
Perception & Psychophysics
1977, Vol. 22 (4), 383-391

Loudness "ratios" and "differences" involve
the same psychophysical operation
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Subjects judged both "ratios" of loudness and "differences" in loudness between pairs of
tones that varied in intensity. The pairs were constructed from factorial designs, permitting
separation of stimulus and response scaling for each subject. Ratings of "differences" and
estimations of "ratios" were monotonically related, inconsistent with the hypothesis that
subjects perform both subtractive and ratio operations on a common scale. Instead, the data
suggest that both tasks involve the same psychophysical comparison operation with different
response transformations. If the operation can be represented by the subtractive model, then
category ratings involve a nearly linear transformation and magnitude estimations involve a
nearly exponential transformation.

Torgerson (1961) theorized that subjects perceive
only a single quantitative comparison between a pair
of stimuli whether instructed to report a psychol-
ogical "distance" or "ratio.’’1 Torgerson based
this hypothesis in part on Garner’s (1954) finding
that some subjects tended to make the same settings
whether instructed to set a tone to bisect a loudness
"interval" or to establish equal "ratios." The theory
was also based on the observation that magnitude
estimations are often an approximate exponential
function of category ratings (Torgerson, 1960). How-
ever, with unifactor stimulus designs such as used in
the early research (e.g., Stevens & Galanter, 1957;
Torgerson, 1960), ratios and differences are necessar-
ily monotonically related; hence, these early findings
could not provide decisive ordinal tests of
Torgerson’s theory.

Recent research with factorial stimulus designs has
provided stronger evidence for the theory that sub-
jects do not distinguish "differences" from "ratios"
(Birnbaum, 1977). Birnbaum and Veit (1974a) found
that judgments of heaviness "ratios" and "differ-
ences" were monotonically related, contrary to the
theory that subjects compute both ratios and differ-
ences on a common scale. Rose and Birnbaum (1975)

We thank Michael Hagerty, Colleen Surber, Barbara Mellers,
Steven Stegner, and Clairice Veit for helpful comments on the
manuscript. This research was supported in part by a grant from
the Research Board of the University of Illinois, facilitated by
Grant MH 15828 to the Center for Human Information Process-
ing, University of California, San Diego. Requests for reprints
should be sent to: Michael H. Birnbaum, Department of Psychol-
ogy, University of Illinois, Champaign, Illinois 61820.

found similar results for numerals, as did Veit (1977)
for greyness of papers of varied reflectance.

The present paper investigates "ratios" and
"differences" of loudness, using techniques of
Birnbaum and Veit (1974a), applied to data for single
subjects.

The Models
The ratio model under consideration here can be

written:

Rij = JR(Sj/Si), (1)

where Rij is the overt numerical "ratio" estimation
for physical stimulus ¢1 to ¢i, having sensations (scale
values) sj and si, and JR is the monotonic judgmental
transformation, relating overt magnitude estima-
tions of "ratios" to subjective impressions of ratios.

The subtractive model can be written:

Dij = JD(Sj - Si), (2)

where Dij is the rated "difference" between the
stimuli, and JD is the judgmental transformation
relating overt ratings to subjective differences.

Metric Implications
If it is assumed that the judgment functions are

linear, Equations 1 and 2 make distinct metric pre-
dictions for the data (Anderson, 1970; Birnbaum
& Veit, 1974a). The ratio model, with the assumption
that JR is of the form: Rij = a(sj/si)b + c, predicts
a bilinear fan of curves. I,f the data are bilinear, the
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marginal means provide estimates of the scale values.
If JD is of the form: Dij = a(sj - si) + c, the sub-
tractive model predicts that the responses from a
factorial design should plot as a set of parallel curves.
If the curves are parallel, scale values can be
estimated from the marginal means.

Ordinal Indeterminacy
Although it would be convenient to assume that

numerical judgments can be taken at face value,
there are reasons to suspect that judgment func-
tions may be nonlinear. For example, judgments
change nonlinearly as a function of the responding
procedure, the stimulus distribution, and other
details of the experiment (Poulton, 1968; Stevens &
Galanter, 1957). Birnbaum, Parducci, and Gifford
(1971) have presented evidence that the stimulus
distribution can affect the form of J (see also
Birnbaum, 1974b). Therefore, it would be unwise to
assume that numerical judgments are necessarily
linearly related to subjective impressions. Once it is
allowed that overt responses may require monotone
rescaling, unifactor "ratio" scaling experiments only
define the stimuli to an ordinal scale.

When rescaling is permitted, factorial designs
allow ordinal tests of the models under investigation.
Once the data from a suitable factorial experiment
are found to be compatible with the model, the
ordinal constraints are sufficient to solve for the scale
values and the judgment function. However, even
factorial designs leave an indeterminancy between
the combination, or comparison, function and the
judgment function.

When it is assumed only that the numerical judg-
ments are a monotone function of psychological
impressions (i.e., that J could be nonlinear), it would
not be possible to discriminate ratio and subtractive
models for a single set of data, since the ordinal
requirements of both theories are the same (Krantz,
Luce, Suppes, & Tversky, 1971; Krantz & Tversky,
1971). Data that are ordinally consistent with a ratio
model could be monotonically transformed to fit
a subtractive model, and vice versa. This indeter-
minacy cannot be resolved without additional con-
straints (Birnbaum, 1974a, 1977; Birnbaum & Veit,
1974a; Birnbaum, Note 1, Note 2).

Scale Convergence Criterion for Rescaling
Stimulus and response scale convergence criteria

(Birnbaum, 1974a; Birnbaum & Veit, 1974a),
together with data and theories of at least two
situations involving the same stimuli, can be used to
resolve some of the uncertainty in deciding whether
or not to transform data to fit the hypothesized
model. If the measurements of the stimuli are to have
any meaning, they should allow one to interrelate
different experimental relationships (see, e.g., Cliff,

1973). Thus, scale convergence (stimulus scale in-
variance) is an additional constraint that permits
transformation while retaining the possibility of
testing (i.e., rejecting) a set of models (Birnbaum,
1974a; Birnbaum & Veit, 1974a).

The scale convergence criterion permits trans-
formations that fit hypothesized models and lead to
invariant stimulus values. The study of two tasks
with the scale convergence criterion permits ordinal
tests among alternative explanations, which make
different predictions.

Predictions
Assuming the models are ordinally consistent with

the data, there are two simple possibilities: (a) two
operations (both ratio and subtractive) with one
scale, and (b) one operation with one scale?

The theory that subjects compute both ratios and
differences on a common scale implies that both
Equations 1 and 2 must be consistent with the same
scale. This theory implies that the two sets of data
will not be monotonically related, but that the two rank
orders of responses to pairs of stimuli will be inter-
locked (Krantz et al., 1971). For example, equal differ-
ences (e.g., 2-1, 3-2, 4-3) should correspond to ratios
that approach one (e.g., 2/1, 3/2, 4/3) as the difference
is moved up the scale. Similarly, equal ratios (2/1, 4/2,
8/4) correspond to more extreme differences (2-1, 4-2,
8-4) as the two values increase. If a single scale repro-
duces the orders in both factorial matrices, the scale
values will have ratio scale uniqueness, since the ratio
model defines scales unique to a power transformation
and the subtractive model defines an interval scale
(Krantz et al., 1971).

If subjects do not discriminate between "ratios"
and "differences," however, then the same opera-
tion (e.g., either division or subtraction), applies
to both kinds of judgments:

Rij = JR(Sj*Si) (3)

Dij = JD(Sj*Si), (4)

where * represents the comparison operation that is
the same for both tasks, and JR and JD are the strict-
ly monotonic judgment functions. Equation 4 im-
plies J~(Dij) = sj*si; substituting in Equation 3,
Rij = JR[JD-I(Dij)]. Since JRJ~ is a monotonic func-
tion, it follows that Rij ("ratios") and Dij ("differ-
ences") will be monotonically related. In sum,
Torgerson’s theory implies that there will be but one
ordering of the pairs, whereas the theory of two
operations implies two distinct orderings.

METHOD

Subjects performed two tasks: (a)They rated the "ratios"



of loudness between tones, and (b) they estimated the "differ-
ences" in loudness.

For the "ratio" task, subjects estimated the "ratio of the
subjective loudness of the second tone to the loudness of the
first." The modulus (the value representing a ratio of unity) was
designated "100," and printed examples were provided specifying
that if the second tone seemed one fourth as loud as the first, the
subject was to respond "25"; if it seemed half as loud, "50";
twice as loud, "200"; and four times as loud, "400." Instruc-
tions encouraged the subjects to feel free to use whatever numer-
ical values best represented the "psychological ratios."

The "difference" task instructions required ratings of the
"difference in loudness between the second tone and the first."
Loudness "intervals" were rated on a 9-point scale, with category
labels varying from 1 = second tone is very, very much softer
to 9 = second tone is very, very much louder; 5 was designated
as equal.

Stimuli, Design, and Apparatus
The stimuli were 1,000-Hz tone bursts that varied in sound

pressure. The stimulus pairs were generated from a 5 by 9, First
Tone by Second Tone, factorial design, in which the five levels
of sound pressure for the first tone varied from 42 to 90 dB SPL
in 12-dB steps (re: .0002 dyne/cm2); the nine levels of the second
tone varied from 42 to 90 dB in 6-dB steps. The duration of each
tone burst was 1 sec with an interstimulus interval of 1 sec.

The tone bursts were generated by a Wavetek Model 155 signal
generator, controlled by a PDP-9 computer. The output of the
Wavetek was bandpassed by a Krohn-Hite Model 355OR filter
and presented monaurally to the subject through a TDH-39
earphone. Input to the earphone was measured with a Systron
Donner Model 7014 frequency counter and a Bruel and Kjaer
Type 2416 electronic voltmeter.

The subject, seated in a double-walled, Industrial Acoustics
sound-treated chamber, responded by entering a number on an
Elec-Trol KB10006 keyboard. Pressing the return key caused
the computer to record the response and initiated the next trial
after a .5-sec delay. The subject could repeat the pair of tones
by pressing the space bar.

Subjects and Sessions
Eight paid members of the academic community of the Uni-

versity of California at San Diego served in four sessions on 4
different days. Each session was devoted to one task--either ratio
(R) or difference (D). Two subjects performed the sessions in each
of the following orders: RDRD, DRDR, RDDR, and DRRD.
There were no discernible effects of day or task order.

Procedure
Each session began with instructions for both tasks, with

emphasis on the task to be performed. The instructions em-
phasized the distinction between ratios and differences. They
were told, for example, that although the differences between
2-1, 3-2, 4-3 are all the same, the ratios, 2/1, 3/2, 4/3, are
all different. Although ratios of 2/1, 4/2, 8/4 are all equal, the
differences increase. Ratios were described graphically as a par-
titioning of one line segment by another. Differences were illus-
trated graphically by cancellation of one line segment from
another. It was noted that a change in order reverses the sign of a
difference but produces a reciprocal ratio. The subjects were also
required to complete 15 numerical calculations to demonstrate that
they understood, at least intellectually, the distinction between
ratios and differences. All subjects were able to perform these
arithmetic tasks without error.

Each session consisted of a warm-up, followed by 10 replica-
tions of the 45 (5 × 9) stimulus pairs. Trial orders were separately
randomized by the computer program for each subject and
session, subject to the constraint that each block of 45 trials con-
tained the entire 5 by 9 design.
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RESULTS: METRIC ANALYSES

"Ratio" Task
Figure 1 plots mean "ratio" estimations (divided

by the modulus, 100), with a separate panel for each
subject. The highest curve in each panel represents
"ratio" judgments of the second stimulus relative to
the least intense first stimulus (42 dB). The lowest
curve shows the results for the first stimulus of
greatest intensity (90 dB). The spacing on the
abscissa for the second stimulus, increasing from left
to right, is not linear with the decibel scale. Rather,
the abscissa spacing represents the marginal mean
response for the second stimulus, averaged over
levels of the first. Assuming a ratio model, spacing
the abscissa according to the marginal means should
cause all of the curves to plot as straight lines.

The panels for individual subjects are arranged in
decreasing order of their largest mean "ratio" judg-
ment. Note that each division of the ordinate and
abscissa represents 1 unit, but the range of the upper
panels is 10 whereas the lower panels is 4 (note that
the graphical size of the unit is larger in the lower
panels), so that subject F.L. has a smaller largest
mean "ratio" estimation than J.S.

According to the ratio model, Equation 1, with an
appropriate judgment function (J) for the magnitude
estimation response, the curves in each panel should
form a bilinear fan of diverging lines. Every subject’s
data show a divergent interaction that is approxi-
mately bilinear. However, there do appear to be two
small departures from bilinearity. First, when the
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Figure 1. Mean "ratio" estimations as a function of marginal
mean for the second stimulus (numerator) with a separate curve
for each level of the first stimulus (denominator). Levels of the
first stimulus are 42 (highest curve), 54, 66, 78, and 90 dB (lowest
curve). Each panel represents the results for a different subject.
Note that the ordinate and abscissa ranges are smaller in the
lower panels than in the upper.
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tones differ by small amounts (6 dB), the response
is closer to a "ratio" of one than would be predicted
by the ratio model; that is, the curves tend to have
lower slopes as they cross the ordinate value of 1.
Second, the curves for intermediate values of the first
stimulus are curved upwards relative to the others.
These two effects are similar to previous findings for
magnitude estimation, and may represent mono-
tonic response "biases" in the J function.

The subjects show large indi~,idual differences in
their response ranges. Subject H.C. reports that the
sensation "ratio" of 90 to 42 dB exceeds 10:1; J.S.
estimates it as near 5:1; and subject B.M. estimates
this "ratio" to be a little above 3:1. Although the
subjects differ greatly in the values of their numerical
judgments, they do appear similar with respect to the
pattern of judgments. One interpretation of this
individual variation in the response range is that it
represents differences in the judgmental trans-
formation, JR, rather than "true" differences in the
individuals’ psychophysical functions.

"Difference" Task
The solid points in Figure 2 represents mean

ratings of loudness "differences" as a function of the
marginal means for the second stimulus, D.j. Each
solid curve represents a different value of the first
stimulus. Since the subjects rated second minus first,
the slopes are positive. The upper curve is for the
42-riB tone; the lowest curve represents the 90-dB
first tone. Each panel plots results for a different
subject, as in Figure 1.

The subtractive model, EqUation 2, with the
assumption of a linear judgment function, predicts
that the solid curves should be parallel. The curves
do appear roughly parallel. However, there are
deviations. Small (6-dB) differences are judged
"equal" (a response of "5") too often. The slopes
become too flat in the region of 5 on the ordinate,
an effect that is analogous to that in Figure 1.
Moderate differences appear to be exaggerated; note
that the curves become steeper for 12-dB differences
which tend to be judged "6" or "4"--i.e., "slightly
louder" or "slightly softer." As shown below, these
small deviations may represent judgmental factors
(nonlinearity in the J function) that can be removed
by monotone transformation.

Ratio-Difference Scale Convergence Fails
The open circles in the upper part of each panel

of Figure 2 plot the marginal means for the "ratio"
estimations (~-.j) as a function of the marginal
means for the "difference" ratings (~.j). Assuming
both models were valid (with linear J functions in
Equations 1 and 2), the marginal means are estimates
of the scale values; therefore, the open circles should
fall on a straight line (Birnbaum & Veit, 1974a). A
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Figure 2. Solid points represent mean "difference" judgments,
plotted as a function of marginal means for second stimulus with
a separate curve for each level of the first stimulus. Open circles
are marginal mean "ratio" estimations for the second stimulus,
plotted against marginal mean "differences." Open squares
are marginal mean logs of "ratio" estimations for the second
stimulus.

dashed line has been drawn between the two end
points to aid visual inspection of the nonlinearity.
Instead of being linear, the curves appear more near-
ly exponential. This violation of scale convergence
calls these assumptions (two operations on a
common scale with linear judgment functions) into
question.

Scale Convergence Consistent with One Operation
Suppose there are two operations, but magnitude

estimations induce a nonlinear, power function bias
in the judgment function for the "ratio" task. It
would follow that the ratio model would still fit, but
the marginal means (scale values) would differ from
the subtractive model scales by a linear function of
a power function. This interpretation would allow
a nonlinear relationship between the marginal means.
[This hypothesis is equivalent to a suggestion by
Marks (1974) that scale values for "ratios" are the
square of the scale values for "differences," since
R = (sj/si)b implies R = sjb/sp.]

Logarithmic transformation of the "ratio" judg-
ments yields log(Rij) = log(sj/si)b = b(log sj -
log si). Hence, this theory implies that log "ratio"
judgments should be parallel, with marginal means
logarithmically related to the marginal means (scale
values) for the "difference" task.

On the other hand, suppose subjects make "ratio"
estimations by computing subjective differences,
then reporting a response exponentially related to
their subjective impressions. "Ratios" would show a
bilinear pattern (as in Figure 1), since exp (sj - si)



= exp(sj)/exp(si). This theory predict~ that
logarithmic transformation should undo the effects
of the exponential J transformation. Hence,
marginal mean logs should be a linear function, not
a logarithmic function, of "difference" task
marginal means.

The marginal mean logs are plotted in Figure 2
(open squares) as a function of marginal mean
"difference" ratings. Dashed lines have again been
drawn between the endpoints to permit assessment
of linearity. The open squares appear very nearly
linear, consistent with the results of Birnbaum and
Veit (1974a). Assuming there is one scale, these
results favor the interpretation that there is but one
operation.

RESULTS: ORDINAL ANALYSES

The data were monotonically rescaled to fit the
subtractive model by means of MONANOVA
(Kruskal & Carmone, 1969), a computer program for
nonmetric scaling. A separate rescaling was per-
formed for each subject, task, and session. Each set
of 450 judgments was rescaled to fit the model:

J~!(Tijk) = sj - si 4- ek, (5)

where J~’ is the strictly monotonic inverse of the
judgment function for task T; Tijk is the response
("ratio" or "difference") to the kth repetition of the
presentation of stimulus pair ij; si and sj are the scale
values of the first and second stimuli, respectively;
and ek is an additive effect of repetition block.

This method of transformation is a conservative
procedure, since the transformation that reduces
deviations from the model is constrained to simul-
taneously reduce the error term for the model.
Analyses of variance of the transformed scores were
performed for each subject, task, and session (32
in all). Following transformation, the First Stimulus
by Second Stimulus interactions (5 by 9) were re-
duced to less than 8/10ths of 1070 of the total sum
of squares in all cases and less than 3/10ths of 1%
in 20 of the 32 cases. The Trial Blocks by First Stimu-
lus by Second Stimulus interaction (10 by 5 by 9),
which might be interpreted as an error term, was
simultaneously reduced to less than 1% of the total
sum of squares in 19 of 32 cases; less than 3.1%
in all cases.4

Figure 3 shows the mean transformed response
for each subject averaged over repetitions and
sessions. Open circles represent mean transformed
"ratio" estimations. Solid points connected by lines
represent mean transformed "difference" judgments
as a function of sound pressure level of the second
tone with a separate curve for each level of the first
tone.

The success of the transformations should be
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apparent in the parallelism of the open circles
(rescaled "ratios") and solid points and curves (re-
scaled "differences") in Figures 3 and 4. This
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Figure 3. Mean transformed response as a function of the sound
pressure level of the second tone with a separate curve for each
level of the first. Solid points connected by lines are for "differ-
ence" ratings; open circles are for "ratio" estimations. To the
extent that the orderings of points are the same (i.e., that open
circles fall on the curves), scale convergence would suggest that
one operation underlies both "ratio" and "difference" judg-
ments.
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Figure 4. (A) Predictions based on the theory that subjects
compute both ratios and differences on a common scale, plotted
as in Figure 3. Open circles and dashed lines represent trans-
formed predicted ratios; solid points and lines represent predicted
differences. Hypothetical predictions assume scale values are
a power function of physical energy; therefore, transformed ratios
are linear. The distinction between ratios and differences does not
depend on the psychophysical function, since no transformation
of the abscissa could cause the circles and points to coincide.
(B) Mean transformed response, as in Figure 3, averaged across
subjects. Solid points connected by lines represent rescaled
"difference" judgments; circles represent rescaled "ratio" judg-
ments. Parallelism implies ordinal consistency with either a ratio
or subtractive model. Broken lines connect different pairs with the r

same physical ratio (decibel difference). Power law ratio model
(or logarithmic law for subtractive model) implies that broken
lines should be horizontal and solid lines should be linear.
Equivalence of orders suggests that one operation underlies both
tasks.
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parallelism indicates that the data for either task
(analyzed separately) are ordinally consistent with
either Equation 1 or Equation 2.

Only One Rank Order
The theory that the subjects use the same compari-

son operation for "differences" and "ratios" but
different judgment functions implies that the rank
orders of the "ratio" and "difference" judgments
will be the same.

Figure 3 shows that for each subject, rescaled
"ratios" and "differences" are nearly identical; i.e.,
that the open circles fall close to the curves. This
result indicates that the rank orders for the two tasks
are not consistent with the hypothesis of two opera-
tions on one scale (Equations 1 and 2). Instead, they
are consistent with the hypothesis of one operation
on one scale (Equations 3 and 4).

Figure 4 summarizes hypothetical predictions
based on two operations (Panel A) and the empirical
results (Panel B). In Figure 4A, the open circles
connected by dashed lines represent rescaled com-
puted ratios. The solid points conhected by solid lines
represent hypothetical rescaled "difference" judg-
ments. Although the particular predicted values
were calculated using sensory scales that are a power
function of physical sound pressure, it should be
clear that the general pattern of predicted differ-
ences between ratio and difference tasks does not
depend on the power function assumption.

Predictions were made by either subtracting these
scale values or taking their ratio, transforming to
parallelism, and linearly adjusting them to the same
scale. The assumption that psychophysical loud-
ness is a power function would imply linearity for the
ratio estimations. The ratio predictions are indepen-
dent of the value of the exponent, since the rank
order of ratios is invariant under power transforma-
tions.

Both sets of transformed predicted scores in Fig-
ure 4 are parallel. An illusion makes the curves appear
to converge to the right. The reader should convince
himself of the parallelism of the curves in Figure 4A
by physical length measurement. Although this visual
illusion may have some interest in its own right, it
makes the transformed curves appear to converge,
and must be taken into consideration in examining
the visual appearance of parallelism in Figures 3
and 4.

The empirical means of the transformed scores,
averaged over subjects, are shown in Figure 4B.
Three aspects of the data are noteworthy. First, the
averaged values are representative of the single sub-
ject transformed values (Figure 3).

Second, the mean transformed data are very nearly
parallel for both tasks. The average absolute dis-
crepancy from parallelism in Figure 4B is only .056

for the "ratio" data and only .032 for the "differ-
ence" task data. Hence, the ordinal properties of
each set of data appear compatible with either a
subtractive or a ratio model.

Third, and most important, the transformed
values for the "ratio" and "difference" tasks appear
nearly identical. The transformed data do not re-
semble the predictions (Figure 4A) based on two
operations. Assuming one psychological scale of
loudness, the similarity of the orders of the points
suggests that the same operation underlies both
tasks. Marginal means of the transformed scores
(estimates of scale value) were nearly identical for
both tasks. Thus, the criterion of scale convergence
is consistent with the hypothesis of one operation.

DISCUSSION

The data for each task, analyzed separately, are
approximately consistent with the numerical (metric)
predictions of the model defined by the task given to
the subject. However, scales derived from the two
models are inconsistent. When the criterion of scale
convergence is assumed, it is possible to reject the
hypothesis that both operations, ratio and differ-
ence, are being computed on common scale values.
It is also possible to reject the hypothesis that there
are two scales related by a linear function of a power
function.

The results of these experiments are consistent with
Torgerson’s (1961) hypothesis and with the interpre-
tations of Birnbaum and Veit (1974a): the same
comparison operation appears to underlie both tasks.
To account for the differences in the numerical data,
it suffices to assume different monotone judgment
transformations for magnitude estimations of
"ratios" and category ratings of "differences."
Similar conclusions have also been reached by Beck
and Shaw (1967), Birnbaum (1977), Rose and
Birnbaum (1975), Schneider, Parker, Kanow, and
Farrell (1976), and Veit (1977).

Schneider et al. (1976) performed nonmetric
scaling analysis on loudness "ratio" judgments and
fit the resulting subtractive model scale values to a
power function of stimulus intensity. The fitted
exponent was close in value to one reported in a pre-
vious experiment of loudness "differences" (Parker
& Schneider, 1974). Schneider et al. concluded on the
basis of the close match that loudness "ratios" and
"differences" are governed by the same perceptual
process. Although their conclusions were based on
a questionable comparison of power function ex-
ponents (across experiments that differed in other
respects besides instructions), it is reassuring to see
independent lines of investigation reaching similar
conclusions.
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Psychophysical "Laws"
There is a tradition in psychophysics to fit curves

with power functions. This can always be done, of
course. However, just because one can approximate
some data by means of a particular function does not
mean that the function gains any theoretical status
as an explanation. In a satirical article, Sue Doe
(Nihm, 1976) argued that sensation is a polynomial
function of physical value, since polynomial func-
tions fit psychophysical data better than power func-
tions. Nihm’s Sue Doe law seems unlikely to gain
acceptance, but it serves to illustrate the problem
with considering the "psychophysical law" as a
problem in curve-fitting.

The substantive laws by which stimuli are com-
bined or compared deserve grea~er attention than the
function relating scale values to physical measures.
Sensation scales are not obtained by "operational
definition," but through their role in fitting models.
It is only with respect to these theories that scales
of sensation have any meaning.

Violations of the Power "Law"
The scales defined in the present research depend

on whether the subtractive or ratio interpretation
is assumed. It is interesting that even under the
assumption of a ratio model, the data are incompat-
ible with the power function. Schneider et al. (1976)
reached the same conclusion, using it as an argument
against the ratio model interpretation. This seems
ironic, since the power function was originally based
on "ratio" scaling.

The power function implies that the curves in
Figures 3 and 4B be linear. This follows from the
ratio model, since if Rij = JR(sj/si) and s = a~b,
then J~(R) = a~jb/a~ib = (~j/~i)b; hence log [J~(R)]
= b[log ~j - log ~i]. Therefore, equal physical
ratios should be judged equal, and rescaled log-
"ratios" should be a linear function of log physical
values. Instead, Figures 3 ahd 4B show that the
curves for both tasks are nonlinearly related to the
log physical values and that equal physical ratios
(broken lines in Figure 4B) become more extreme as
a given decibel difference is moved up the scale.

Of course, power functions could still be forced
on the data, and exponents extimated.5 These in-
appropriate exponents are intentionally not reported
here for fear that they may end up in the table of
a review article. It also seems inappropriate to force
power function fits on the subtractive model scale
values at present, since the qualitative constraints
tested for the ratio model are not available for the
subtractive model. In addition, fitting a power func-
tion to the subtractive model scales allows the estima-
tion of an extra parameter, which could favor the
possibly spurious conclusion that the power function
was an appropriate representation of the subtractive
model scales.

Epitaph for a Prolegomenon?
Marks (1974) proposed a prerequisite to any "fu-

ture psychophysics that will be able to come forth
as a science." The promulgated prolegomenon is a
pair of power functions for "ratio" and "difference"
tasks. Marks (1974) noted that if power functions are
fit to data from these tasks, the power function
exponents are greater for "ratio" tasks than for
"interval" tasks. (See also Stevens, 1971.) Sensory
scales are presumed to be power functions of
physical magnitude, but with different exponents for
different tasks.

If two scales were power functions of intensity,
however, then one scale must be a power function of
the other. These assumptions predict different orders
for the two tasks. In fact, the predictions of Fig-
ure 4A would be unaffected by any power trans-
formation of the ratio scales and any linear trans-
formation of the difference scales. The finding that
the two tasks produce the same order rules out the
theory that there are two different power functions.
To argue that ratio and subtractive operations under-
lie the same order would require the interpretation
that the two scales are exponentially related. Rather
than assume that there are two scales which just
happen to be exponentially related and two opera-
tions, it would seem simpler to explain ordinal
identity by postulating that there is one scale of
sensation and one comparison operation.

Marks’ (1977) stage theory of psychophysics con-
cedes that both "ratios" and "differences" are
computed by subtraction. The new theory allows
different transformations of psychological value in
different stages to account for differences among
scales derived from additive models of loudness
summation, subtractive models of "difference"
judgments, and scales obtained by taking magni-
tude estimations at face value. Marks’ new theory
remains consistent with a variety of data, but seems
complicated, since it allows so many different
processes to intervene between stimulus and re-
sponse.

Concluding Comments
Although the present data suggest that the same

operation underlies judgments of both "ratios" and
"differences," they do not provide any basis for pre-
ferring the ratio or subtractive model as a representa-
tion of this single operation. If the subtractive model
is assumed to represent both tasks, the parallelism of
the curves in Figure 3 imply that JD is nearly linear,
whereas the near-bilinearity in Figure 2 would imply
that JR is nearly exponential. However, if the ratio
model is assumed, JD would be logarithmic and JR a
linear function of a power function. Scale values
derived assuming the ratio model would be an expo-
nential function of those estimated from the sub-
tractive model. Either theory could equally well
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reproduce the present data. Torgerson (1961) thought
that the decision between these theories could not be
made on the basis of empirical evidence.

An empirical basis can be made for preferring the
subtractive representation (Birnbaum, 1977; Veit,
1977). Rose and Birnbaum (1975) asked judges to
divide a line segment to represent "ratios" or
"differences" between numerals. The responses were
virtually identical for both tasks, consistent with the
premise that only one operation was involved. The
ratio model [and a related Si/(Si+ Sj) ratio model]
implied a positively accelerated psychophysical func-
tion for numerals. The subtractive model, in contrast,
yielded scale values that agree with values for
numerals derived from Parducci’s range-frequency
theory (Birnbaum, 1974b) and with other scales of
number obtained with a variety of techniques (Rule
& Curtis, 1973).

Veit (1977) applied the scale-free approach
(Birnbaum, 1974a; Birnbaum & Veit, 1974b) to the
ratio-difference problem. She presented judges with
four gray chips and asked them to judge the "ratio"
of the "difference" in the darkness.between two stimuli
relative to the "difference" between two others. The
data were consistent with a ratio of differences model.
Since both a ratio and a subtractive operation are
present in this model, the ordinal constraints pre-
clude rescaling to another simple model. The scale
values for darkness derived from this model were
linearly related to scale values obtained from the sub-
tractive representation of two-stimulus "ratios" or
"differences," supporting the subtractive interpreta-
tion of these tasks.

Birnbaum (1977) noted that judgments obtained
with "difference of differences," "difference of
ratios," and "ratio of ratios" instructions are all
consistent with a difference of differences model.
"ratios of differences" and "differences of differ-
ences," however, are not monotonically related, but
instead seem to be consistent with two operations on
a common scale of differences. These two orders
define a ratio scale of pair relationships, which,
in turn, are consistent with the subtractive representa-
tion. The subtractive theory allows a coherent inter-
pretation of all six tasks (including simple "ratios"
and "differences") with a common scale.

Thus, "ratios" and "differences" appear to induce
two different operations when the stimuli are them-
selves subjective pair intervals. Since an interval will
always have a well-defined zero point (when two sub-
jective values are equal, the interval is zero), it is
tempting to hypothesize that two operations will be
operative only for continua with well-defined sub-
jective zero points (Birnbaum, 1977). Perhaps line
lengths can be thought of as intervals, or distances,
between locations. Hence, ratio and subtractive
processes might both be available for length intervals

(Parker, Schneider, & Kanow, 1975). However, for
such continua as darkness of gray papers and dot
patterns, magnitudes of numerals, heaviness of lifted
weight, likeableness of adjectives, and now loudness
of tones, it appears that only one operation is needed
to represent both "ratio" and "difference" judgments.
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NOTES

1. Quotation marks are used throughout for instructions to
judge "differences" or "ratios," or for judgments obtained
with such instructions. Quotes are not used to denote theoretical
statements about models or actual ratios and differences.

2. It is logically possible to obtain data for each task that are
compatible with the models, yet the scale values from the two
tasks would not have any simple relationship. The data for one
or both tasks could also violate the ordinal requirements of one or
both models. These possibilities have been discussed in greater
detail by Birnbaum (1977), Birnbaum and Veit (1974a), and
Krantz et al. (1971).

3. If the data can be rescaled to fit the subtractive model, then
they are also ordinally compatible with the ratio model. Hence,
the rescaling to parallelism tests either model.

4. Marginal means for the five levels of the first stimulus were
a nearly linear function of the corresponding values of the second
stimulus.

5. It is interesting to note that the log range of magnitude
estimations of "ratios" is 1.43, yielding a (log response range)/
(log stimulus range) ratio of .30. These values are typical of
results obtained with magnitude estimations of loudness of single
tones (Teghtsoonian, 1971). In the present case, however, this
ratio cannot be interpreted as a power function exponent, and
should raise serious questions about the interpretation of this
index for single stimulus experiments.
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