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Subjects judged the values of lotteries from 3 points of view: the highest price that a buyer should
pay, the lowest price that a seller should accept, and the “fair” price. The rank order of judgments
changed as a function of point of view. Data also showed violations of branch independence and
monotonicity (dominance). These findings pose difficulties for nonconfigural theories of decision
making, such as subjective expected utility theory, but can be described by configural-weight
theory. Configural weighting is similar to rank-dependent utility theory, except that the weight
of the lowest outcome in a gamble depends on the viewpoint, and 0O-valued outcomes receive
differential weighting. Configural-weight theory predicted the effect of viewpoint, the violations
of branch independence, and the violations of monotonicity, using a single scale of utility that is
independent of the lottery and the point of view.

In order to study how people evaluate and choose among
alternatives, experimental psychologists have investigated
judgments of lotteries. With lotteries, one can manipulate
what appear to be crucial ingredients in judgment and deci-
sion making: the alternatives, the outcomes, and probabilities
of the outcomes. Gambles therefore seem to provide a fruitful
paradigm for the investigation of decisions (Edwards, 1954;
Fishburn, 1970, 1983; Kahneman & Tversky, 1979; Keeney
& Raiffa, 1976; Savage, 1954; Slovic, Lichtenstein, &
Fischhoff, 1988; Stigler, 1950a, 1950b; von Neumann &
Morgenstern, 1947; von Winterfeldt & Edwards, 1986).

For example, suppose that a fair coin will be tossed and if
the outcome is heads, then $96 will be won; otherwise, no
money is won. How much should a buyer be willing to pay
for this lottery, which offers a .50 chance to win $96? Although
the expected value is $48, few people say they would pay
more than $35 to buy this gamble.

One of the enduring problems in the psychology of decision
making is to understand the difference between the expected
values of lotteries and the values that people place on them.
The major explanation of such “risk aversion,” a preference
for a sure gain over a gamble with the same expected value,
has been the theory that the utility of money is nonlinear
(e.g., Becker & Sarin, 1987; Keeney & Raiffa, 1976).
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Although utility theories have proved helpful to those who
advise decision makers on what they should do, utility theories
have run into difficulty explaining how people actually do
make judgments and decisions (Allais, 1979; Birnbaum &
Sutton, in press; Edwards, 1954; Ellsberg, 1961; Kahneman
& Tversky, 1979; Karmarkar, 1978; Luce, 1992; Machina,
1982; Miyamoto, 1989; Payne, 1973; Schoemaker, 1982;
Shanteau, 1974, 1975; Slovic et al., 1988; Tversky & Kahne-
man, 1986; von Winterfeldt & Edwards, 1986). This article
explores configural-weight theory, which may be able to ex-
plain certain results that have posed difficulty for expected
utility theories.

Subjective Expected Utility Theory

Subjective expected utility (SEU) theory attempts to explain
empirical phenomena in the evaluation and choice among
gambles by postulating psychophysical transformations of
both probability and monetary amounts. The SEU of a gam-
ble can be written as follows:

SEU = Ys(p)u(x), (D

in which s(p;) is the subjective probability of outcome x; with
numerical probability p;, and u(x;) is the utility of receiving
an outcome with objective value x;.

SEU theory, as written in Equation I, provides a flexible,
general formulation that includes many interesting special
cases and variations. In SEU theory, it is usually assumed that
>s(p.) = 1, although this assumption is not always imposed.'
The objective values, x, are usually defined as changes from
a current value in psychological applications, although they

' The assumption that subjective probabilities (or weights) sum to
1 constrains the s(p) function. For example, for two outcome gam-
bles, s(.50) = .50, because 5(.50) + s(.50) = 1.
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are sometimes defined as final states of wealth in certain
applications (Edwards, 1954). If s(p;) = p,, then Equation 1
reduces to expected utility (EU) theory; if u(x;) = x;, then
SEU reduces to subjective expected value (SEV); and if both
of these assumptions are made, SEU reduces to expected
value (EV) theory.

Figure 1 illustrates the concept of “risk aversion” in EU
theory. Suppose the judge decides that a 50-50 chance to
receive $96 or $0 is worth $24. In EU theory, this indifference
would be interpreted as follows:

1($24) = .501(30) + .50u($96).

In EU theory, the judge would be said to be “risk averse”
because the expected value ($48) would be preferable to the
gamble. In EU theory, risk aversion is explained by a nega-
tively accelerated utility function, as illustrated in Figure 1.
We calibrate the scale so that #($0) = 0 and u($96) = 1;
hence, 1{$24) = .50. Therefore, we can construct the u(x)
function through the point ($24, .50), as shown by the leftmost
curve in Figure 1. With more gambles, u(x) could be deter-
mined with greater precision, and the rank order of gambles
would satisfy a measurement structure that would define u(x)
to an interval scale (Krantz, Luce, Suppes, & Tversky, 1971).

In the framework of utility theory, if another person
equated the same gamble to $72, that case would be called
“risk seeking.” Such behavior would be explained by a posi-
tively accelerated utility function, as illustrated by the right-
most curve in Figure 1. A person who equates gambles to
their expected values is said to be “risk neutral,” and such
behavior would be represented by a linear utility function,
shown in the center of Figure 1.

To construct these utility functions, the utility of the gamble
was assumed to be .50, on the basis of the assumption in
Equation | that s(.50) = .50, and the conclusion was that the

50-50 Chance to Win $0 or $96

1.0
"risk averse"
2 l
[
&
> 0.5 -
=
"risk seeking"
0.0 L L T
0 24 48 72 96
Judged Value of Gamble
Figure 1. Utility function as an explanation of “risk aversion” and

“risk seeking.” (For example, if a subject equates the gamble [$96,
.50, $0] to $24, the subject is said to be risk averse and the utility
function is assumed to be concave downward, as shown by the curve
through the point {$24, .50].)

utility function was concave or convex, depending on the
judge’s behavior. However, the results that imply nonlinear
utility functions under EU theory do not necessarily require
nonlinear utility functions in configural-weight theory.

Configural-Weight Theory

Configural-weight theory (Birnbaum, 1974, 1982) is a the-
ory rivaling parallel-averaging models, such as SEU and its
variants. In configural-weight theories, the weight of a stim-
ulus component depends on the relation between that com-
ponent and the pattern of other stimulus components pre-
sented (Birnbaum, 1972, 1973, 1974, 1982; Birnbaum, Par-
ducci, & Gifford, 1971; Birnbaum & Stegner, 1979, 1981;
Birnbaum & Veit, 1974). Configural weighting can account
for results that are incompatible with additive models; it does
not equate attitudes toward risk with the utility function; and
it can yield different measurement scales of utility. Configural-
weight theory is closely related to dual bilinear utility theory
and rank-dependent utility theory (Chew, Karni, & Safra,
1987; Karni & Safra, 1987; Lopes, 1990; Luce & Fishburn,
1991; Luce & Narens, 1985; Quiggin, 1982; Wakker, 1989;
Yaari, 1987), which were developed independently.

Luce and Narens (1985) derived dual bilinear utility theory
as the most general representation of its class that is compat-
ible with interval scales of utility. They showed that dual-
bilinear utility theory accommodates many findings that have
been taken as evidence against EU theory. Luce (1991) pre-
sented a rank- and sign-dependent theory that generalizes
prospect theory (Kahneman & Tversky, 1979; see also Luce
& Fishburn, 1991).

To illustrate configural weighting, it is instructive to con-
sider gambles of the form “Win x if Event 4 occurs; otherwise,
receive p.” These gambles are denoted (x, 4, y); when the
objective probability of Event A is specified, the gambles are
written (x, p, ), where p is the probability of receiving x.
Gambiles that hinge on two equally likely events (“50-50")
gambles are denoted (x, .50, y). According to a simple con-
figural-weight theory, called the range model (Birnbaum et
al., 1971), the utility (U) of such lotteries can be written as
follows:

U(x, .50, y) = .50u(x) + .50u(y) + w| u(x) — u(y)|, (2)

in which w is the weight of the range term. As noted by
Birnbaum (1974, p. 559), the range model can be interpreted
as rank-dependent configural weighting. When u(x) > u(y),
Equation 2 can be written as

U(x, .50, y) = (.50 + wu(x) + (.50 — wiu(y), (2a)
when u(x) = u(y), Equation 2 reduces to

U(x, .50, y) = u(x), (2b)
and when u(x) < u(y), it becomes

U(x, .50, y) = (.50 — wiu(x) + (.50 + wu(y). (2¢)

Note that if w is zero, then Equation 2 reduces to EU theory.
Equations 2a, 2b, and 2c are equivalent to dual bilinear utility
theory for this case (Luce & Narens, 1985).
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Figure 2 illustrates the effects of w. The upper row of Figure
2 shows U(x, A, y) as a function of #(x) with a separate curve
for each level of u(y). The values were calculated from Equa-
tion 2, with successive integers from 1 to 9 as the values of
u(x) and u(p). In the left panel, w = —.50; in the center panel,
w = 0; in the right panel, w = +.50. The change in vertical
spread between the curves in the top panels depends on the
value of w: When w < 0, the curves diverge to the right; when
w > 0, they converge to the right. In the extreme cases, the
gambile is either as bad as its worst outcome (when w = —.50)
or as good as its best outcome (when w = +.50). As the value
of w varies from —.50 to 0 to .50, the model changes from a
minimum model to an additive model to a maximum model.

The center row of panels in Figure 2 illustrates the form of
the corresponding indifference curves for each value of w. In
each panel, each curve represents the locus of points of u(x)
and u(y) that produce a constant value of U(x, 4, y). The
indifference curves are piecewise linear functions with slopes

w=-5 w=-25

U(xAy)

U(x) = Utility of Outcome x

Uy)
I

w=90
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that differ for x > y and x < y, in which the changes in slope
depend on w.

Birnbaum (1974, 1982) noted that it may be possible to fit
data from a single finite experiment under the incorrect
assumption that w = 0 but that this solution would lead to
inappropriate estimates of subjective value. If subjective val-
ues are known or if they can be assumed to be the same as
those that operate in another empirical situation involving
the same stimuli, it becomes possible to impose more rigid
constraints in order to test the model and to estimate w.

To illustrate how assumptions about configural weighting
can affect the estimation of utility functions, we applied
MONANOVA, a computer program for ordinal analysis of
additive models (Kruskal & Carmone, 1969), to the hypo-
thetical data shown in the top row of Figure 2. The program
attempts to find U*(x) and U*(y) so that U*(x) + U*(y)
reproduces the rank order of U(x, 4, y); in other words, it
finds the estimated utility functions according to SEU theory.

=0 w =.25 w
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Figure 2. Predictions of configural-weight theory. (Upper row of panels shows utility of 50-50 gambles
as a function of the utility of outcome x with a separate curve for the utility of outcome y; panels from
left to right show predictions for different values of w from —.5 to +.5. Middle row of panels shows
corresponding indifference curves. Lower row of panels shows relation between estimated utility function
and actual utility function if the subjective expected utility model is applied to data generated by

configural-weight theory.)
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The bottom row of Figure 2 shows the relation between the
estimated U*(x) function and the “true” u(x) function, with
a separate panel for each value of w. These graphs show that
the estimated utility function depends strongly on the as-
sumed and actual values of w. When w < 0, U*(x) is a
negatively accelerated function of u(x); when w> 0, U*(x) is
a positively accelerated function of #(x). This apparent change
in U*(x) is an artifact of the incorrect assumption about w.

Figure 2 shows that configural weighting provides a distinct
interpretation of “risk aversion” from the interpretation of
EU theory, because even when u(x) is a linear function of x,
if w < 0, the subject can prefer the expected value of a gamble
to the risky gamble itself. In configural-weight theory, the
subject could be characterized as “risk averse” or “risk seek-
ing” as the value of w varies from negative to positive,
respectively. In this theory, u(x) represents a psychophysical
function that characterizes the subjective value of money,
apart from risk. With regard to the example in Figure 1, if a
subject equates the gamble ($96, .50, $0) to $24, configural-
weight theory could explain the result with a linear utility
function, u(x) = x, if w= —.25.

Consideration of such examples and the relations in Figure
2 reveals that it is difficult on the basis of a single investigation
to test between the SEU and configural-weight theories be-
cause the estimations of the u(x) function and of the param-
eter w can trade off in describing the same phenomena.
However, with proper designs and constraints, configural
weighting can be tested against nonconfigural models such as
SEU (Birnbaum, 1973, 1974, 1982; Birnbaum & Stegner,
1979; Birnbaum & Sutton, in press). In particular, the present
experiments attempt to manipulate w by changing the sub-
ject's point of view.

Point of View

In this study, judges were asked to evaluate lotteries from
different viewpoints. For the buyer’s point of view, judges
were asked to state the highest price that a buyer should pay
to purchase the opportunity to play a gamble. For the seller’s
point of view, they were asked to judge the lowest price that
a seller should accept to give up the gamble, rather than to
play it. For a rneutral point of view, judges were asked for a
“fair price” for the buyer to pay the seller.

Buyer’s and seller’s judgments of value of gambles were
employed by Coombs, Bezembinder, and Goode (1967) and
by Lichtenstein and Slovic (1971) in order to show the gen-
erality of other results to the two kinds of judgments, and
they have been of interest to economists, who view the dis-
crepancy between these judgments as contrary to economic
theory (Harless, 1989; Knetsch & Sinden, 1984).

According to economic theory, buyer’s and seller’s prices
are not expected to be equal except under special circum-
stances (Raiffa, 1968) because it is reasonable to theorize that
buyers and sellers work from different levels of wealth on the
utility function. However, the difference between buyer’s and
seller’s prices is too large to be explained by this “income
effect,” as noted, for example, by Knetsch and Sinden (1984),
who ascertained willingness to buy or sell lottery tickets when
subjects were given either money or a ticket and were given

the opportunity to exchange. Because the subjects were ran-
domly assigned to receive money or the ticket, income levels
should have been equivalent, and hence the proportion of
subjects who preferred the money or the ticket should have
been independent of which had been given initially. Instead,
subjects were reluctant to exchange, which resulted in higher
selling than buying prices.

Point of view as an experimental manipulation could in
principle affect either the configural weight, w, or the utility
function, u(x), or both. According to utility theory, point of
view should affect only the utilities, and even that effect can
be represented as a translation in the outcomes between
buyer’s and seller’s points of view (see Harless, 1989).

Birnbaum and Stegner (1979, Experiment 5) asked subjects
to judge value from the buyer’s, the seller’s, or the neutral
point of view. The authors found that the rank order of
judgments was systematically changed. Their analysis allowed
weights and utilities of estimates to depend on the bias and
the expertise of the sources of information and also on the
relation between the source’s bias and the judge’s point of
view. Birnbaum and Stegner (1979) concluded, among other
findings, that the judge’s point of view affected the configural
weight and that the change in configural weighting explained
the changes in rank order, as depicted in Figure 2.

Extensions and Special Cases of Configural Weighting

Configural-weight theory permits a different w for each
value of probability. For gambles between two positive out-
comes, with probability p to win x, the model can be rewritten
as follows: when u(x) < u(y),

Ulx, p, y) = S, (p)u(x) + (1 = S.(0)u(y); (3a)

when u(x) = u(y),

Ulx, p, y) = u(x); (3b)

and when u(x) > u(y),

Ule,p,y) =S, (1 =pu(y) +(1 =S, (1 =phu(x),  (3c)

in which x is received with probability p, and y is received
with probability 1 — p; S.(p) is the weight of the lower valued
outcome when u(x) < u(y), and Sy(1 — p) is the weight of
the lower valued outcome when u(x) > u(y). In Expression
3, the weights are assumed to sum to 1, but the equation does
not require (nor is it usually the case) that S;(1 — p) =1 —
Sc(p).

In this study, different weights were also estimated for the
cases in which x = 0 and x > 0. T. Anderson and Birnbaum
(1976) applied a model in which neutral-valued stimulus
components receive less weight than components that are
either positive or negative. If there are different weighting
functions for these two cases (zero vs. nonzero), then the
model may predict violations of monotonicity (Birmbaum &
Sutton, in press; Mellers, Weiss, & Birnbaum, in press).

If point of view affects these configural-weighting functions,
there could be a different S; function for each point of view,
Syr(p). Configural-weighting theory can be rationalized and
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simplified by the assumption that subjects act as if they were
minimizing an asymmetric loss function whose asymmetry is
affected by the point of view (Birnbaum, 1987). This ration-
alization leads to the following expression:

avS(p)
arS(p) + (1 —arXl = S(p))’

in which ay is the effect of point of view on the weight of the
lower valued outcome and S(p) is a function of probability.
Equation 4 is a simplification of Equation 3 in which point
of view is represented by a single parameter, rather than an
entire function.

For comparison with Equation 2 and Figure 2, when S(p)
= .50, a, = .50 — w; hence a value of a,, = .25 corresponds
to w =25, and a, = .75 corresponds to w = —.25. Derivation
of Expression 4 from the loss function rationale is explained
in the next section.

Svi(p) = 4

Loss Function Rationale for Configural Weighting

Suppose it were desired to select a value 7 so as to minimize
the expected squared deviation between ¢ and a set of values,
X;, that occur with probabilities p(x;). The loss function can
be written

L(t) = X(x; — 1)’p(x), &)

in which ¥, p(x;) = 1. By taking the derivative with respect to
t, setting it to zero, and checking the sign of the second
derivative, it can be shown that the minimum value occurs
when ¢ is chosen as follows:

t = Y p(x)x;.

Hence choosing ¢ as the expected value minimizes Expression
5. The expected value (the mean) is the point at which the
probability distribution balances, and, as shown above, it is
the value that minimizes the expectation of squared devia-
tions.

If it were desired to minimize squared deviations in the
utilities, expected utility is the solution. Furthermore, if the
weights were chosen as s( p(x;)), then SEU theory would be
derived. These derivations make use of loss functions that are
symmetric, because a squared deviation depends only on the
absolute deviation and not its sign. Even after transformation
to utilities, the loss function would be symmetric with respect
to utilities.

Now suppose that errors, or deviations, cause asymmetric
losses. For example, when one estimates how much food to
purchase for a party, the psychological costs of purchasing too
much (having leftovers and waste) versus purchasing too little
(and leaving guests underfed) may not be equal. The concept
of an asymmetric loss function is similar to the analysis of
payoffs in signal-detection theory and to some of the intuitions
motivating regret theory (Loomes & Sugden, 1982). The
buyer’s and seller’s points of view presumably induce different
asymmetric concerns for over- or underestimating value. For
example, when instructed to estimate the highest price that a
buyer should pay, the judge considers it a costly error to set
too high a price (because the buyer would suffer a loss) but a

less costly error to offer too little (violating the instruction to
judge the highest price).

Figure 3 illustrates a case of asymmetric losses, which are
specified as follows:

L(t) = a(x — 1),
= (1 — a)x — t),

Suppose there are two values, x; and x,, which occur with
probability p and 1 ~ p. (For example, x might be the amount
of food required for a party: x, if Bob does not show up and
X; if he does). The weights @ and 1 — a represent the relative
costs of over- or underestimating; for example, a > (1 — a) if
it is more important not to waste food than to leave the guests
wanting more; otherwise, 2 < (1 — a). Taking the derivative
of the expected loss and setting it to zero, we have for x; <1t
< X3

L'(t)=palxi — 1) + (1 — pX1 — a)}x2 — 1) =0
therefore,
t=[pax, + (1 — p)(1 — a)x;)/[pa + (1 — p){1 — a)]. (6)

Hence ¢ is a configurally weighted average of x; and x,.
Equation 4 follows from Equation 6, substituting u#(x) for x,
S(p) for p, and a, for a. The example in Figure 3 illustrates
the situation for two equally likely values, x; = 100 and x; =
200, with a = .75 (corresponding to w = —.25); the solution,
t = 125, is shown in the figure.

Figure 4 shows the relation between Sy, (p) and S(p) as
point of view, ay, is varied. This figure illustrates the impli-
cation of Equation 4 for the relation between weight of
probability and point of view. As a first reaction, one might
have wondered whether the introduction of loss functions is
an unnecessarily complex rationale for configural weighting,
except that this rationale leads to the simplification of Equa-
tion 4, which has the testable implication indicated in Figure
4. This theoretical interpretation of configural weighting also

ift=x

ift < x.

Asymmetric Loss Functions

20000

10000 1

Loss Functions

200

300

Figure 3. Asymmetric loss functions and expected loss as a function
of estimated value, for hypothetical example discussed in text.
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Relative Weight

0.0 0.2 0.4 0.6 0.8 1.0
S(p)

Figure 4. Relative weight of a stimulus as a function of S(p) (a
function of probability), with a separate curve for each value of ay
(effect of point of view on the lower valued outcome), according to
Equation 4.

suggests that manipulations that asymmetrically affect the
costs of errors should have predictable effects on configural
weights. This interpretation offers an organizing principle for
understanding the effect of point of view and other motiva-
tional factors.

Purposes of Present Research

The present article explores three implications of con-
figural-weight theory that could pose difficulties for SEU
theory. First, both experiments test whether point of view
produces a change in rank order of the gambles that are of
the specific form predicted by the theory that point of view
affects the configural weight of the higher or lower amounts
(Figure 2).

Second, Experiment | tests a particular implication of
configural-weight theory for an anticipated violation of
branch independence. Branch independence is the property
that if two gambles have branches (probability and outcome)
that are identical, these common branches should have no
effect on the ordering produced by other branches. Branch
independence is implied by Equation 1 because if two gambles
have identical branches, the product of s(p)u(x) for that
branch can be subtracted from both gambles. However, con-
figural-weight theory allows violations because the weight of
an outcome depends on its position among the outcomes; the
same branch could have different weightings in different
gambles, depending on the other outcomes in the gamble.

Third, Experiment 2 investigates a possible violation of
monotonicity that would be implied by configural-weight
theory if the weight of an outcome depends on its value.
Monotonicity is the property that if u(a) > u(b), U(a, p, z) >
U(b, p, z) for any p and z. This property, sometimes called
dominance, is required by Equation 1. Some configural the-
ories, such as dual bilinear utility theory (Luce, 1986; Luce &
Narens, 1985) and rank- and sign-dependent utility theory

(Luce & Fishburn, 1991), were developed in accordance with
the assumption of monotonicity. However, less restrictive
configural-weight models devised to account for judgment
results in other domains do not require monotonicity (T.
Anderson & Birnbaum, 1976; Birnbaum & Sutton, in press).

Method

The subjects’ task was to judge the values of lotteries from the
buyer’s, the seller’s, and the neutral points of view. For example,
consider a 50-50 bet to win either $96 or $0. What is the most that
a buyer should pay in order to play this gamble? What is the least
that a seller should accept to sell the chance to play the gamble? What
is the fair price? In two experiments, the same stimulus format and
instructions were used, but there were different subjects and different
designs for constructing the lotteries.

Stimuli

The stimuli in both experiments were presented in the format of
the following example:

.80 .20
$0 $80°

which represented a lottery with a .20 probability to win $80 and a
.80 chance to win $0. The gambles were described as lotteries in
which one slip of paper would be drawn at random from a container
holding many equally likely slips of paper, and the amount specified
on the slip would be paid to the player. Probability was characterized
as the number of slips per 100 that would yield each amount to win.

Instructions

The instructions read (in part) as follows:

In the buyer’s point of view, imagine that you are deciding the
most that a buyer should pay to buy the chance to play the
lottery. The buyer exchanges money for the chance to play the
lottery. If the lottery pays off, the buyer can profit; if not, the
buyer can lose the difference between the amount won and the
price of the lottery. . . . The buyer wants to pay as little as possible
and to have as good a chance of winning good payoffs as possible.
The buyer will be upset with you if you advise the buyer to pay
for gambles that lose too much money. Remember, you are
asked to advise the buyer the most he or she should be willing to
pay to get to play the lottery.

In the seller’s point of view, . . . you are deciding, what is the
least that a seller should accept to sell the lottery. The seller
receives money and gives up the chance to play the lottery. Thus,
if the lottery pays off, the seller would have been better off to
have kept the lottery than to have sold it, but if the lottery doesn’t
pay off (or pays only a little) the seller profits by selling. . . . The
seller wants to receive as much as possible for each gamble. The
seller will be upset if you advise selling a gamble for a low price
that pays off the buyer a lot of money. Remember, you are asked
to advise the seller concerning the least the seller should accept
to sell the lottery, rather than play it. . . .

In the neutral point of view, imagine that you are neither the
buyer nor seller of the lottery, but rather you are a neutral judge
who will decide the fair price or “true value” of the lottery (that
the buyer could pay the seller) so that neither buyer nor seller
has received any advantage from your judgment. . . .
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Design

Experiment I. The stimuli were constructed from two factorial
subdesigns. The first subdesign generated 60 distinct, two-outcome
gambiles, with a probability p, to win x and a probability of 1 — p, to
win y. There were three values of p, (.80, .50, and .40; hence 1 — p,
= .20, .50, and .60, respectively), four values of x ($8, $16, $32, and
$64), and five values of y ($0, $10, $20, $40, and $80). This Proba-
bility X Amount x X Amount y design produced 3 X 4 X 5, or 60,
cells.

The second subdesign of Experiment 1 generated {0 distinct, three-
outcome gambles from a 2 X 5 (Amount x X Amount y) factorial, in
which there was a .10 chance to receive either $5 or $100, a .40
chance to win $16, and a .50 chance to win $0, $10, $20, $40, or
$80. (Gambles in this design include a .50 chance to win y as in the
first subdesign, but the remaining .50 probability is divided among
two outcomes.)

Experiment 2. The stimuli, instructions, and procedures of Ex-
periment 2 were identical to those of Experiment 1. Only the design
(construction of the experimental trials) and the subjects differed.
The major subdesign was a 5 X 9 factorial, constructed from five
pairs of outcomes—($24, p, $0), (372, p, $0), (396, p, $0), ($72, p.
$24), and (396, p, $24)—combined with nine levels of probability of
winning the higher amount in each pair (.05, .10, .20, .40, .50, .60,
.80, .90, .95). In addition, the pair of ($96, p, $72) was combined
with probability levels of .50 and .80 of winning the higher amount,
Finally, 16 additional trials were constructed from successive amounts
at $6 intervals, with a probability of .50: ($6, .50, $0), ($12, .50, $6).
..., (396, .50, $90).

Procedure

Instructions, warm-up trials, and randomly ordered experimentai
trials were printed in booklets. Approximately equal numbers of
subjects received each of the six possible orders of points of view.

In Experiment 1, 11 warm-ups preceded the 70 experimental
lotteries for each point of view (a total of 33 warm-up and 210
experimental trials, or 243 in all). In Experiment 2, 11 warm-ups
preceded 63 experimental lotteries for each point of view (a total of
33 warm-up and 189 experimental trials, or 222 in all). Each experi-
ment required about 2 hr.

Subjects

The subjects were California State University, Fullerton, under-
graduates who participated for credit in Introductory Psychology.
There were 80 and 53 subjects in Experiments 1 and 2, respectively.

Results

Point of View

Figure S shows results for the two-outcome subdesign in
Experiment 1. Mean judgments for the three points of view
(buyer’s, neutral, and seller’s) are shown in the left, middle,
and right columns of panels, respectively. Judged prices are
plotted in each panel as a function of Amount y, with a
separate curve for each level of x ($8, $16, $32, or $64). Filled
circles represent mean judgments; curves in Figures 5-9 show
predictions of configural-weight theory, which are discussed
in the section on model fitting.

Buyer  Neutral  Seller
80
680 p(Y) = 2 plY) = 2 plY} = 2
w“ /

Mean Judgment ($)

0 20 40 800 20 40 800 20 40 80
Amount to Win, Y (%)

Figure 5. Mean judgments of value as a function of amount to win
() with a separate curve for each level of amount x (Experiment 1).
(Filled circles show data values; lines show predictions of configural
weight theory, discussed in text. In the upper row of panels, p(y) =
.20; in the middle row, p(y) = .50; and in the lower row, p(y) = .60.
Left panels show buyer’s prices, right panels show seller’s prices, and
center panels show neutral prices.)

The slopes of the curves in Figure 5 represent the effects of
Amount y; the vertical spreads between the curves represent
the effects of Amount x. The slopes are smallest and the
vertical spreads are the largest in the upper panels, in which
p(y) = .20 and p(x) = .80. Slopes and vertical spreads are
intermediate in the center row of panels, in which the out-
comes are equally probable. Slopes are largest and vertical
spreads are the least in the lower row of panels, in which p(»)
= .60 and p(x) = .40. These variations in the slopes of the
curves and the vertical spreads between curves are character-
istic of both the data and of the theory curves.

Figure 5 also shows that the average height of the judgments
and the relative divergence of the curves change as a function
of point of view. For the buyer’s point of view, judgments are
lowest, and the data in each panel diverge to the right (vertical
spreads between the curves increase from left to right); in the
seller’s point of view, judgments are highest, and the curves
are more nearly parallel.

The rank order of the gambles also changed in the different
points of view. For example, a 50-50 gamble to win $8 or
$80 was judged higher than a 50-50 gamble to win either $32
or $40 from the seller’s point of view, but the order was
reversed in the buyer’s point of view.

Analysis of variance of the data displayed in Figure 5
indicated that 14 of the 15 main effects and interactions of
point of view, Amount x, Amount y, and probability were
statistically significant (p < .01 throughout this article). For
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example, for the main effect of point of view, F(2, 158) =
52.01; for the three-way interaction of Point of View X
Amount x X Amount y, F(24, 1896) = 12.34. The nonsig-
nificant effect was the two-way interaction between point of
view and probability, F(4, 316) = 1.38.

Figure 6 shows mean judgments from Experiment 2, with
a separate panel for each point of view. Mean judgments of
value are plotted as a function of the probability of winning
y in gambiles of the form (y, p, $0), with a separate curve for
each value of y (324, $72, or $96). As in the other figures,
symbols depict data, and lines show predictions of configural-
weight theory. All four main effects involving point of view,
lower amount, higher amount, and probability were statisti-
cally significant, as were five of the six two-way interactions;
the two-way interaction between point of view and lower
amount was nonsignificant, as were all of the higher order
interactions. For example, F(2, 104) = 54.39 for point of
view, Figure 6 also shows a “glitch” in four of the nine sets of
data, in which the means decrease as the probability increases
from .50 to .60; it is unclear whether this decrease represents
a replicable trend.

The effect of point of view in Experiment 2 is highlighted
in Figure 7. The left portion of Figure 7 shows mean judg-
ments of gambles between $0 and $96 as a function of the
probability of winning $96. Seller’s means (circles) are always
highest, and buyer’s means (diamonds) are always lowest.
Narrow-range, 50-50 gambles are plotted against point of
view in the same figure for comparison. This figure shows
that the effect of viewpoint is greater for the wide-range
gambles.

The diagonal straight line in Figure 7 shows expected value
for the (396, p, $0) gambles. Although subjects in the neutral
and buyer’s viewpoints tended to evaluate most gambles
below their expected values, low-probability gambles were
judged higher than their expected values in all three points of
view. In EU theory, such findings have suggested different
“risk-seeking” or “risk-averse” utility functions for different
levels of probability (Becker & Sarin, 1987). As shown by the
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Figure 6. Mean judgments as a function of probability of winning

larger amount (y, p, $0), with a separate curve for each amount and
a separate panel for each point of view (Experiment 2). (Filled circles
show data, and curves show predictions of configural-weight theory.)
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Figure 7. Mean judgments of gambles between $0 and $96 as a
function of probability to win $96, with a separate curve for each
point of view (Experiment 2). (Small-range gambles are plotted on
the right as a function of point of view.)

predictions, configural-weight theory handles these results
with a single utility function.

Branch Independence

Experiment 1 revealed violations of branch independence.
According to any model in which independence is assumed
(e.g., if products of terms involving probabilities and out-
comes are added, as in Equation 1), the order of gambles
should be the same when a branch (probability and outcome)
is held constant. However, in all three points of view, the
mean judgments of the gambles have the following orders:

S0 5010 40 50
$8  $80° $5 $16  $80°

however,

S50 .50 < .50 .10 40
$0 $8 %0 85 $16°

In the first comparison, the probabilities to win $80 are the
same (.50) in both lotteries; in the second comparison, the
probabilities to win $0 are the same (.50) in both lotteries.
Therefore, the order induced by the other branches should
have been the same, according to branch independence. In-
stead, the .50 branch to win $8 was better than .10 to win $5
and .40 to win $16 in the first comparison, but the order was
reversed in the second.

The configural-weight model can tolerate such otherwise
perplexing results because the weight of a branch depends on
the rank of its outcome among the other outcomes. For
example, suppose that 50% of the weight of higher outcomes
is transferred to the lowest outcome. Suppose for simplicity
that S(p) = p and u(x) = x; this configural theory would then
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accommodate these relations, as in the following calculations:
75(8) + .25(80) > .55(5) + .20(16) + .25(80)
for the first pair of gambles, and
75(0) + .25(8) < .75(0) + .05(5) + .20(16)

for the second pair of gambles. This example illustrates how
configural weighting could explain violations of branch in-
dependence.

Violations are shown in greater detail in Figure 8, in which
mean judgments are plotted as a function of the amount of
the common branch (y with probability .50), with separate
curves for the two- and three-outcome gambles. The cross-
overs of the data indicate violations of branch independence.
The crossovers of the lines show that configural-weight theory
can also cross in the same direction, although the predictions
cross below $20, whereas the data cross above $20 in each
panel. Similar results have been observed with ratings of the
attractiveness and risk of gambles (Weber, Anderson, & Birn-
baum, in press).

The rank orders of the open and solid symbols at each level
of amount are the same in all three panels. All six main effects
and interactions associated with the three-outcome designs
(depicted in Figure 8) were also statistically significant. For
example, for the main effect of point of view, F(2, 158) =
55.77.

Monotonicity Violations

In Figure 9, mean judgments are plotted as a function of
the probability of winning $96. Each panel represents a dif-
ferent point of view. Monotonicity requires that the curves
not cross (it should be better to have a chance to get $24 than
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Amount to Win ($)
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Figure 8. Violations of branch independence: Mean judgments of
two and three outcome gambiles as a function of Amount y (Experi-
ment 1). (Filled circles and solid lines show mean judgments and
predictions of configural-weight theory, respectively, for 50-50 gam-
bles to receive y or $8. Open circles and dashed lines show mean
judgments and predictions, respectively, for three-outcome gambles
with a .50 chance to receive y, a .40 chance to receive $5, and a .10
chance to receive $16. Crossovers of data and curves are violations
of branch independence.)
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Figure9. Violations of monotonicity: Mean judgments as a function
of the probability of winning $96, with a separate curve for the
amount received otherwise (Experiment 2). (Crossovers are violations
of monotonicity [dominance]: at high levels of probability to win,
gambles with $0 as the lower outcome receive higher judgments [open
circles} and predictions [dashed lines] than do gambles with $24 as
the lower outcome [filled circles and solid lines].)

the same chance at $0, when everything else is the same), and
so the data representing $24 (filled circles) should be above
the data for $0 (open circles) in ail cases.

Instead, Figure 9 reveals violations of monotonicity in all
three points of view. For example, the mean judged value of
a .95 chance to win $96 and .05 to win $0 is higher than the
judgment of a .95 chance to win $96 and a .05 chance of $24.
The percentages of subjects in each point of view who violated
dominance for these gambles are shown in each panel of
Figure 9.

Monotonicity implies that all of the curve for $24 (filled
circles) should lie above the curve for $0 (open circles) in each
panel of Figure 9, contrary to the orders for the last three
pairs of points within each panel. According to the null
hypothesis that the judgments actually coincide at those three
points (the limiting case of monotonicity) and that the pair-
wise orders are the result of a 50-50 chance at each point, the
probability would be (.50)% therefore, it is unlikely that nine
violations would fall in such a pattern by chance. A similar
pattern was also obtained with gambles between $0 and $72,
in comparison with gambles between $24 and $72. The
gamble ($72, .95, $0) received a higher mean judgment than
did ($72, .95, $24) in all three points of view.

These results violate the assumption of monotonicity that
underlies SEU theory and also certain rank- and sign-depend-
ent theories (Luce & Fishburn, 1991), but they can be de-
scribed by the more general configural-weight theory if
weights are permitted to depend on value as well as rank. The
theoretical curves in Figure 9 show that the configural-weight
model can describe violations of monotonicity. Additional
details of the model are described in the next section.

Model Fitting

The models were fit to the 399 mean judgments of Exper-
iments 1 and 2 by means of a special computer program,
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written to find parameter estimates that would minimize a
weighted sum of squared deviations between the data and the
predictions. In each experiment, the sum of squared residuals
was divided by the sum of squared deviations about the mean.
The index minimized was the sum of proportions of residual
variance in the two experiments. Chandler’s (1969) subrou-
tine, STEPIT, was used to facilitate the minimizations.

Because the overt response, R, is in money, a transforma-
tion between subjective utility (¥) and response was esti-
mated. It is tempting to constrain this function to be the
inverse of the utility function; however, these functions were
permitted to differ, in order to allow for possible judgmental
effects. This transformation was approximated as a power
function, R = ¥7 in which R is the response and d is the
exponent. In different versions of the program, the values of
¥ are given either by SEU theory (Equation 1) or by con-
figural-weight theory (Equation 3), in combination with the
simplified theory of point of view (Equation 4).

Fit of Configural-Weight Theory

It is instructive to rewrite Equation 3 for two outcome
gambles (x, px, ») as follows:

¥ = Au(x) + Bu(y)

A+ B ’ ™

where 4/(4 + B) is the relative weight of the lower valued
outcome, as in Equation 3 (the relative weights sum to 1).
Under the assumption of Equation 4, the weights for 0 < x <
y are

A= aVS(px)
B=(1 - a)l - S(p)),

where ay is the configural-weight parameter for point of view
V, and S(p.) is a function of probability, as in Equation 4.
Three-outcome gambles were treated as one lower valued
outcome combined with two higher valued ones. For 0 < x
< y < z, with probabilities, p., p,, and p, = 1 — p, — p,,
respectively, the equation is as follows:

v = Au(x) + Bu(y) + Cu(z)
- A+B+C ’

®)

where C = (1 — av)(1 — S(1 — p.)); 4 and B are the same as
in Equation 7. When x = 0, Sy(p) replaces S(p) throughout
Equations 7 and 8.

The predictions shown in the figures were calculated from
this configural-weight theory, which left only 0.69% and
0.66% of the variance in the residuals in Experiments | and
2, respectively. A separate value of u(x) was estimated for
each of the 27 values of x, and this estimated utility function
is shown in Figure 10. The estimated values of u(x) were
within $2 of their physical value in all cases except u($0),
which was estimated to be 2.89. The exponent of the power
function representing the judgment function was near 1 (d =
.99).

Because the estimated utilities were so close to their physical
values, the model was then fit with the assumption that u(x)

108
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Figure 10. Estimated utility function from configural-weight theory,
fit to both experiments. (Squares show estimated values; line shows
u(x) = x.)

= x, with a linear judgment function, R = .95¥ + 1.35. The
deviations of fit increased only slightly, to 0.80% and 0.80%
in the two experiments. Correlations between this simplified
theory, which requires 27 fewer parameters, and mean judg-
ments were .996 and .996 for Experiments 1 and 2, respec-
tively.

The configural weighting parameter, a;, was fixed to .50 in
the seller’s point of view. Therefore, the estimated weights
S(p) and Sy p), shown in Figure 11, are the weights of the
lower outcomes from the seller’s point of view. Figure 11
shows that Sy(p) < S(p) for small values of p. This pattern
explains the violations of monotonicity shown in Figure 9.
For example, S(.05) = .33 and S,(.05) = .18; therefore, the
calculated value of ¥ for (896, .95, $0) in the seller’s point of
view is 96(1 — .18) + 0(.18) = 79, which is greater than ¥ for
($96, .95, $24), which is 96(1 — .33) + 24(.33) = 72.

For buyer’s and the neutral points of view, the estimates of
ay are .71 and .60, respectively. When these values are substi-
tuted in Equation 4, with the estimate of S(.50) = .53, the
weights of the lower versus the higher of two equally likely
positive outcomes are .73 vs. .27, .63 vs. .37, and .53 vs. .47
in the buyer’s, neutral, and seller’s points of view, respectively.
In relation to Equation 2 and Figure 2, these values corre-
spond to w = —.23, —.13, and —.03, respectively. Thus ac-
cording to the model, the 50-50 gamble to win either $8 or
$80 should be worth $27, $34, and $41 from the buyer’s,
neutral, and seller’s viewpoints, respectively, which are close
to the empirical values in Figure 5 (the rightmost point on
the lowest curve of the center row of panels).

A more complex configural-weight model was fit that esti-
mated a different Sy, (p) function for each point of view, but
the improvement of fit was trivial. The estimated weights were
very similar to those predicted by Equation 4. Assessment of
Equation 4 is facilitated in Figure 7, which displays the
accuracy of the one-parameter representation of point of view.
The deviations do not appear systematic. Similarly, estimating
different utility functions for different points of view (as well
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Figure 11. Estimated weighting of lower valued outcomes as a
function of probability, according to simplified configural-weight
theory. (Open squares show S(p), which are weights of lower valued,
positive outcomes in the seller’s point of view; weights in the buyer’s
and the neutral viewpoints are given by Equation 4, with a, set to
.71 and .60, respectively. When the lowest outcome is zero, weights
are calculated with Sy( p), shown as solid diamonds.)

as different configural weights) also improved the fit by only
a trivial margin.

Comparisons of theory (lines) and data (symbols) in Figures
5-9 show that the configural model gives a good account of
the effect of point of view in both experiments and also
predicts the violations of branch independence and domi-
nance. Therefore, the present data allow one to retain the
theory that the utility function is invariant with respect to
point of view and that one can characterize point of view by
a single parameter, a,. Because the utility function could be
approximated with a linear function, the key parameters for
describing these phenomena are the two functions in Figure
11 and the configural parameter, a,.

SEU Predictions

If configural-weight theory can explain the effects of point
of view with different weighting functions and a single u(x)
function, it might seem that perhaps Equation | could be
extended to do as well with different u(x) functions and a
single s( p) function. Equation 1 was therefore fit with different
utility functions and different output functions in each point
of view, but the subjective weighting function for probability,
5(p), was assumed to be nonconfigural and independent of
viewpoint. In one version, there were 88 parameters, including
81 u(x) estimates (for the 27 values of x in three points of
view). The sum of squared discrepancies for this model was
nearly three times that of the simplified configural-weight
theory, which required only one fourth as many parameters.

When the u(x) functions and judgment (output) functions
were constrained to be power functions, the sum of squared
residuals for Equation 1 was doubled again. The exponents
showed the pattern expected from configural-weight theory
(Figure 2): exponents of the utility (input) function were .68,

.81, and 1.00 for the buyer’s, neutral, and seller’s points of
view, and the corresponding output exponents were estimated
to be 1.40, 1.19, and 0.98, respectively. The products of
exponents were less than 1, which enabled the model to
approximate the overweighting of the lower valued outcome
in wide-range gambles, but the model systematically under-
predicted small-range gambles.

Even with changing utility functions, SEU theory could not
account for the violations of monotonicity and of branch
independence, and its description of the point of view manip-
ulation was less accurate than that of configural-weight theory.
In sum, with the assumption that the weight of the lower
valued item changes in different points of view, configural-
weight theory yields a better account of the data than does
SEU theory, even with the assumption that the utility function
changes.

Discussion

These results show that manipulation of the judges’ point
of view causes a change in the rank order of the values of
lotteries. This change in rank order can be neatly summarized
by the assumptions that the utility function is the same, but
the configural weights depend on point of view. These conclu-
sions are compatible with other findings (Birnbaum & Steg-
ner, 1979; Birnbaum & Sutton, in press). In contrast, SEU
theory does not fit the data as well, even allowing different
utility functions for different points of view; nor can SEU
theory account for violations of branch independence (Figure
8) and monotonicity (Figure 9).

Violations of Dominance and Branch Independence

The violations of monotonicity (dominance) in Experiment
2 seem startling from a normative perspective. Why should
subjects offer to pay more for gambles in which everything is
the same except that one outcome has a lower value? As Luce
(1986) noted, there have been few experimental tests of mono-
tonicity, perhaps because the principle has been considered
so compelling. Configural-weight theory explains violations
of monotonicity as a consequence of the underweighting of
zero-valued outcomes, illustrated in Figure 11. The next
question that one might ask is why zero- or neutral-valued
outcomes receive less weight.

The striking result in Figure 9 led to subsequent experi-
ments in which investigators sought to identify why and under
what conditions the effect occurs. Birnbaum and Sutton (in
press) replicated the violations of monotonicity for buying
and selling prices. In addition, they also presented the same
gambles for direct choice and found that although subjects
often violated monotonicity in pricing judgments, subjects
rarely chose the dominated gamble ($96, .95, $0) over the
dominating gamble ($96, .95, $24) in a direct comparison.
This finding represents yet another reversal of preference that
is distinct from both the “classic” preference reversal and the
changes in rank order caused by manipulation of the view-
point.

Mellers, Weiss, and Birnbaum (in press), using a different
format for display of probabilities (pie charts), conducted a
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number of variations to follow up the violations of monoton-
icity observed in Figure 9. They found that monotonicity can
be violated with positive and negative amounts, with large
and small values, and even when subjects are given cash
incentives to place higher values on preferred gambles. In one
condition, subjects were told that they would play one of two
gambles at the end of the study. Of the two gambles, they
were to play the gamble to which they had assigned the higher
price in the experiment. Despite such incentives, subjects
continued to violate dominance in all judgment conditions
except one.

One manipulation significantly reduced the incidence of
violations in the research of Mellers, Weiss, and Birnbaum
(in press): When only a few gambles were printed on a single
page for judgment, subjects violated monotonicity less often.
Apparently, this condition facilitates comparison of gambles
and makes the judgment task more similar to the direct
comparison task, as in the article by Birnbaum and Sutton
(in press).

Branch independence is implied by SEU theory. In Figure
8, the effect of a .50 probability outcome is reduced when
there are two other outcomes in comparison to the gambles
with only one other outcome, contrary to branch independ-
ence. This result can be explained by configural weighting, as
shown in the figure. Violations of branch independence have
also been observed in ratings of the attractiveness and risk of
gambles (Lynch, 1979; Weber et al., in press). Weber et al.
found that the effect of a branch is smaller when there is a
larger number of other outcomes and also when the other
outcomes have greater variance.

Configural Weighting and Utility Measurement

A major difficulty for EU theory has been the failure of the
theory to yield consistent estimates of utility. When different
values of probability are used, EU theory yields different
utility functions (Hershey, Kunreuther, & Schoemaker, 1982).
Furthermore, different methods for measuring utility yield
different scales (Bell & Raiffa, 1988; Breault, 1983; Edwards,
von Winterfeldt, & Moody, 1988; Galanter, 1962; Hershey &
Schoemaker, 1985; Keller, 1985; Stevens, 1975; Tversky,
1967a, 1967b; von Winterfeldt & Edwards, 1986). Some
authors have theorized that there are different scales for utility
and value of money (e.g., Bell & Raiffa, 1988); others have
theorized that utility functions may be dependent on the
lottery (Becker & Sarin, 1987; Daniels & Keller, in press).
However, configural-weight theory offers the hope that it may
be possible to explain these otherwise perplexing phenomena
with a single scale of utility.

For example, EU theory would use different #(x) functions
to describe the finding in Figure 7 that seller’s prices can be
higher or lower than the expected value. For small values of
p, the u(x) function would be positively accelerated (“risk
seeking™) and for large values of p, the u(x) function would
be negatively accelerated (“risk averse”). Even the buyer’s
prices exceed expected value for p = .05. This result is
analogous to the well-known fact that even people who ordi-
narily seem “risk averse” pay more than the expected value
for a state lottery ticket that offers a tiny chance to win a large

prize. Although proponents of EU theory have struggled to
explain such phenomena, configural-weight theory can handle
them with the weighting functions in Figure 11 without
attributing them to changing utilities.

The utility function estimated from configural-weight the-
ory in the present study could also be used to predict the
Jjudgments in all three points of view, and it was nearly linear.
Without configural weighting, the utility function inferred in
Equation 1 changed from nearly linear in the seller’s view-
point to concave downwards in the buyer’s viewpoint.

Birnbaum and Sutton (in press) asked whether the utility
function that was estimated from configural-weight theory
could also be used to predict judgments of “ratios” and
“differences” of utilities of monetary amounts, as well as the
buying and selling prices of gambles involving the same
amounts. They found that configural-weight theory permitted
a single function u(x) to explain all four arrays of data. SEU
theories, on the other hand, indicated that the utility functions
for money differ from the values that reproduce riskless
judgments of “ratios” and “differences.” Birnbaum and Sut-
ton argued in favor of configural-weight theory on the basis
of scale convergence, the premise that theories that can ac-
commodate several phenomena with common measurement
scales should be preferable to theories that need new mea-
surement scales in each new situation.

Ambiguous Utilities and “Sure Things”

Both the present results and those of Birnbaum and Sutton
(in press) could be explained by the assumption that u(x) is
independent of the point of view and that the change in rank
order is attributable to a change in configural weighting.
However, when utilities are ambiguous, one should expect
estimated utilities to depend on viewpoint as well. When
utilities are ambiguous, even “sure things” should show an
effect of point of view.

Birnbaum and Stegner (1979) reported five experiments in
which judges were asked to estimate the “true” values, buyer’s
prices, and seller’s prices of used cars, on the basis of blue
book value and estimates provided by sources who examined
the car. The sources varied in both mechanical expertise and
bias (friendship to the buyer or the seller). For example,
suppose an expert mechanic who is a friend of the seller says
that a used car is worth $7,000 and a friend of the buyer who
is not a mechanic says that the car is worth $3,000; what is
the lowest amount that the seller should be willing to accept
to sell it? A key difference between the present study and that
of Birnbaum and Stegner (1979) is the greater ambiguity in
the translation of monetary estimates in the Birnbaum and
Stegner study. This greater ambiguity explains why estimated
utilities reported by Birnbaum and Stegner (1979) contained
an additive constant that depended on the source’s bias and
the judge’s point of view. Interpreting ambiguity as subjective
variability that is known to the subject clarifies how this
conclusion fits with the concept of a loss function, as in Figure
3

Suppose it is assumed that a given value of the estimate, x,
produces a distribution of utilities for the subject. Further-
more, suppose that this distribution is known to the subject
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(Birnbaum, 1972, 1974, 1983; Mellers, Richards, & Birn-
baum, in press). For example, when a certain source says that
a particular item is “worth $1,000,” the subject may have
learned from experience that the item might actually sell for
values between $20 and $5,000, with some distribution. Thus
even a “sure thing,” such as the value of a diamond ring, may
be inherently variable and thus amenable to the loss function
interpretation shown in Figure 2, applied to a subjective
distribution. Therefore, what might appear to be a change in
the u(x) function as a result of point of view (as in Experiment
5 of Birnbaum & Stegner, 1979) could actually be the conse-
quence of an internal distribution of values integrated by the
subject.

If a single estimate of value corresponds to a distribution,
it seems reasonable to allow the subjects to consider them-
selves also to be a source of information. Presumably, people
know that their own estimates of value are fallible. Conse-
quently, one would expect selling prices to exceed buying
prices for real goods of ambiguous value that subjects possess
for exchange. For example, if each subject were given a
diamond ring at the beginning of the experiment and asked
to set a price to sell the ring, the subject would likely state a
higher price than if the subject were asked how much he or
she would pay to buy the same ring. Different points of view
would then produce different loss functions, as in Figure 3,
which, when applied to the uncertainty about the value of the
ring, would result in different prices. The buyer is afraid of
paying $1,000 for a ring that might be worth $20, whereas
the seller is afraid of selling for $1,000 a ring that might be
worth $5,000. On the other hand, sure things to win monetary
amounts should not vary between points of view because any
ambiguity about the utility of money is perfectly correlated
between the stimulus and response dimensions.

Configural Weighting and Point of View

The present treatment of point of view differs from tradi-
tional treatments of buyer’s and seller’s prices (Raiffa, 1968;
Harless, 1989). In the approach of this article (as well as that
of Birnbaum & Stegner, 1979), point of view is treated as a
continuous variable. Presumably, buyer’s, seller’s, and neutral
points of view are just three values among many that could
be induced by variation of the instructions. According to this
approach, it should be possible to produce points of view in
between or more extreme than those induced by the present
instructions. Furthermore, manipulations of loss functions
should affect the points of view.

The present treatment of buyer’s versus seller’s prices is also
distinct from one recently introduced by Luce (1991) in the
framework of rank- and sign-dependent linear utility theory.
In Luce’s (1991) treatment, the buyer is assumed to interpret
the task as the joint receipt of a sure loss (the price paid) with
the gamble, whereas the seller interprets the selling price as a
sure gain jointly combined with a lost gamble. Luce (1991)
interpreted prospect theory (Kahneman & Tversky, 1979) as
a special case of rank- and sign-dependent theory, but he
concluded that prospect theory predicts no difference between
buying and selling prices because it does not entail the proper
pattern of weighting required to explain the typical results.

Prospect theory assigns the same weight to both the lowest
negative value and the highest positive value if they are equally
probable. In Luce’s (1991) approach, rank- and sign-depend-
ent weighting is constant (more weight is consistently assigned
worse outcomes), but buying and selling prices induce differ-
ent discrete patterns of losses and gains. The theory does not
address other viewpoints. In contrast, in the present approach
it is assumed that configural weighting changes continuously
with factors that affect the point of view.

Configural weighting can be viewed as a consequence of
axioms that have a rational character (Luce, 1986), as a
consequence of the judge acting as if he or she is minimizing
an asymmetric loss function (Birnbaum, 1987), or as a de-
scriptive equation that can explain why the effect of one piece
of information depends on the value with which it is paired
(Birnbaum, 1974; Birnbaum & Stegner, 1979). In the same
way that truth of a deduced conclusion does not prove the
truth of the premises, the merit of configural weighting as a
device to account for data in Figures 5-9 does not prove, for
example, that subjects are minimizing asymmetric loss func-
tions. Theoretical rationalizations acquire their status from
their power to predict new situations and to provide a coher-
ent account of what would otherwise be unrelated phenom-
ena. The concepts of configural weighting as a reflection of
point of view seems to provide an attractive way to connect
other phenomena in the psychology of judgment (Birnbaum,
1982).

In judgments of the morality of persons who have per-
formed different deeds, of the likeableness of persons de-
scribed by adjectives, or of the value of gambles characterized
by amounts to win, the worst deed, adjective, or outcome
receives greatest weight (Birnbaum, 1972, 1973, 1974; Birn-
baum & Jou, 1990; Birnbaum & Mellers, 1983). All of these
situations involve a buyer’s point of view, and the buyer needs
to beware.

When students are asked to judge the grades that should be
assigned to other students, they place equal or even higher
weight on the lower score (Mellers & Birnbaum, 1983). How-
ever, when students are asked how examinations should be
combined to determine their own grades in a class, they often
suggest that their lowest examination score should be forgot-
ten, as if they are in the seller’s point of view.

When people consider how their own morality will be
judged, they hope that their sins will be forgiven, but when
they judge the morality of others, the worst deed overwhelms
even a large number of good deeds (Birnbaum, 1973; Riskey
& Birnbaum, 1974). These findings are all compatible with
the idea that point of view is the consequence of different
patterns of losses, which presumably change the configural
weights of higher and lower valued outcomes.

Preference Reversals

The changes in rank order caused by point of view (both
experiments), the violations of branch independence (Exper-
iment 1), and the violations of dominance (Experiment 2)
represent three new “preference reversal” effects that are not
addressed by recent theories offered to explain other prefer-
ence reversals (Goldstein & Einhorn, 1987; Mellers, Ordoniez,



344 BIRNBAUM. COFFEY, MELLERS, AND WEISS

& Birnbaum, in press; Tversky, Sattath, & Slovic, 1988).
Those theories are attempts to explain why some gambles are
rated as worth more money but are not preferred in choice or
rating tasks.

The classic example of preference reversals, discussed by
Lichtenstein and Slovic (1971), Slovic and Lichtenstein
(1983). Goldstein and Einhorn (1987), Grether and Plott
(1979), and Tversky et al. (1988), involves contrasts between
pricing judgments and direct choices in the evaluation of
gambles with equal expected value. Subjects tend to place a
higher price on small probabilities to win large amounts, but
they tend to prefer the higher probability gamble when given
a direct choice.

Such reversals have been interpreted as dependent on the
trade-off of probabilities and amounts (Slovic, 1967; Slovic &
Lichtenstein, 1983; Tversky et al., 1988). Mellers, Ordéfiez,
and Birnbaum (in press) found that the relation between bids
and ratings of the attractiveness of gambles could be described
by a change in processing strategy, rather than a change in
weighting in the different tasks. They concluded that bids are
a multiplicative function of probability and amount, whereas
ratings are an additive function of probability and amount.

Bostic, Herrnstein, and Luce (1990) found that the classic
preference reversals were reduced when direct choices were
compared with choice-based certainty equivalents, rather than
with judged equivalents. It might seem, therefore, that it is
the method of elicitation that causes the change in preference
order. and perhaps ordering would be consistent within a
method.

However, Mellers, Ordonez, and Birnbaum (in press) found
that the rank order of attractiveness ratings could also be
altered by a change in the selection of stimuli presented to
the subject for judgment. When the experimental design
included positive, negative, zero, and near-zero outcomes,
even ratings could be made to switch from an additive to a
multiplicative relation between probability and amount. The
change in rank order could be explained by the assumption
that the scales were invariant but the process changed as a
function of the task and the stimulus design. The present
results also show that the rank order within a method can be
changed. in this case by manipulation of point of view.

The phenomena explored here and the findings of Birn-
baum and Sutton (in press) seem to belong in the same catalog
of effects as the classic preference reversal because they refute
simple, context-invariant theories in which objects have well-
defined utilities that can be measured by simple models.
However, these phenomena are distinct and impose new
requirements on theories that are attempts to account for
both judgments of value and choices.

Conclusions

The present experiments yielded three important results:
First, changes in point of view affected the rank order of
judged value of gambles. Second, price judgments violated
branch independence: The effect of a given branch was di-
minished when the number of outcomes was increased. Third,
judgments violated dominance. These results can be described
with reasonable accuracy by a configural-weight model that

has much in common with rank-dependent utility theories
but allows configural weights to depend on point of view and
on the value of the outcomes. Configural weighting can be
interpreted as the consequence of an attempt to minimize
asymmetric losses. A special case of this theory led to a simple
formulation that gave a fairly accurate account of the major
features of the data.
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