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Using contextual effects to derive psychophysical scales*

MICHAEL H. BIRNBAUM7Y
University of California, Los Angeles, Los Angeles, California 90024

This paper presents a functional measurement analysis of Parducci’s range-frequency th;qry. The th.eory provides a
basis for (1)finding context-invariant psychophysical scales, (2) establishing the validity of_ rating scales, aqd
(3) explaining contextual effects in judgment. In an experimental illustration, Ss judged the magnitude of numerals in
nine different distributions. All data were used to obtain the psychophysical function for numerals and also to test the
model. The large contextual effects were consistent with the model. Quantitative tests of ﬁt supporteq the
equal-interval assumption of the category scale. The psychophysical function appeared nearly‘lmgar but with ,a
significant negative acceleration. The data were shown to be qualitatively inconsistent with generalgatlons of Helson’s
theory of adaptation level and Johnson’s correlation-regression theory. They supported Parducci’s range-frquency
theory and illustrated how it could be used to factor out contextual effects from effects of stimulus magnitude.
Extensions of the range-frequency approach are also discussed.

Contextual effects are usually considered anathema to
direct scaling methods, sources of error and confusion
that should be avoided. Magnitude estimation was
initially thought to be relatively free of contextual
effects, and this supposed invariance was considered a
point in its favor (Stevens & Galanter, 1957; Galanter,
1962). However, magnitude estimations, category
ratings, and absolute estimations all appear to be subject
to such contextual effects (Poulton, 1968; Parducci,
1963; Helson & Kozaki. 1968; Harvey & Campbell,
1963). Luce and Galanter (1963) have concluded: “A
full understanding of these effects cannot be expected
until we have a sophisticated theory of category
judgments. Unfortunately, what is now available is not
fully satisfactory. Basically, the problem is to find a
response theory which defines a scale of sensation that is
invariant under the various experimental manipulations
we have just described and does not depend upon an
arbitrary, albeit conventional, labeling of the responses.”

Such a sophisticated theory of category judgments has
been developed. Range-frequency theory (Parducci,
1963, 1965; Parducci & Perrett, 1971) has had
considerable success in explaining contextual effects in
category ratings. The present paper gives a functional
measurement (Anderson, 1970) analysis of the theory to
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emphasize that it not only explains contextual effects,
but can also validate the numerical labeling of the
responses and yield context-invariant psychophysical
scales.

Outline of Psychophysical Judgment

Figure I provides a basic framework for
psychophysical judgment that will facilitate presentation
of theories of contextual effects. Psychophysical
judgment is interpreted as the composition of two
functions: (a) the psychophysical function,

v = H(¢). (1
relating psychological impressions (W) to the physical
measures of the stimuli (¢): (b) the response function,

Y

s

R=1(¥), (2)
relating responses (R) to the impressions. The function
ordinarily observed in a psychophysical experiment is
the composition, R = J[H(#)] . As Treisman (1964) has
pointed out, different assumptions about J lead to
different conclusions about H. The present approach is
to provide a testable model for J, rather than assume a
particular form for J as an untested axiom.

Figure 1 also shows f(¢), g(¥). and p(R). the
probability density functions defined on the physical,
psychological, and response dimensions. The
corresponding cumulative density functions will be
denoted, F(¢), G(¥), and P(R). respectively. The
functions H and J are assumed to be continuous and
strictly monotonic increasing: therefore, their inverse
(denoted H™! and J—1) exist. The minimal values on
the physical, psychological. and response dimensions are
@0, Vo, and Ry, respectively, and the maximal values are
®m, ¥m, and Ry, It is useful to note that F(¢¢)=0and
that G[H(¢)] — G[H(¢)] = F[6] — F[g,].
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Fig. 1. Framework for discussing contextual effects. In this
example, the density function, f(¢), is quadratic, the
psychophysical function, H(¢), is a power function, and the
judgment function, J, is assumed to follow range-frequency
theory.

Range-Frequency Theory

Parducci (1963. 1965, 1973) and Parducci and Perrett
(1971) describe psychophysical judgment as a
compromise between two principles: (a)the range
principle asserts that differences in response tend to be
proportional to differences in psychological magnitude;
(b) the frequency principle asserts that differences in
response tend to be proportional to differences in
stimulus rank.

The range principle assumes that differences in
response are directly proportional to differences in
subjective value and inversely proportional to the range
of subjective values. This principle can be written as
follows:

b
dR = (‘I’m = \Po)d‘p'
Ss tend to locate each stimulus relative to the subjective
end values.

The frequency principle can be written, dR
ag(¥)d¥. Subjects tend to use equal portions of the
response continuum with equal frequency.

The actual response is assumed to reflect a weighted
compromise of these tendencies. A final empirical
principle asserts that differences in response are
proportional to the range of responses Ry —Ry)
specified by the experimental instructions:

0

dR=(R, — R.o)]:ag(\lf) + (E%‘)] dv, (3)

where R, and R; are the maximal and minimal values
of the response and a and b are the weights of the

frequency and rarige principles, respectively.
Integrating Eq. 3 leads to the following statement of
the model:

R = I(¥)

= (R~ Ro ) [ag(t) : (—\p—ﬁ—\p)} @t +Ro.(4)

The H function is calibrated to the stimulus range by
defining Wy =0 and ¥, =1. The range-frequency
approach assumes that H is invariant when the stimulus
endpoints (¢, and ¢, ) are held constant.

When the psychophysical function is strictly
monotonic and error-free and the stimulus endpoints are
fixed, it follows that

R=(Rm — Ro) [aF(¢) + bH(¢)] + Ry. (5)

Equation § says that the judgment function is simply a
weighted sum of the cumulative density function on the
stimulus dimension and the psychophysical function.
When the number of categories and the stimulus range
are held constant, as in the present experiments, it is a
simple matter to vary F and then solve for H.

It is useful to modify the notation slightly at this
point in order to explain the stimulus scaling and the
test of the model. Let F;(¢) be the cumulative density
function for context i; in practice, Fi(¢) is the rank of
stimulus ¢ in context i, divided by the total number of
ranks. Let R; be the judgment of stimulus ¢ in context
i. From Eq. 5, it fcllows that

Ry — aFi(¢) = fH(®) + €. (6)

where « and § are constants and € contains response
variability. Equation 6 implies that once a best-fit value
of a is found, the differences due to context (i) can be
eliminated, leaving a context-free psychophysical
function. It should be noted, however, that if the model
is inappropriate, or if the H function is not invariant, or
if the numerical assignment to the categories is
inappropriate, then the model will fail in this test of fit.
The following experiment illustrates the theory and
provides a concrete example of how contextual effects
may be used to derive psychophysical scales. The
stimuli, instructions, and procedure are similar to those .
of Parducci, Calfee, Marshall, and Davidson (1960). The
results for this continuum, although cleaner, are
representative of those obtained with other
psychophysical continua (Parducci, 1963).

METHOD
Stimuli
The stimulus context for each S consisted of a set of from 45

to 47 numerals mimeographed on a single 21 x 35 cm page. The
numerals were arranged in a single column at the left side of the



page in order of increasing magnitude. Instructions were printed
on the same page. The numerals in each set ranged from 108 to
992, and were spaced according to one of nine density functions
corresponding to the nine experimental conditions. For
simplicity, the stimulus density functions were chosen as
polynomials. Five of the density functions were linear, but with
different slopes (—.022, —.011, .00, .011, .022). The respective
labels for these five conditions vary from —2A through 2A (with
A = .011). The 45 numerals used for each of these linear
conditions are indicated by the tick marks at the bottom of
Fig. 2. Two of the stimulus density functions were
approximately quadratic functions, with quadratic coefficients
of opposite sign. These two conditions are labeled —B and B, and
the 47 particular numerals used are indicated in Fig. 3. The 46
numerals used for each of the remaining two cubic conditions
(—C and C) are indicated at the bottom of Fig. 4.

Subjects

The 270 Ss were fulfilling a requirement in introductory
psychology at the University of California, Los Angeles. There
were 30 different Ss in each of the nine conditions, run in groups
of from 4 to 10 Ss each. A small number of additional Ss failed
to follow instructions, and their data were not tabulated.

Procedure

The instructions stated: “This is a study of how people judge
the relative magnitude of numbers. On the side of this page,
there is a list of numbers ranging in size from very very small
(108) to very very large (992). Your job is to study the entire list
and then decide how large or small each number is—in
comparison with all the others on the page. Write down (on the
space provided beside each number) how large it appears to you.
For each number, choose one of the following sizes:
VVL ... Very Very Large, VL...Very Large, L... Large,
SLA . . . Slightly Larger than Average, A ... Average,
SSA ... Slightly Smaller than Average, S ... Small, VS ... Very
Small, VVS ... Very Very Small. Be sure to write one of the
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Fig. 2. Mean category judgments for the five linear conditions
of stimulus density. —2A to 2A.
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Fig. 3. Mean category judgments for the quadratic conditions
of stimulus density, —B and B.

nine abbreviations next to each number. Take your time with
these judgments, but do not try to formulate precise rules or to
perform numerical calculations.”

After recording their judgments of each numeral, Ss turned
the page and read instructions which required them to estimate
the “typical number” for each category. These instructions
specified that Ss were not restricted to the printed numerals but
were free to select any numerical values, consistent with their
previous judgments, that best represented each of the nine
categories.

In summary, the S assigned a category response to each
stimulus, and then estimated the ‘“‘typical stimulus” for each
category. Thus, there are two dependent variables, category
judgments and *‘typical number” estimations.

RESULTS

The category responses were converted to numerical
scores by assigning successive integers from 1 to 9 to the
respective categories. The present model provides a basis
for testing this numerical assignment and for rescaling. if
necessary. The mean judgments are plotted in Figs. 2, 3,
and 4 as a function of the stimulus value. Contextual
effects appear as differences between the functions. If
the judgments were determined by H alone. then all of
the curves would coincide. Instead, the curves differ
radically in form. The large contextual effects are in the
predicted direction, with each judgment function having
the approximate form of the cumulative stimulus
density function, F(¢).

The “typical number” estimations were averaged and
plotted on the abscissa against the integers 1 to 9 on the
ordinate for the nine categories. The data for the nine
conditions yielded graphs very similar in form to Figs. 2,
3. and 4. The conclusions from the analyses described
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Fig. 4. Mean category judgments for the cubic conditions of
stimulus density, —C and C.

below were comparable for both the mean judgment
functions and the “typical number” functions.

Assessment of the Range-Frequency Model

According to the theory, all nine functions in
Figs. 2-4 may be reduced to a single psychophysical
function. The model can be fit to the data by means of
multiple regression to find the best-fit constants in the
equation, R = aF(g) + B, + 816 +8:¢° + B3 ¢3, in which
the H function is approximated as a polynomial. Once
the best-fit value of « is found, Eq. 6 implies that the
effects of stimulus distribution can be removed from
each of the functions, leaving a context-free
psychophysical function.

Figure 5 shows the psychophysical function for
numerals derived in this manner from the ‘‘typical
number” data. On the ordinate is plotted the category
ratings corrected for the effect of context—ie., the
residual, R — aF;(¢y;), where the value of R is taken to
be k for Category k, and @; is the mean ‘“typical
number” for Category k in Context i. The best-fit value
of a is 3.80. As can be seen in Fig. 5, the residuals from
the nine functions closely approximate the same
function (dotted curve):

GH(g) = .06 + 6.40x10~ 3¢ — 8.81x1071%> . (7)

The function appears nearly linear, but the negative
acceleration is highly significant. The mean squared error
from this function is only .019, which represents less
than 3/10 of 1% of the total variance. This excellent fit
requires just four parameters: the three constants of

Eq.7 and a. Since o = a(Ry, — Ry), a = .475, which is
close to the .45 weighting of the frequency principle
previously reported (Parducci et al, 1960).

The largest errors in Fig. 5 appear to be for the linear
conditions, especially for Condition A. Figure 2 shows
the source of the difficulty: the ratings for this
condition do not depart as much from the ratings for the
uniform distribution as predicted by the model. Analysis
of variance was applied to assess the discrepancy for the
five linear conditions, the typical-stimulus estimations
forming a context by category factorial design. The
effects of context and also of the Context by Category
interaction were highly significant, F(4,145) = 31.72 and
F(32,1160) = 8.7, respectively, consistent with the
model. When the best-fit predictions are subtracted from
each S’s estimations, analysis of variance detected no
significant residual effect: F for all of the pooled
sources, with 4. and 1305 df, was only 1.16.
Considering the power of the test, the model appears to
give a very good account of the data.

Two discrepanc:es were detected in the corresponding
analysis of the mean judgments where the mean squared
error was also .019. The first is not really a deviation
from the model, but represents a steepening of the H
function for numerals in the region of even hundreds.
Thus, the judgmert functions are steeper in the regions
of 300, 400, 500, 600, etc., in Figs. 2, 3, and 4. The
second deviation was a tendency for Ss to use Categories
“Small” and “Large” with greater relative frequency.
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Fig. 5. Context-invariant
numerals. Abscissa values represent the mean “‘typical number
for each of the nine successive categories; ordinate values are the
ratings corrected for the effects of context, i.e., the residual,
R — oFj(¢). The fact that points for different conditions fall on
the same cutve supports the model, the category scale, and the
contextual invariance of the stimulus scale.



This appeared in separate plots of the p(R) distributions
for the different contextual conditions. These sources of
error are not serious shortcomings of the model. In a
later section, the model will be extended to allow for
these effects.

Additional multiple regressions were run to check the
possibility that the errors about the fitted
psychophysical function in Fig.5 might by
systematically related to higher order powers of ¢ and
Fi(¢) or their crossproducts. The next few higher powers
of ¢ and Fi(¢) did not add significantly to the
prediction, nor did inclusion of the interaction terms.
Thus, it appears that the excellent fit of the simple
model for these data is not significantly improved by
adding these complications.

DISCUSSION

The test of fit provides an evaluation of three
simultaneous assumptions: that the model, stimulus
scale, and response-scale are valid. If one of these
premises were erroneous, then deviations would have
appeared in the test of fit. In this sense, the lack of
systematic deviations supports three contentions: (1) It
validates the numerical assignment, showing that the

response categories are. in fact, psychologically
equidistant. (2) It finds a psychophysical function that is
invariant with respect to contextual effects and

demonstrates this invariance directly. This provides an
interval scale of the stimulus. (3)It supports the
range-frequency explanation of contextual effects. These
three problems will be discussed in turn.

The Response Scale

Category rating scales have been viewed with
suspicion, partly owing to the problem of determining
what the appropriate numerical coding of the categories
should be. For example, Luce and Galanter (1963) have
expressed this skepticism as follows: “To the theorist,
however, the whole business [of mean category scales] is
a bit hair-raising. To calculate the means of category
labels, 1o plot them against physical measures of the
stimuli, and then to discuss the form of the resulting
function strikes him as close to meaningless. Because
there is nothing about the procedure to prevent one
from labeling the categories by any other increasing
sequence of numbers. we can by our choice of labels
produce any arbitrary monotonic function of the
physical stimuli we choose.”

The present approach provides a way to determine if
the numerical assignment is correct, and related
techniques offer a way to transform these initial values
to the appropriate values, if necessary. Equation 7 is a
special case of an additive model: therefore. any
nonlinear transformation of the responses would alter
the fit of the model. For example, letting R = k? for the
kth category in the present case led to a failure of the
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model for the present data. The reason for this can be
seen from the appearance of an interaction term when
both sides of Eq. 5 are squared.

If the a priori numerical coding of the responses does
not fit the model, techniques such as those described by
Bogartz and Wackwitz (1971) may be used to find the
rescaling which makes the model fit. No rescaling was
necessary for the present data, indicating that for at least
the present conditions, verbal categories provide an
equal interval scale.

The Stimulus Scale

Obviously, category rating scales do not represent the
psychophysical function directly, as illustrated by the
gross differences in Figs. 2, 3, and 4. The category
ratings may be an equal interval scale of the responses,
but need not correspond to the psychophysical function,
defined as H in the model. It is the latter, stimulus scale.
that is invariant with respect to the stimulus
distribution.

The meaning of a psychophysical scale, aside from its
role in fitting a single model, is contained in its ability to
predict to a variety of other situations. Hence. the
psychophysical scales derived from the fit of two or
more different models in different situations using the
same stimuli should agree (Birnbaum, 1972; Birnbaum &
Veit, 1973).

A recent experiment by Rose and Birnbaum? provides
convergent support. In that experiment, Ss divided a line
segment to represent the difference in magnitude
between pairs of numerals. The scale values derived in
accordance with a subtractive model were a nearly
perfect linear function of the scale values derived from
the present data (Eq.7). Other investigators, using
somewhat different approaches, have also concluded
that the psychophysical function for numerals is
negatively accelerated (see Rule & Curtis, 1973).

The Model
Range-Frequency Theory

The present data add further support to Parducci’s
range-frequency theory, which has had considerable
quantitative success in predicting ratings of
unidimensional stimuli presented in varying stimulus
distributions (Parducci etal, 1960: Parducci. 1963,
1965: Parducci & Perrett. 1971). The model gives a very
good account of the radically different functions shown
in Figs. 2, 3, and 4. using just four parameters. Figure §
shows that in spite of the differences in the judgment
function for different contexts. the data from all of the
distributions lie on a common curve. Hence. the
psychophysical function implied by the model is
invariant with respect to context.

Much of Parducci’s research has been directed at
providing critical tests between range-frequency theory



94 BIRNBAUM

and alternative approaches. The present data provide
illustrations of these tests. It is instructive to show how
alternative models fail to account for qualitative features
of the data.

Adapration-Level Theory

Adaptation-level theory (Helson, 1964) interprets
psychophysical judgment as a process of comparison in
which each stimulus is compared with the ‘‘average”
stimulus—the adaptation level (AL). Every influence on
judgment is considered a stimulus, and all stimuli pool to
form a single quantity (AL), which serves as the point of
reference for judgment. It will be shown that even the
most general statement of this theory cannot account
for the crossovers in Figs. 3 and 4.

Adaptation-level theory can be generalized in the
framework of Fig. 1 as follows:

Ryi = Uy — y), (8)
where Ry; is the response to stimulus ¢ in context i, U is
a continuous monotonic, strictly increasing function, ¥
is the psychological value of stimulus ¢, and W; is the
psychological value of the AL for Contexti. In the
present analysis, it is unnecessary to make any of the
usual adaptation-level theory assumptions that ¥, =
log(¢), that ¥, is a weighted average of the psychological
values of the stimuli, backgipund, and residual
influences, or that U is linear.

Equation 8 can be rewritten U™ 1(Rg;) = Vg — T,
Therefore, it implies that it should be possible to rescale
the ordinates of Figs. 2, 3, and 4 so that the curves for
the different context conditions will be parallel. Clearly,
no possible monotone transformation can eliminate the
Context by Stimulus interactions. Indeed, the curves in
Figs. 3 and 4 show the crossover interactions (also
shown by Parducci, 1963, and Parducci & Perrett, 1971,
for traditional perceptual continua) which are
incompatible with even this most general form of
adaptation-level theory.

The implication that crossovers are inconsistent with
adaptation-level theory, i.e., that

Ryx > Ry; ifand only if Ry > Ry,

can be easily proved as_follows: The left-hand side is
equivalent to U(¥y — Wy) > U(¥y — V), which _is
equivalent to W, — ¥ > ¥y — ¥y thus, =W, > —¥y;
addition of ¥, to both sides of the equation yields
Vg — Wy > Wy — Wy, which is equivalent to Ryy >
Rg;. It should be clear that a ratio formulation of
adaptation-level theory, with the assumption of positive
scales, makes the same incorrect prediction.

Correlation-Regression Theory

Johnson and Mullaly (1969) have proposed a model

that views the stimulus-response relationship in
psychophysical judgment as an example of statistical
regression. The correlation-regression model can be
reformulated as follows:

~_IwvrOr
Rﬁi_—

Wy — )+ R, ©)

1

where R is the middle response, oy is the standard
deviation of the response scale, W, is the psychological
value of stimulus ¢, W; is the mean of the psychological
values of the stimuli in context i, Oy, is the standard
deviation of the psychological values of the stimuli in
contexti, and rypg is the correlation between the
psychological yalues and the responses (an empirical
measure of the unreliability of judgment). This approach
correctly describes the fact that the slope of the
judgment function varies inversely with the spread of the
stimuli and directly with the reliability of judgment.

The regression model assumes that judgments are
linear functions of the psychological values of the
stimuli, with different slopes and intercepts for the
different conditions—the slope being inversely
proportional tc the spread of the psychological values of
the stimuli anc the intercept inversely related to their
mean. It should therefore be possible to find a
monotonic trarsformation of the abscissas of Figs. 2, 3,
and 4 that would render the judgments to be linear

functions, Again, it should be clear that no
transformation will work. Two straight lines can
intersect at most at one point; therefore, the

intertwining functions of Fig. 4 cannot be explained by
their theory. Such intertwining functions have been
employed by Farducci (1963, 1965) and Parducci and
Perrett (1971) to disprove this entire class of models
that dictate linear relationships between rescaled values
for the stimuli and the responses.

Extensions of the Range-Frequency Model
The Frequency Principle

It is the frequency principle of range-frequency
theory that allows the theory to account for the
radically different judgment functions. However, this
principle can be generalized to allow for the case in
which Ss may have a tendency to use their categories
with some fixed, but not necessarily uniform,
distribution. Suppose the numerals in the present study
represented examination scores which will determine a
student’s grade in a class—the rating categories would be
grades, such as A, B, C, D, and F. Under these
circumstances, the Ss would probably exhibit a tendency
to assign more Cs than any other category, and to give
more As and Bs than Ds and Fs. Indeed, university
departments have been known to issue guidelines calling
for skewed distributions of grades. However, differences



in grade will also depend wupon differences in
examination scores.

In terms of the model, equal frequency implies that
only linear terms in F;(¢) are necessary to predict the
rating; nonequal frequency would involve some function
of Fi(¢). Thus, the model can be generalized as follows:

Ro; = BH($) + Q[F(9)], (10)
where Q is some monotonic function that might in
practice be approximated as a polynomial. It can be
shown that the nonlinear terms in Q give an
approximation of the frequencies with which the
subjects “tend” to use different categories. In particular,
the derivative of the Q-inverse function describes the
frequency distribution of category usage.

Equation 10 was applied to the mean ratings of the
sizes of squares reported by Parducci and Perrett (1971):
the coefficient of F2(¢) was significantly positive,
indicating a tendency for Ss to use their lower categories
with greater frequency. The improvement over the
simple analysis of Parducci and Perrett (which assumes
an equal-frequency tendency and equal weighting of
range and frequency principles) was not overwhelming,
but it was regular.

It is also noteworthy that the issue of nonuniform
frequency usage is theoretically separable from the
response rescaling issue. If the additive model of Eq. 10
fits the data. then the numerical coding of the responses
is appropriate, whatever the nature of Q. Equation 10
can be tested graphically by plotting the responses as a
function of Fi(¢), with a separate curve for each
stimulus presented in sets with the same endpoints. The
curves should be parallel, but need not be linear.

For the grading example, it may be the case that letter
grades are not psychologically equidistant and subjects
have a nonuniform response tendency. In this case, the
assumption of Eq. 10 and the use of the Bogartz and
Wackwitz (1971) technique would lead to a scaling of
the psychological values of the grades.

Range Principle

If the psychophysical function is to have greater
generality, the psychophysical function derived in one
stimulus range should be linearly related to the
psychophysical function derived in another range. For
judgments of the same stimuli having the same ranks in
different contexts with varying endpoints, the model
can be written:

VW,
Ryi =aF(g) + 8 Vo o, |

where W, and Wy, are the subjective values of the
greatest and smallest stimulus in context i. This shows
that judgments of the same stimuli having the same rank

(1D
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in different contexts should be linearly related. This
prediction can be investigated by testing the residual
from bilinearity (see Anderson, 1970). Data of Parducci
and Perrett (1971) appear to follow this prediction
roughly, although the research was not designed to
permit an ideal test.

Concluding Comment

The context-invariant psychophysical function should
not draw attention away from the contextually
dependent ratings. Neither candidate has a greater claim
to be the “true” psychological scale. In order to predict
ratings in any given context, it is necessary to know both
the psychophysical function and the contextual theory.
Historically, “context effects™ were considered
undesirable in scaling experiments and were labeled
“biases” and “noise.” However, the lawfulness of these
effects demonstrates that they are a substantive
psychological issue of equal or greater importance than
the psychophysical scales that can be derived from them.

Contrary to the view that contextual effects may
represent a challenge to the basic premise of scaling, this
paper contends that theories of contextual effects can
provide a practical basis for scaling. A popular view in
psychophysics is that contextual effects are a “nuisance”
that should be ‘‘averaged out™ or “avoided” through
standardized experimental procedures. The present view
contends that systematic manipulation of the context,
together with appropriate theorization, can lead to
context-invariant psychophysical scales. Such
manipulation permits a test of the theory while
demonstrating the invariance directly.

REFERENCES

Anderson, N. H. Functional measurement and psychophysical
measurement. Psychological Review, 1970, 77, 153-170.

Bimbaum, M. H. The nonadditivity of impressions. Unpublished
PhD dissertation, University of California, Los Angeles, 1972.

Birnbaum, M. H., & Veit, C. T. Scale convergence as a criterion
for rescaling: Information integration with difference, ratio,
$n1d averaging tasks. Perception & Psychophysics, 1974, 15,

-15.

Bogartz, R. S., & Wackwitz, J. H. Polynomial response scaling
and functional measurement. Journal of Mathematical
Psychology, 1971, 8, 418-443.

Galanter, E. Contemporary psychophysics. In R. Brown et al
(Eds.), New directions in psychology [ New York: Holt.
Rinehart, & Winston, 1962.

Garner, W. R. Context effects and the validity of loudness scales.
Journal of Experimental Psychology, 1954, 48, 218-224.

Harvey, O. J., & Campbell, D. T. Judgment of weight as affected
by adaptation range, adaptation duration, magnitude of
unlabeled anchor, and judgment language. Journal of
Experimental Psychology, 1963. 65, 12-21.

Helson, H. Adaptation-level theory. New York: Harper & Row,
1964.

Helson, H., & Kosaki, A. Anchor effects using numerical
estimates of simple dot patterns. Perception & Psychophysics.
1968, 4. 163-164.



96 BIRNBAUM

Johnson, D. M., & Mullally, C. R. Correlation-and-regression
model for category judgments. Psychological Review, 1969,
76, 205-215.

Luce, R. D., & Galanter, E. Psychophysical scaling. In R. D.
Luce, R. R. Bush, and E. Galanter (Eds.), Handbook of
mathematical psychology. Vol. 1. New York: Wiley, 1963.

Parducci, A. Range-frequency compromise in judgment.
Psychological Monographs, 1963, 77(2, Whole No. 565).

Parducci, A. Category judgment: A range-frequency model.
Psychological Review, 1965, 72, 407-418.

Parducci, A. Contextual effects: A range-frequency analysis. In
E. C. Carterette and M. P. Friedman (Eds.), Handbook of
perception. Vol. II. New York: Academic Press, 1973, in
press.

Parducci, A., Calfee, R. C., Marshall, L. M., & Davidson, L. P.
Context effects in judgment: Adaptation-level as function of
mean, midpoint, and median of the stimuli. Journal of
Experimental Psychology, 1960, 60, 65-77.

Parducci, A., & Perrett, L. F. Category rating scales: Effects of
spacing and frequency of stimulus values. Journal of
Experimental Psychology Monograph, 1971, 89, 427-452.

Poulton, E. C. The new psychophysics: Six models for

magnitude estimation. Psychological Bulletin, 1968, 69, 1-19.

Rule, S. J., & Curtis, D. W. Conjoint scaling of subjective number
and weight. Journal of Experimental Psychology, 1973, 97,
305-309.

Stevens, S. &. Issues in psychophysical measurement.
Psychological Review, 1971, 78, 426-450.

Stevens, S. S., & Galanter, E. Ratio scales and category scales for
a dozen perceptual continua. Journal of Experimental
Psychology, 1957, 54, 377-411.

Treisman, M. Sensory scaling and the psychophysical law.
Quarterly Journal of Experimental Psychology, 1964, 16,
11-22.

NOTE

1. Rose, B. J., & Birnbaum, M. H. Cross-modality integration
matching with difference and ratio tasks. Submitted for
publication.

(Received for publication March 5, 1973;
accepted August 9, 1973.)



