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Intuitive numerical prediction 

Michael H. Birnbaum 
University of Illinois at Urbana-Champaign 

Subjects were trained, with feedback, to predict a numerical criterion from 
each of two separate cues and then asked, without feedback, to predict it from 
a pair of independent cues or a single cue. Their intuitive predictions were quali- 
tatively inconsistent with an additive model, since the effect of one cue varied 
inversely with the number of cues available, and with a constant-weight aver- 
aging model, since the effect of one cue varied inversely with the validity of the 
other cue. The data were consistent with a relative-weight averaging model, 
which assumes that subjective cue values are averaged using weights that depend 
on cue validities. Normative and descriptive theories of intuitive prediction are 
compared. 

Early research on intuitive statistics focused on the normative accuracy 
of subjective statistical estimates, predictions, or decisions. This research 
is discussed from different points of view in review articles by Peterson 
and Beach (1967), Slovic and Lichtenstein ( 197 1 ) ,Hammond and Sum- 
mers (1972), Bremer (1974), Anderson (1974), and Levin (1975). One 
issue in subjective statistics that received considerable attention is mul- 
tiple-cue prediction. I n  the early work, it was concluded that intuitive 
predictions could be well approximated by an additive model of multiple 
linear regression, based on what seemed to be large multiple correlations 
between the theory and the data. 

Recent research departs from the earlier work in two ways. First, since 
correlations of fit can be misleading (Anderson, 1972; Birnbaum, 1973, 
1974b), it is difficult to draw theoretical conclusions from much of the 
previous research on this topic, which used the additive model both as a 
theory and a statistical device. Therefore, more recent work uses im-
proved techniques to separate model testing and measurement. Second, 
the new concern is with testing descriptive psychological theory rather 
than assessing normative accuracy, or 'performance.' Recent work has 
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viewed intuitive statistics as a problem in information integration, using 
descriptive theories of information processing to account for intuitive 
statistical judgments (Anderson, 1974; Birnbaum, Wong, and Wong, 
1976; Kahneman and Tversky, 1973; Levin, 1975; Lichtenstein, Earle 
and Slovic, 1975). The present experiment uses new approaches to dif- 
ferentiate three types of models describing intuitive numerical prediction. 

For simplicity, the models will be described in the special forms appli- 
cable to the present experiment. Generalization to other cases is straight- 
forward. In the present experiment, the subjects were trained, with feed- 
back, to predict a criterion, Y, from each of two separate cues, Xs. Then 
they were asked to predict the criterion, without feedback, from single 
cues or from pairs of independent (uncorrelated) cues. The first cue 
was always of low validity (correlating .447 with the criterion), whereas 
the second cue was of either low or high validity (either .447 or .894). 
In all of the following models, it is assumed that subjective scale value 
(s) depends only on the objective cue value (X)  and that weight de- 
pends only on cue validity, which the subject learns in the training phase 
of the experiment. 

Additive models 

An additive model of multiple linear regression for two independent 
cues can be written 

Y* = so + wlsl + WZSZ, [Equation 11 

where Y* is the intuitive prediction, so is the additive constant, wl is the 
weight of the first cue, sl and s2 are the scale values of the first and second 
cues respectively, and w,  is the weight reflecting the validity of the second 
cue. If only a single cue is presented, the weight of the omitted cue is set 
to zero. Since w is presumed to depend only on the validity of a cue and 
s only on its value, Equation 1 predicts a bilinear interaction between the 
validity and value of a cue. It  predicts that the effect of the first cue will 
be independent of the presence of the second cue or its validity. Equation 
1 also predicts no interaction between the values of the cues. 

Equation 1 is a more general statement of the optimal multiple linear- 
regression model. The least-squares equation is the special case of Equa- 
tion 1 in which so equals the mean of Y, the values of s are the deviations 
of the cues about their means, and the weights are p i y ~ y / ~ x i ,where pip is 
the cue/criterion correlation and uy and axi are the standard deviations 
of criterion and cue respectively. The linear model is also a special case 
of Equation 1 in which the values of s are assumed to be equal to the 
objective cue values, X, but the other parameters are unconstrained. 
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Constant-weight averaging models 

The constant-weight averaging model (Birnbaum, Wong, and Won& 
1976) can be written 

Y* = (aso+ bwlsl + cw2s2)/(a+ b + c), [Equation 21 

where Y*, s, and w are defked as above and a, b, and c are constants 
that are independent of cue validity. When only the first cue is presented, 
c is set to zero. Like Equation 1, this model predicts a bilinear interaction 
between the validity and value of a cue and no interaction between cues. 
Unlike the additive model, however, Equation 2 predicts that the effect 
of each cue will be inversely related to the total number of available cues. 

The constant-weight model has formal similarities to the impression- 
formation model of Rosenbaum and Levin (1968, 1969), since it pre- 
dicts that the effect of a cue is independent of the validity of the other 
cue. The average-of-regressed-values model (Lichtenstein et al., 1975) is 
a special case of Equation 2 in which a = 0 and c = b = 1. Under these 
restrictions, the model could not accommodate an effect of set size: pre- 
dictions based on two independent, extreme values could be no more 
extreme than those based on one cue of the same value. By allowing a 
to attain positive values, however, Equation 2 can accommodate such an 
effect. 

Relative-weight averaging model 

The relative-weight averaging model (Anderson, 1971 ;Birnbaum et al., 
1976) can be written 

Y* = (WOS~+ wlsl + w2s2) /(wO + w1 + w2), [Equation 31 
where Y*, w, and s are defined as above. When a single cue is presented, 
the weight of the omitted cue is zero. It  is useful to conceptualize the 
value of so as the prediction based on no information and the value of ws 
as a type of predicted or 'regressed' value based on one cue, apart from 
all other effects. It  is then instmctive to rewrite Equation 3 in the form 

Y* =so + [w1 (s1 -so) + w, ($2 - so)]/(wo + W 1 +  w,). 
[Equation 41 

Written in this form, it can be seen that without information, the response 
will be so, and that with information, the response will deviate from so in 
proportion to an average of deviations. The relative weight of a cue will 
be directly proportional to its validity and inversely proportional to the 
validity of other cues. For example, the relative weight of the first cue 
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will be WI /(wo + w1 + wz); therefore, the greater the validity of the 
second cue (the larger the value of wz) ,the less the relative effect of the 
first cue. Similarly, the effect of the first cue will be greater when other 
cues are not presented, since the relative weight will be wl /(wo + wl). 

Previous tests of the models 

Birnbaurn et al. ( 1976) reported two experiments that tested the addi- 
tive, constant-weight averaging, and relative-weight averaging models. In  
one experiment, subjects estimated the value of used cars based on Blue 
Book value and an estimate provided by one of three friends who ex- 
amined the car. The friends differed in mechanical expertise. In the 
second experiment, subjects rated the likableness of a person described 
by two sources, who varied in their length of acquaintance with the 
person to be rated. In both experiments, both the additive model and the 
constant-weight averaging model could be rejected, since the effect of 
information provided by one source was inversely related to the expertise 
or credibility of the other source. The relative-weight model can account 
for these effects. These experiments tested sources whose credibilities are 
symbolically defined. Presumably, credibility/outcome relationships are 
learned from everyday experience outside the laboratory. Thus, the sym- 
bolically manipulated credibilities should be analogous to learned cue/cri- 
terion validities. This analogy predicts that if the cue/criterion relation- 
ships are learned within an experiment, the relative-weight model should 

apply 
Lichtenstein et al. (1975) trained subjects to predict a criterion from 

individual cues, then tested them with combinations of cues. The additive 
model was inconsistent with the data, since intuitive predictions became 
less extreme as moderate cue values were added to extreme values. Lich- 
tenstein et al. (1975) advanced an average-of-regressed-values model in 
which the hypothesized response is a simple average of the regressed values 
of the cues. As noted above, this model is a special case of the constant- 
weight averaging model considered by Birnbaum et al. (1976) ;see Equa- 
tion 2 above. Unfortunately, experiments like those of Lichtenstein et al. 
(1975) cannot in principle distinguish the constant-weight from the rela- 
tive-weight averaging model because cue validities are not independently 
varied. The present study was a test of the additive models favored by 
early research on this topic, the average-of-regressed-values model of 
Lichtenstein et al. (1975), and the relative-weight averaging model. This 
was accomplished by manipulating the validity of one cue independent 
of the validity of another cue. 
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METHOD 
The general procedure of the experiment was similar to that of Lichtenstein 

et al. (1975). Subjects were first trained to predict the criterion (Y) without 
any information, then with single cues (X) .  During training, subjects were given 
feedback so that they could learn the distributions of Y and X and the indi- 
vidual cue/criterion relationships. Finally, they were tested without feedback, 
predicting Y from pairs of independent cues or from single cues. 

Instructions 
Printed instructions explained the nature of the task and stated that the cri- 

terion, Y, had a mean of 20. In  the first phase of the training, subjects were 
shown a deck of plain white cards and asked to guess the value of Y that would 
occur on the back of the first card. After writing down their guess, Y*, the card 
was turned over to read, for example, 'Y = 18.' Then the subjects were trained 
to compute their residual, Y - Y*, and to square it, (Y - Y*)2. They made 
several guesses without information in this fashion, computing each time their 
'squared mistakes.' They were told that their goal was to make predictions as 
close to the actual values as possible, in the sense that the squared deviations 
would be minimal. 

In  the second phase of the training, the subjects were shown a deck of cards 
and told that one side of the card contained a 'hint,' a cue, X, that could be 
used to predict the value of the criterion, Y, printed on the other side of the 
card. I t  was explained that Y could not be perfectly predicted from X but that 
the average squared mistake would be reduced if the cue/criterion relationship 
was used. 

The subjects were told that all of the predictors, Xs, had means of 100 and 
identical distributions. They were informed that the first cue was low in validity 
( p  = .447) and that the second cue could be either low ( p  = .447) or high 
(p  = .894) in validity. The two cues would be independent, uncorrelated cues. 
One cue could not be predicted from the other, but both could be used to predict 
the criterion. 

Individual relationships were then learned in the following fashion. A deck 
of 25 cards was shuffled, the cue was identified as of low or high validity, and the 
subjects predicted Y from X. One side of the card might read 'XI = 130,' the 
subject would write down his prediction, then the card would be turned over to 
reveal, for example, 'Y = 24.' Figure 1 shows the relationships between the low- 
validity and high-validity cues and the criterion. The low-validity regression 
equation is given by the formula Y = (XI - 100)/15 + E, where XI = 70, 85, 
100, 115, or 130, and E = -4, -2, 0, 2, or 4. The 25 cards factorially com-
bined the five values of X, with the five values of E. The low-validity second 
cue, X,, had the same characteristics as XI. The criterion could be predicted 
from the high-validity cue from the equation Y = 2(X3 - 100)/15 + E, where 
values of X, = 70, 85, 100, 115, and 130 were factorially combined with E = 
-2, -1, 0, 1, or 2. 

After two blocks of training trials with each cue, the nature of the task was 
again discussed, the independence of the cues was emphasized, and another 
block of training trials with each type of cue was presented to clarify the indi- 
vidual relationships between each type of cue and the criterion. Then the sub- 
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Figure 1. Individual cue/criterion relationships used for training. At the left, 
the relationship between the low-validity cue, XI, and criterion, Y; the correla-
tion for X, was the same. At the right, the relationship between the high-
validity cue, X,, and criterion, Y 

jects were told to make the best predictions they could, based on either one 
cue or two independent cues. 

Design 
The testing trials were constructed from a 2 (validity of the second cue) X 5 

(value of the second cue) X 5 (value of the first cue) factorial design, in which 
the first cue (XI) was always designated as low in validity (ply = .447), the 
second cue (X, or X,) was either low (pZy= .447) or high ( P , ~= .894) in 
validity, and each cue could take on five values: 70, 85, 100, 115, and 130. 
Fifteen additional test trials were produced by the inclusion of single-cue values 
for XI, X,, and X,. 

Subjects 

The subjects were 53 undergraduates at the University of Illinois at Urbana-
Champaign. Of these 53, a subset of 20 were enrolled in a course in psychological 
statistics; the rest were students in introductory psychology who received extra 
course credit for participating in the experiment. A small number of additional 
undergraduates were tested, but failed to follow instructions. 

RESULTS 

T h e  mean intuitive predictions are plotted as solid points in Figure 2 
as a function of the value of the second cue, with separate curves for dif-
ferent values of the first cue, XI. T h e  curves a t  the left show the results 
when the second cue was low in  validity ( X , )  ; the curves a t  the right 
show the results when the  second cue was high in  validity (X,) .  T h e  
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Figure 2. Mean intuitive predictions as a function of the second cue, with a 
separate curve for each level of the first cue, XI. At the left, the results for the 
low-validity second cue, X,. At the right, the results for the high-validity second 
cue, X,. Open circles and dashed lines plot intuitive predictions based on a 
single cue of low (at the left) or high (at the right) validity 

slopes of the curves represent the effects of the second cue; the vertical 
separations represent the effects of the first cue. Consistent with all of the 
models, and with the fact that the independent cues were all positively 
correlated with the criterion, it can be seen that the predictions were 
monotonically increasing functions of each cue's value. 

Figure 2 also illustrates that a given variation for the high-validity cue 
had a greater effect on the prediction than the same variation for a low-
validity cue: the slopes at  the right are much greater than the slopes at 
the left. The interaction between cue value and cue validity was statisti- 
cally significant [F(4,208) = 52.391. This change in slope is predicted by 
the multiplicative relation between cue value (s) and cue validity ( w )  
posited by all of the models. Of the 53 subjects, 47 showed this pattern, 
indicating that they detected and utilized the cue/criterion validities. 

The open circles connected by dashed curves represent intuitive pre- 
dictions based on a single low-validity cue (at the left) or a single high- 
validity cue (at the right). The additive model of Equation 1 can be 
rejected, since it predicts that the dashed curves should parallel the solid 
curves- that the effect of each cue should be independent of the pres- 
ence of the other cue. Instead, the effect of each cue was greater when 
presented alone than in combination with another cue. The fact that the 
dashed curves cross the solid curves rules out Equation 1. 

The constant-weight model of Equation 2 can also be rejected on the 
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basis of these data, since it predicts that the effect of each cue will be 
independent of the validity of the other cue. Instead, the effect of X, 
(the spread of the curves) was less when combined with the high-validity 
cue (at the right of Figure 2) than when combined with the low-validity 
cue (at the left). This interaction was significant [F(4,208) = 24.281. 
Single-subject analyses revealed that 47 of the 53 subjects showed this 
crossover interaction, including 18 of the 20 statistics students. Therefore, 
the constant-weight model can be rejected. This result also eliminates the 
average-of-regressed-values model (Lichtenstein et al., 1975), since it is 
a special case of Equation 2. 

These findings, which rule out Equations 1 and 2, are predicted by 
Equation 3. Since the effect of the low-validity cue is proportional to its 
relative weight, it should be clear that when only a single cue is presented, 
the effect of the cue will be proportional to wl/(wo + wl) ; when an 
additional cue is presented, the effect of the first cue will be reduced, 
wl/(wO + w1 + wZ). Furthermore, the greater the weight of the second 
cue ( w ~ ) ,  the less the relative weight of the first cue. Therefore, the rela- 
tive-weight model of Equation 3 gives a simple account of these qualita- 
tive effects. 

Equation 3 was fit to the data using STEPIT, a parameter-estimation 
subroutine (Chandler, 1969), programmed to minimize the squared de- 
viations from the model. Since the distributions of the predictors were 
identical, the scale values were assumed to be the same for XI, X,, and 
X3. Similarly, the weight of X, was assumed to be the same as the weight 
of X,, since the validities were the same. The best-fit estimates of weights 
(with wo arbitrarily set to 1.0) were wl,, = 1.64 and migh= 5.21; scale 
values were so= 18.67, s70 = 15.62; s8, = 17.47, sloo = 20.36, s,,, = 
22.60, and s,,, = 25.60. The mean squared discrepancy for the 60 means 
was .OM, apparently a close fit. Inspection of the residuals did not reveal 
any systematic pattern of errors. All of the models predict that the solid 
curves in Figure 2 should be parallel. The curves do appear approxi- 
mately parallel; however, the small deviations from parallelism were of 
borderline statistical significance [F (16,832) = 2.041. 

Figure 3 plots mean judgments for the two-cue data (solid points in 
Figure 2) as a function of the cues' scale values (derived from the fit of 
Equation 3) .  The left of Figure 3 plots mean judgments averaged over 
values of XI as a function of the scale value of the second cue. The two 
different slopes represent the low- and high-validity second cues. The 
model predicts that the interaction between cue value and cue validity 
should be bilinear, with slopes proportional to wl,,/(wo + 2w,,,) and 
w,igh/(wO+ W ~ O W+ whigh). The empirical points fall close to the pre- 
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Figure 3. Mean intuitive predictions based on two cues as a function of the 
cues' scale value. Lines are theoretical predictions based on the relative-weight 
averaging model, points are empirical. Curves at the left plot predictions as a 
function of the second cue, with a separate curve for each level of its validity. 
Curves at the right show the effect of the first cue, with a separate curve for each 
level of validity of the second cue. The interaction of the curves at the right 
rules out the additive and the constant-weight averaging models 

dicted lines, showing that the weights derived by STEPIT give a good 
fit to this relationship. 

The right of Figure 3 plots an important test of the models. Mean 
judgments are plotted as a function of the scale value of the first cue, 
with a separate curve for each level of validity of the second cue. The 
additive and constant-weight averaging models predict no interaction. 
There is no necessary connection between the interactions at the left and 
right of Figure 3. Therefore, the relative-weight averaging model receives 
some measure of support from the fact that it correctly predicts the slopes. 
The same weights that increase the slopes at the left decrease the slopes 
at the right, since they appear in the denominators of the expressions for 
the relative weights, w ~ , ~ / ( w ~I+~wI,,)and wlo,/(wo4- wlow+ whigh). 
Again, the data appear to be well fit by the predicted lines. In brief, in 
spite of some small deviations, the relative-weight averaging model ap- 
pears to give a good account of the important features of the data. 

Correlational analyses 

To illustrate the difference between the present methods of analysis 
and the correlational techniques that have been utilized in previous re-
search on this topic, mean intuitive predictions were fit by multiple regres-
sion as linear functions of the objective values of the cues. 
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The linear model correlated .984 with either set of two-cue data (solid 
points), at the left and right of Figure 2, analyzed separately. Further- 
more the optimal regression equation (optimal weights) correlated .979 
with all of the two-cue data. These correlations are considered 'high' 
by contemporary standards, yet the model they represent cannot account 
for the crossover interactions in Figure 2 and at the right of Figure 3. 
Such crossing curves, although inconsistent with addivitity, can achieve 
high correlations with additive models (Birnbaum, 1973, 1974b) ; there-
fore, large correlations should not be interpreted to mean that data are 
theoretically compatible with the model. Unless extraneous factors are 
unconfounded, correlations can even be higher for less appropriate models 
than for correct models (Birnbaum, 1973, 1974b). In the present case, 
the correlation between predictions from the relative-weight averaging 
model of Equation 3 is higher (.995) than for the other models, but its 
superiority should be judged on the basis of its ability to account for 
qualitative features of the data rather than for its higher correlation. 

I t  is interesting to compare the linear 'model of the subjects' with the 
optimal regression equation. The optimal weights for low- and high- 
validity cues are .067 and .I33 respectively. For the XI X X, subdesign, 
the predictions were fit by the equation 

Y* = 7.32 4- .0637Xl + .0625X2, [Equation 51 

where Y* is the subject's prediction. The XI X X3 combinations were fit 
by the equation 

Y* = 5.62 + .0353X, + .1095X3. [Equation 61 

By comparing the two equations, it can be seen that the regression coeffi- 
cient for XI changes depending on whether X, or X3 is paired with it. 
Had only the XI X X2 design been used, one might be tempted to con- 
clude that subjects are not only like multiple-regression equations but also 
discover the appropriate coefficients! Had only the XI X X3 design been 
used, one might tend to conclude that subjects are 'conservative,' since 
the weights were less than optimal. In this language, the single-cue results 
could be called 'counterconservative.' From the viewpoint of normative 
theory, then, the present experiment finds evidence of 'optimal' behavior, 
'conservative' behavior, and 'counterconservative' behavior. I t  should be 
clear that these terms are descriptions, not explanations. All of these 
effects -the finding that the weights vary directly with the cue validities, 
vary inversely with the number of cues available, and vary inversely with 
the sum of the validities of all of the cues -that would be so puzzling 
without a proper descriptive theory can be explained by Equation 3. 
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DISCUSSION 
The intuitive numerical predictions refute both the additive model of 

Equation 1 and the constant-weight averaging model of Equation 2. 
Much of the early research in intuitive prediction was interpreted as s u p  
port of the additive model, but it reported only correlations between pre- 
dicted and obtained responses. Since these correlations are not useful for 
purposes of theoretical interpretation (Anderson, 1972; Birnbaum, 1973, 
1974b; Lichtenstein et al., 1975), it is difficult to know how to interpret 
early research on this problem. The inverse crossover interaction in Fig- 
ure 3 demonstrates that the effect of the first cue is inversely related to 
the validity of the second cue. This finding rules out the additive model 
and the constant-weight averaging model, including the average-of-re- 
gressed-values model of Lichtenstein et al. (1975). Instead, the data are 
consistent with the predictions of the relative-weight averaging model. 

In addition to functional measurement (Anderson, 1971, 1972, 1974 ; 
Birnbaum, 1973, 1974a, 197413; Levin, 1975), the design of the present 
experiment permits differentiation among the models under investigation. 
A single two-factor design cannot in principle differentiate the additive 
from the averaging models (Anderson, 1971). But by varying the number 
of cues, the additive can be differentiated from the averaging models 
(Anderson, 1974; Lichtenstein et al., 1975). And by varying the validity 
of one cue independent of another, it is possible to differentiate relative- 
weight from constant-weight averaging models (Birnbaum et al., 1976) . 

The present results are consistent with those obtained by Birnbaum 
et al. (1976) for estimates of the values of used cars based on Blue Book 
value and friends' estimates and those for ratings of the likableness of 
persons described by sources of different credibility. Consistent with the 
relative-weight averaging formulation of Equation 3, both experiments 
found that the greater the credibility of one source, the less the effect of 
information provided by another source. Thus, source credibility in im- 
pression formation can be modeled in the same way as cue validity in 
multiple-cue prediction. 

Kahnemann and Tversky (1973) have argued that intuitive statistics 
follow a heuristic of 'representativeness': intuitive predictions are sup- 
posed to be representative of the evidence. While Kahnemann and Tver- 
sky (1973) did not discuss the situation of the present experiment, 'aver- 
aging' seems consistent with the notion of representativeness, since subjects 
would probably judge an average to be representative of a set of scores. 
However, the models considered here are more precise than the notion of 
representativeness, which appears to attempt to explain one dimension, 
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intuitive prediction, in terms of other psychological dimensions, 'similar- 
ity' and 'representativeness,' that themselves need explanation. 

The qualitative results implied by the averaging model of Equation 3 
can also be interpreted in terms of the statistical regression equation if 
the 'independent' cues are intuitively correlated. The regression coefficient 
of a cue, Xt will be proportional to JB1; that is, 

PI = (ply - p12 P Z Y ) / ( ~  - PI^^), [Equation 71 

where ply is the validity of the cue, pzY is the validity of the other cue, 
and plz is the cue intercorrelation. Assuming all of the correlations are 
positive, Equation 7 implies that the effect of a cue should be inversely 
related to the validity of another cue. This could be taken to suggest that 
subjects do not understand independence but act as if they thought that 
'independent' estimates of the same quantity should be correlated. 

This suggestion loses some of its appeal when one considers that similar 
results were found for six graduate students at the University of Illinois. 
Three were majoring in quantitative psychology and had extensive experi- 
ence in multivariate statistics. These students should understand the inde- 
pendence of the cues, which was made clear by a diagram of the factorial 
combinations of predictors. One student, majoring in social psychology, 
compulsively computed the optimal values. The other five graduate stu- 
dents, including the three in quantitative psychology, performed the task 
intuitively, with results nearly identical to those shown in Figures 2 and 3. 
When the results were explained to these last five students, some reported 
that their intuitive predictions had 'felt right' and that the experiment 
and its explanation gave them new insights into both multiple regression 
and human judgment. 

In summary, intuitive predictions are inconsistent with the additive 
model and the constant-weight averaging model, including the simple 
average-of-regressed-values model. Instead, intuitive predictions appear 
compatible with the relative-weight averaging model in which regressed 
subjective values are averaged using weights that depend on their 
validities. 

Notes 
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