed as in Table 3.  For the 

183 reliable participants of Table 4, 141 (77%) showed the same transitive pattern and 17 

(9%) showed the opposite transitive order; a few others had other transitive patterns.  

Nevertheless, I suspect that the violations of transitivity reported by Tversky (1969) 

for a minority of participants may have been “real,” despite the difficulty of replicating his 

results and justifying his conclusions by statistical analysis (Iverson & Falmagne, 1985; 

Regenwetter, et al., 2010, 2011).  Even if they are real, however, I think they are of lesser 

importance than has at times been argued.   

I do not think that they are produced by the use of a lexicographic semiorder as 

hypothesized by Tversky (1969) and later by Brandstaetter, Gigerenzer and Hertwig (2006), 

because when implications of lexicographic semiorders are tested, they are found to be 

systematically violated for large proportions of participants, including those whose data most 

closely resemble Tversky’s pattern (Birnbaum & Gutierrez, 2007; Birnbaum & LaCroix, 

2008; Birnbaum, 2010).  For example, if people were to use a lexicographic semiorder, their 

choices should satisfy interactive independence, the property that A = (x, p; y) f B = (x', p; y') 
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if and only if A' = (x, q; y) f B' = (x', q; y').  Instead, Birnbaum and Gutierrez (2007) 

concluded that 95% prefer A = ($4.25, .05; $3.25) over B = ($7.25, .05; $1.25), whereas only 

7% prefer A' = ($4.25, .95; $3.25) over B' = ($7.25, .95; $1.25).  Tests of other critical 

properties also show systematic violations (Birnbaum, 2010). 

Instead, I think the small violations of transitivity, if real, are due to an assimilative 

perceptual illusion in which two pies that are nearly equal but different can appear to be 

identical.  As noted by Birnbaum and Gutierrez (2007), intransitivity can occur in an 

otherwise integrative and transitive utility model if people were to use the same value of 

weighted probability when two pies “look the same”.  

Conclusions 

 Regenwetter et al. (2011) noted that their statistical tests have high power for testing 

the mixture model of all transitive orders against single intransitive patterns.  However, they 

also conceded that they have not yet analyzed cases of mixtures of intransitive patterns nor 

have they yet considered mixtures of transitive and intransitive patterns.  Examples 2 and 3 in 

Table 1 show that mixtures including intransitive preferences could lead to wrong 

conclusions by their methods of analysis. Tables 2 and 3 show other examples in which the 

methods of analysis advocated by Regenwetter et al. (2011) and Birnbaum and Gutierrez 

(2007) lead to different conclusions.  Analyses of available data (Table 4) show that the 

assumptions of the RUMM may not be descriptive. 

 The TE model and RUMM models provide two rival methods for evaluation of 

formal properties in choice data.  Both stochastic specifications allow the analysis of 

mixtures.  Both models provide statistical null hypotheses.  Because these approaches are 

intended for use as frameworks for the evaluation of formal models of decision making, it 
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seems important to determine which of these methods of analysis and interpretation is more 

accurate empirically and leads to sounder conclusions. 

The TE approach used by Birnbaum (2008; Birnbaum & Gutierrez, 2007; Birnbaum 

& Schmidt, 2008) assumes that within a block of trials, there is dependence, due to the 

assumption that “true preferences” are stable within a person and within a block of trials.  

Trial by trial “errors” within a block, however are assumed to be independent.  True 

preferences might stay the same or might differ between blocks.  When the mixture contains 

only one “true” pattern of preferences, the TE model implies independence, and this special 

case is equivalent to the independence assumption used by Regenwetter, et al. (2010, 2011). 

The RUMM used by Regenwetter, et al. (2010, 2011) in contrast assumes that from 

trial to trial, a person randomly and independently samples one pattern of true preference 

after another.  This model assumes that no one ever makes an “error,” and that all responses 

express a person’s “true” preference at that moment.  By applying this model to data 

representing patterns of response, the model can be tested rather than merely assumed. 

From available evidence analyzed here in Table 4, it appears that data aggregated 

over participants cannot be regarded as satisfying independence, as assumed by Regenwetter, 

et al. (2011).  Data of Regenwetter, et al. (2011) do not appear to satisfy iid assumptions 

because two repetitions close together are more similar than two farther apart.  Testing 

independence properly in individuals requires a more extensive experiment than has yet been 

published on this topic.  Methods for analyzing such data to compare the assumptions and 

predictions of RUMM and TE are described in Tables 2 and 3.  
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Table 1.  Examples illustrating problems with testing Weak Stochastic Transitivity (WST) 

and the Triangle Inequality (TI).  Theory ABC denotes A f B f C.  Example 1 shows that 

WST can be violated even when no case violates transitivity; Example 2 shows that the 

triangle inequality can be satisfied even when every case violates transitivity.  Note the 

marginal choice proportions are virtually the same.  Example 3 shows that a mixture of 

transitive and intransitive patterns can also satisfy the triangle inequality.   

Theory Data Pattern Response Pattern Frequency 

 AB BC AC Example 1 Example 2  Example 3 

ABC 0 0 0 33 0 0 

Intransitive 0 0 1 0 66 66 

ACB 0 1 0 0 0 34 

CAB 0 1 1 33 0 0 

BAC 1 0 0 0 0 0 

BCA 1 0 1 34 0 0 

Intransitive 1 1 0 0 34 0 

CBA 1 1 1 0 0 0 

Total    100 100 100 

P(AB)    .66 .66 1.00 

P(BC)    .67 .66 .50 

P(AC)    .33 .34 .50 

WST    Violated Violated Violated 

TI    Satisfied Satisfied Satisfied 
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Table 2.  Fit of the Random Utility Mixture Model assuming independence (RUMM1) and 

assuming both independence and transitivity (RUMM2).  In this case, these two models 

make the same predictions.  Solutions are not unique.  Values in parentheses are fixed.  

 

Model 1 Model 2 Pattern Frequency 

RUMM1 Predictions RUMM2 Predictions 

000 25 0.41 38.7 0.38 38.7 

001 71 0.18 55.0 (0) 55.0 

010 39 0.00 26.8 0.03 26.8 

011 24 0.20 38.1 0.38 38.1 

100 6 0.00 10.1 0.00 10.1 

101 18 0.00 14.4 0.21 14.4 

110 11 0.00 7.0 (0) 7.0 

111 6 0.21 9.9 0.00 9.9 

Total/

! 

" 2 200 1 

! 

" 2(4) =26.71 1 

! 

" 2(4) =26.71 
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Table 3.  Fit of the True and Error Model.  Model 3 assumes that the only “true” pattern 

corresponds to the most frequently observed pattern; TE3 shows parameters of this model; 

estimated error rates are 

! 

e
1

=  0.21, 

! 

e
2
 = 0.41, and 

! 

e
3
 = 0.41; this model makes the same 

predictions as the Random Utility Mixture Model. Model 4 assumes that there are two “true” 

patterns; TE4 shows its estimated parameters; 

! 

e
1

=  0.21, 

! 

e
2
 = 0.18, and 

! 

e
3
 = 0.20.  Model 5 

shows the best-fitting transitive model; 

! 

e
1

=  0.18, 

! 

e
2
 = 0.34, and 

! 

e
3
 = 0.50.  Preds show the 

predictions of these models, which can be compared with the observed frequencies. Values in 

parentheses are fixed.  

Model 3 Model 4 Model 5 Pattern Frequency 

TE3 Preds TE4 Preds TE5 Preds 

000 25 (0) 38.7 (0) 24.6 0.83 49.3 

001 71 1.0 55.0 0.66 70.7 (0) 49.3 

010 39 (0) 26.8 0.34 39.8 0.02 30.0 

011 24 (0) 38.1 (0) 23.8 0.11 30.0 

100 6 (0) 10.1 (0) 6.4 (0) 12.4 

101 18 (0) 14.4 (0) 18.3 0.04 12.4 

110 11 (0) 7.0 (0) 10.3 (0) 8.2 

111 6 (0) 9.9 (0) 6.2 (0) 8.2 

Total/

! 

" 2 200 1 

! 

" 2(4) = 

26.71 1 

! 

" 2(3) = 

0.10 1 

! 

" 2(1) = 

32.9 
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Table 4. Reanalysis of data from Birnbaum and Gutierrez (2007, n = 327), comparing 

RUMM = Random Utility Mixture Model (independent choices) and the True and Error 

Model (independent errors).  Both models fit the same four frequencies with the same 

number of estimated parameters.  

Frequency of Response Patterns RUMM True and Error Model Choice 

RR' RS' SR' SS' χ2(1) p e 

 

χ2(1) 

AB 75 31 40 181 87.12 0.72 0.12 1.14 

AC 47 22 11 247 152.12 0.84 0.06 3.58 

AD 50 16 8 253 190.78 0.84 0.04 2.60 

AE 43 29 16 239 108.47 0.85 0.08 3.69 

BC 67 39 34 187 76.75 0.75 0.13 0.34 

BD 36 29 21 240 80.83 0.88 0.08 1.27 

BE 48 21 21 237 123.38 0.84 0.07 0.00 

CD 77 34 30 186 102.52 0.71 0.11 0.25 

CE 54 31 26 216 94.85 0.81 0.10 0.44 

DE 94 42 26 165 105.35 0.64 0.12 3.72 

 

 

 


