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his paper tests new “independence” properties to compare three models of risky decision making. According

to the rank-affected multiplicative (RAM) weights model, all three properties should be satisfied; according
to the transfer of attention exchange (TAX) model, two should be satisfied and one can be violated. However,
according to cumulative prospect theory (CPT), all three properties will be violated if the probability weight-
ing function is nonlinear. Although CPT is flexible enough to accommodate violations of these properties, its
predicted violations based on previously estimated parameters failed to materialize. In 14 choices for which
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1. Introduction

This study introduces three new “independence”
properties and examines if they are descriptive of
risky decision making. The three properties are all
implied by expected utility (EU) theory, and all could
be deduced from the “sure thing” principle of Savage
(1954). Non-EU models may satisfy or violate these
particular properties, however, allowing them to be
used to compare rival descriptive models. These prop-
erties distinguish cumulative prospect theory (CPT)
(Tversky and Kahneman 1992), rank-affected multi-
plicative (RAM) weights, and the transfer of attention
exchange (TAX) models (Birnbaum and Chavez 1997,
Birnbaum and Navarrete 1998).

It will be shown that RAM satisfies all three prop-
erties, that special TAX satisfies two properties, and
that CPT can violate all three properties. Section 2
describes the models, and §3 derives their predictions.
Section 4 describes two experiments designed to com-
pare these models, and §5 presents results showing
that data are most consistent with the TAX model.
Section 6 discusses how these findings fit in with
other evidence bearing on the accuracy of these three
models.

2. Three Models of Risky Decision
Making
2.1. Cumulative Prospect Theory

For gambles with positive consequences, G = (x;, p;;
Xy, P2 -3 X, Pp), Where x; > x, > -+ >x, >0, CPT
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can be written as follows:

[W(/Zp) - W(;Zi”f)]”("")’ M)

where P, = Z;Zl p; is the decumulative probability
that a prize is equal to x; or greater, and W(P) is a
monotonic function that assigns decumulative weight
to decumulative probability; W(0) =0 and W(1) =1.
With strictly positive consequences, this representa-
tion coincides with rank-dependent utility (RDU), as
described in Quiggin (1993).

In practice, the decumulative weighting function
(Tversky and Kahneman 1992) has been fit with the
following equation:

CPU(G) =£

i=1

PY
[P+ 1= PyT7

W(P) = @)
where P is decumulative probability and vy is a con-
stant. With y < 1, W(P) is an inverse-S function
of P, which predicts that participants are risk seek-
ing for small values of P and risk averse for mod-
erate to large values of P. The term “CPT model”
will be used in this paper to refer to Equations (1)
and (2) with parameters estimated by Tversky and
Kahneman (1992): y = 0.61 and u(x) = x#, B = 0.88.
Two parameter equations have also been suggested
for W(P), for example, by Tversky and Wakker (1995),
but these make virtually identical predictions in this

paper.
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2.2. Rank Affected Multiplicative Model

The “configural weight” models were originally
developed to describe how people combine evidence
when making evaluative judgments (Birnbaum 1974).
As Birnbaum (1974, p. 559) states, in these models,
“the weight of an item depends in part on its rank
within the set.” These models thus have some similar-
ities to the rank-dependent utility models that were
later developed by Quiggin (1993) and extended by
others (Luce 2000; Luce and Fishburn 1991, 1995;
Tversky and Kahneman 1992). In particular, by selec-
tion of proper functions and parameters, the RDU
models can be made to mimic predictions of the
configural weight, RAM, and TAX models in certain
experiments. However, these classes of models make
different predictions for other experiments, some of
which will be tested here.

In the RAM and TAX models, risky gambles
are represented as trees in which each branch is a
probability-consequence pair that is separately spec-
ified in the description given the decision maker.
For example, the gamble G = ($100,0.1; $100,0.1;
$0, 0.8) represents a three-branch gamble whose three
branches are ($100,0.1), ($100,0.1), and (%0, 0.8).
When gambles are treated as probability distributions
rather than as trees, however, gamble G is equivalent
to the following two-branch gamble, F = (5100, 0.2;
$0, 0.8), where the two branches leading to $100 have
been combined or coalesced. However, in RAM and
TAX, gambles G and F are not the same. On the other
hand, in any RDU, rank and sign-dependent utility
(RSDU), or CPT model, G and F are equivalent.

In the RAM model, the importance of a branch
depends not only on that branch’s probability, but
also on the relation of its consequence relative to con-
sequences on other branches of the same gamble. In
the RAM model, importance is represented by weight
that is a product of a function of the branch’s proba-
bility and a function of the rank of the consequence
on that branch relative to the other branches. The key
idea is that each branch carries a degree of importance
that depends on its probability and rank of its conse-
quence. In the case of risky decisions, the branch lead-
ing to the worst consequence will typically receive
the most weight, and the branch leading to the best
consequence will typically receive the least weight, if
they had the same probability. These properties pro-
duce risk aversion in the RAM model.

For strictly positive consequences, the RAM model
can be written as follows:

i ai, n)s(p)u(x;)
Yiia(i, n)s(p;)

where RAM(G) is the utility of the n-branch gam-
ble G=(xy, p1; X2, Po; .-+ X, Pn), Where x; > x, > -+ - >

RAM(G) = 3)

x, > 0, a(i,n) is the weight of the branch whose
consequence is ranked i among n branches, s(p;) is
a function of branch probability, p;, and u(x;) is the
utility of the consequence on that branch. The RAM
model takes its name from the multiplicative relation-
ship between a function of branch probability and a
function of branch’s rank; i.e., the relative weight of
branch i is a(i, n)s(p;), divided by the sum of these
products.

The “RAM model” in this paper will refer to Equa-
tion (3) with u(x) = x (for 0 < x < $150), with the rank
weights equal to their ranks; ie., a(i,n) =i and
s(p) = p?, where y = 0.6. These parameters provide
an approximate fit to data in Tversky and Kahneman
(1992).

For two-branch gambles of the form G = (x,p;
0,1 — p), this RAM model, like CPT, implies that
certainty equivalents of gambles (the amounts of
cash that are indifferent to the gambles) will be an
inverse-S function of probability to win: CE(G) =
xp?/[p? +2(1—p)?]. If the effect of probability is nega-
tively accelerated (y < 1), this model, like that of CPT,
implies risk seeking for small values of p, and risk
aversion for moderate to large values of p.

It is important to keep in mind that in RAM,
the rank weights represent ranks of consequences
on discrete branches, not decumulative probabilities,
as would be the case in RDU or CPT. For exam-
ple, in a three-branch gamble, there are exactly three
branch ranks, 1, 2, and 3, for the branches with the
highest-, middle-, and lowest-valued consequences,
respectively, regardless of their probabilities. In the
parameterized RAM model, the branch with the low-
est consequence has three times the weight of the
highest consequence, and the branch with the second
highest consequence has twice the weight of the high-
est consequence, assuming their probabilities were
equal.

2.3. Transfer of Attention Exchange Model

The TAX model also assumes that the weight of a
branch depends on the branch’s probability. The key
idea is that branches compete for attention, which
redistributes their weights. The shifts of attention
from branch to branch are represented by transfers
of weight from one branch to another. For most peo-
ple choosing between risky gambles, weight will be
drawn from branches leading to higher-valued con-
sequences and transferred to branches with lower-
valued consequences. It is this shift of weight that
accounts for risk aversion in this model, rather than
nonlinear utility (as in EU theory). In the “special”
TAX model, the amount of weight transferred is
assumed to be a fixed proportion of the weight that
the branch has to lose, which aside from the transfers,
is a function of its probability, t(p).
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When lower-valued branches receive greater
weight, this special TAX model can be written as
follows for G = (x1, p1; Xo, Pa; - -5 Xy, Pn), Where x; >
X, > >x,>0:

TAX(G)

X[ + 3/ (1) X Hpy) — (8/ (n+ 1) T H(pi) Ju(x;)
N Y t) ’
4)

where 6 > 0, which produces risk aversion in the
case of fifty-fifty gambles, and t(p) =p”, where y < 1.
To understand this formula, it helps to break down
the three terms affecting weight. First, if the con-
figural weight parameter, 6, were 0, then the for-
mula simplifies, and relative weights are a function of
branch probabilities, t(p), divided by the sum of these
weights. If t(p) is a negatively accelerated function,
then certainty equivalents in two-branch gambles will
be an inverse-S function of p. The second term rep-
resents the transfer of weight from each branch with
a higher consequence (j=1,2,...,i—1) to branch i.
The third term shows that branch i, in turn, gives up
a proportion of its weight to each branch with a lower
consequence (j=i+1,i+2,...,n).

Although this model is equivalent to previous ver-
sions, branches are ordered here from best to worst in
conformity with the ranking used in CPT, and 6 >0
in this equation corresponds to 6 < 0 in Birnbaum
and Chavez (1997) and other papers using that older
convention.

In the parameterized TAX model of this paper, pre-
dictions are calculated from Equation (4) with u(x) =x
for small positive sums (0 < x < $150), t(p) = p°7,
and 6 = 1. With 6 =1, in a two-branch gamble,
one-third of the weight (transformed probability) of
the higher-valued branch is transferred to the lower-
valued branch. In a three-branch gamble, one-fourth
of the weight of any higher-valued branch is trans-
ferred to each lower-valued branch. These parameters
were also chosen to approximate data of Tversky and
Kahneman (1992).

2.4. Comparing the Models

The purpose of this paper is to investigate three new
properties that distinguish RAM and TAX models
from each other and from CPT. These three new prop-
erties differ from several properties previously inves-
tigated in that CPT can violate them all, whereas
RAM and special TAX models must satisfy all or
two of these three properties, respectively. So, in this
case, CPT has the opportunity to go on the offense
in contrast to previous contests (e.g., Birnbaum and
Navarrete 1998), where CPT had to defend the null
hypothesis (that properties it implied would be sat-
isfied) against models that violated those proper-
ties. Here, TAX and RAM are put in the position

of defending null hypotheses against violations pre-
dicted by the CPT model. These properties are also
implied by EU, so they also can be considered as tests
between CPT and EU.

Consider the two choices in Example 1:

S: 0.60 probability to win $2  R:
0.20 probability to win $56
0.20 probability to win $58

52:  0.10 probability to win $2  R2:
0.45 probability to win $56
0.45 probability to win $58

0.60 probability to win $2
0.20 probability to win $4
0.20 probability to win $96

0.10 probability to win $2
0.45 probability to win $4
0.45 probability to win $96

Given its previous parameters, CPT implies cer-
tainty equivalents of 20.4 and 234 for S and R,
and 39.7 and 36.2 for 52 and R2, respectively. Thus,
CPT predicts that people will choose R over S and
52 over R2. However, TAX model calculations yield
certainty equivalents of 21.7 and 13.8 for S and R, and
36.9 and 22.8 for S2 and R2, respectively, so people
should choose the “safe” gamble in both choices. For
RAM, predictions are 19.3 and 12.3, and 42.5 and 26.2,
respectively. Therefore, both RAM and TAX models
imply that people should choose both “safe” gam-
bles, but CPT predicts a reversal from R to S2 as the
probability of the lower branch is decreased from 0.6
to 0.1. It will be shown that the RAM and TAX mod-
els must defend the null hypothesis that there should
be no change in preference against CPT’s prediction
of a specific violation.

Note that S and R share a common lower branch
of 0.60 to win $2, whereas the common lower branch
in S2 and R2 has a probability of 0.10 to win $2. The
property tested in Example 1 is called 3-lower distribu-
tion independence (3-LDI) because only the probability
of the lowest common consequence in a three-branch
gamble is changed, and the ratio of probabilities of the
other branches is fixed. Section 3 defines this property
(as well as others to be tested) more precisely, and
derives predictions of the models.

3. Properties and Predictions of
the Models

3.1. Lower Distribution Independence (3-LDI)

Let G = (x,p;y;9,2,1 — p — q) represent a three-
branch gamble to win x with probability p, v with
probability g, and z otherwise. Let x > y > z > 0.
Define 3-LDI as follows:

S=xpy;p;z,1-2p)
R=,p;y;p;z,1-2p)

S2=(x,p;y;p52,1-2p)
R2=(",p;y;p ;2 1-2p). (5)

if and only if

Note that the first comparison involves a distribu-
tion with probabilities of p and p to win x and y, with
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a common branch of (z,1—2p). The second choice is
the same except for a different probability, p’ on the
two branches and a different probability on the com-
mon branch (z, 1 —2p’).

It will be shown that the special cases of both RAM
and TAX satisfy this property, whereas CPT can vio-
late it. To understand the predictions, recall that all
three models represent the utility of a gamble as a
weighted average of the utilities of the consequences.
When the number of branches, their ranks, and the
probability distribution are all fixed, all three mod-
els reduce to what Birnbaum and Mclntosh (1996,
p- 92) call the “generic rank-dependent configural
weight” theory, also known as the rank weighted util-
ity model (Luce 2000, Marley and Luce 2001). This
generic model can be written for the choice between S
and R as follows:

S>R & wiu(x)+wu(y) + wyu(z)
> wu(x') + wyu(y’) + wsu(z),  (6)

where w,;, w,, and wj; are the weights of the highest-,
middle-, and lowest-ranked branches, respectively,
which will depend on the value of p (differently in
different models). The generic model allows us to sub-
tract the term w;u(z) from both sides, which yields

SR & &>u(x)—u(x)

w, "~ uy) —u(y) @)

Suppose that there is a violation of 3-LDI, in which
52 < R2. By a similar derivation, this means

u(x') —u(x) w,
52<R2¢>m>;?1 8

where the (primed) weights now depend on the new
level of probability, p’. Therefore, there can be a pref-
erence reversal from S > R to 52 < R2 if and only if
the ratio of weights changes as a function of probabil-
ity and “straddles” the ratio of differences in utility,
as follows:

w, ux)—u(x) wh

o uw) —aly) @, ®

A reversal from S < R to S2 = R2 can occur with the
opposite ordering:

w, u(x)—ulx) w,

o " u) —uly) " @, 10

The two patterns of violation, represented in Expres-
sions (9) and (10), will be labeled SR2 and RS2,
respectively.

If the ratio of weights is independent of p or p’ (for
example, as in EU where both ratios are 1), then there
can be no violations of this property.

According to the RAM model, this ratio of weights
is given by the following;:

w, _a2,3)s(p) _a2,3)s(v) _ w
Wy 11(1, 3)5(P) 11(1, 3)5(P') wﬂ .

(11)

Therefore, RAM satisfies 3-LDI. With the further
assumption that branch rank weights equal their
objective ranks, this ratio will be 2/1, independent of
the value of p (or p').

According to the special TAX model, this ratio of
weights can be written as follows:

w, _ Hp) + (8t(p)/4) — (8t(p)/4)

w, t(p) — (2/4)8t(p)

-
CHp)[1-26/4]  wy

(12)

In addition, if 6 =1, as in the previously parameter-
ized model, then this ratio will be 2/1. Therefore, spe-
cial TAX, like the RAM model, implies 3-LDI.

According to CPT, there should be violations of
3-LD], if the decumulative weighting function, W(P),
is nonlinear. The relation among the weights will be
as follows:

wy, _ W(2Zp) - Wip)
w;  W(p)—W(0)

Wp) - W) _w,
W) - WO o

For the model and parameters of Tversky and
Kahneman (1992), the ratios of weights for p=0.2
and p’ = 0.45 are 0.1093/0.2608 = 0.4191 and 0.3165/
0.3952 = 0.80, respectively. Note that the inverse-S
weighting function of CPT implies that both of these
ratios are less than 1, and they differ by a factor of
almost 2.

Figure 1 illustrates how regions of the parameter
space of the CPT model lead to different predicted
patterns in Example 1. Note that when y =1, CPT
reduces to EU, and no violations are allowed (i.e.,
only SS2 and RR2 are predicted). Based on 8 =0.88
and y = 0.61, the predicted pattern is RS2, as it is
for many other combinations of parameters in this
neighborhood. As noted by the reviews of Neilson
and Stowe (2002) and Blavatskyy (2004), most studies
supporting CPT have reported parameter estimates in
this region (Abdellaoui 2000, Tversky and Kahneman
1992, Tversky and Fox 1995).

Two studies (Camerer and Ho 1994, Wu and
Gonzalez 1996) reported smaller values of 8, which
imply the response pattern SS2 for Example 1. For
that reason, it is important to provide a series of tests
of a given property so that one can test a property
without knowing the exact values of parameters in
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Figure 1 Predicted Pattern of Choices in Example 1 as a Function of

Parameters of CPT

CPT analysis of example 1: 3-LDI -

-y
T T

882

Utility function exponent, 8

0 1 1 1 1 1
1.0

Weighting function parameter, y

Note. As shown, GPT is flexible enough to allow any pattern of behavior,
but given its published estimates (y = 0.61, 8 = 0.88), CPT predicts RS2
reversal of preferences. Each test can be analyzed in this way.

1.5

advance. Choices 9 and 12 of Table 1 provide a test in
which the parameters reported in those studies imply
a violation of the form RS2 of 3-LDI. Other tests of
this paper widen still further the space of parameters
explored by the study. Similar figures, drawn for each
test of each property, show that the tests combine to
provide a fairly wide and partially overlapped cover-
age of plausible CPT parameters.

3.2. Lower Distribution Independence (3-2 LDI)
Now consider the two choices in Example 2:

A:  0.50 probability to win $40 B:
0.50 probability to win $44

C: 0.04 probability to win $2
0.48 probability to win $40
0.48 probability to win $44

D:

0.50 probability to win $4
0.50 probability to win $96

0.04 probability to win $2
0.48 probability to win $4
0.48 probability to win $96

According to either TAX

or RAM, with their

previously estimated parameters, a person should
choose A over B and C over D. For TAX, calculated
certainty equivalents are 41.3, 34.7, 29.1, and 24.5,
for A, B, C, and D, respectively. For RAM, the com-
puted values are 41.3, 34.7, 35.5, and 29.8, respectively.
However, according to the CPT model, the certainty
equivalents are 41.7, 39.3, 33.9, and 37.9, respectively,
so a person should prefer A over B and D over C.
This property is named 3-2 lower distribution indepen-
dence because the probability of the (common) low-
est branch has vanished, reducing the choice from
a comparison of three-branch gambles to a decision
between two-branch gambles.
The property of 3-2 LDI requires

A=(x,1/2;y;1/2)

>B=(',1/2;y';1/2) if and only if

C=,py;p;z,1-2p)

=D=(,p;y;p;z,1-2p). (13)

By a similar derivation to that for 3-LDI, the RAM
model predicts the same choices between A and B
as between C and D. This conclusion follows when

Table 1 Tests of 3 Distribution Independence and Branch Independence (Main Design of Experiment 1)
Choice Percentage choosing R Prior TAX (RAM) Prior CPT
No. S R All (1,075) 2i (524) 2i* (551) S R S R
9 0.80 to win $2 0.80 to win $2 42.4 423 425 11.4(9.4) 9.79 (8.2) 10.4 14.5
0.10 to win $40 0.10 to win $4
0.10 to win $44 0.10 to win $96
12 0.10 to win $2 0.10 to win $2 30.2 34.3 26.3 271 (31.2) 229 (26.2) 30.5 35.9
0.45 to win $40 0.45 to win $4
0.45 to win $44 0.45 to win $96
15 0.10 to win $40 0.10 to win $4 56.0 57.5 54.7 61.6 (68.6) 63.4 (68.1) 774 Yaws
0.10 to win $44 0.10 to win $96
0.80 to win $100 0.80 to win $100
18 0.45 to win $40 0.45 to win $4 33.2 324 33.9 45.9 (45.4) 439 (44.7) 50.3 42.6
0.45 to win $44 0.45 to win $96
0.10 to win $100 0.10 to win $100
5 0.04 to win $2 0.04 to win $2 34.0 35.0 33.0 29.1 (35.5) 245 (29.8) 34.7 37.7
0.48 to win $40 0.48 to win $4
0.48 to win $44 0.48 to win $96
6 0.50 to win $40 0.50 to win $4 314 31.6 31.1 41.3 (41.3) 34.7 (34.7) 41.7 39.3
0.50 to win $44 0.50 to win $96

Note. Choices 9 and 12 test 3-LDI, choices 15 and 18 test 3-UDI, and choices 5 and 6 test 3-2 LDI.
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a(2,2)/a(1,2) = a(2,3)/a(1,3), as it does in the
parameterized RAM model, where this ratio is 2/1 in
both cases.

The special TAX model also implies that peo-
ple should make the same choices in A and B as
between C and D because the weight ratio in 50-50,
two-branch gambles is

w, _ #(1/2) +(8/3)t(1/2)

w, H(1/2)—(8/3)t(1/2)’

which also equals 2/1, so this model also satisfies
3-2 LDIL.

The CPT model predicts that people should
choose A over B and choose D over C. The ratio of
weights (second to first in the two-branch case) is
0.579/0.421 = 1.38, but in the three-branch case, the
weights of third, second, and highest branches are
0.185, 0.405, and 0.410, so the ratio of the second (mid-
dle) branch to the highest has been reduced to 0.99.
Thus, CPT violates 3-2 LD, leaving RAM and TAX to
again defend the null hypothesis.

3.3. Upper Distribution Independence (3-UDI)
3-upper distribution independence, 3-UDI, can be
written as follows:
S'=(,1-2p;x,p;y;p)
=R'=(z,1-2p;x',p;¥;p)
S2'=(zZ,1-2p';x,p";y;p)
=R2'=(z',1-2p';x',p";y;p).

if and only if
(14)

Example 3 illustrates 3-UDI:

S’: 0.10 to win $40 R
0.10 to win $44
0.80 to win $100

S2': 0.45 to win $40 R2":
0.45 to win $44
0.10 to win $100

0.10 to win $4
0.10 to win $96
0.80 to win $100

0.45 to win $4
0.45 to win $96
0.10 to win $100

Here, the probability of the common upper branch
is changed. This property will be violated, with S’ > R’
and S2' < R?/, if and only if

Wy u) —u(x)  ws

0wy —uy) (15)

The opposite pattern of preference (R'S2’) is predicted
when the order above is reversed:

wy  u(x)—u(x) wj

< << —,
wy, u(y)—uly) w

The RAM model implies that

ws _ a(3,3)s(p) _ a(3,3)s(p’) _ wy
w, a(2,3)s(p) a2,3)s(p)  wy

(16)

Therefore, the RAM model implies no violations of
3-UDL

In the special TAX model, however, this ratio of
weights is as follows:

wy _ tp) + (8/4)tp) + (8/H)t(1 —2p) , ws
w,  Hp) — (8/H)t(p) + B/t —2p) " wy’

which shows that this weight ratio is not indepen-
dent of p. For TAX with its previous parameters,
this weight ratio increases from 1.27 to 1.60, which
straddles the ratio of differences (96 — 44)/(40 —4) =
1.44; therefore, this model predicts that S < R’ and
52" > R2'. TAX implies this pattern (R'S2’) of violation
of 3-UDIL

CPT implies violations of 3-UDI because the ratios
of weights are as follows:

w; 1-W(l—-p)
w, ~ W(l—p)—W(1-2p)
” 1-W(a-p) _ W

W(A-p)—W(1-2p) w)

In particular, for the inverse-S weighting function of
Tversky and Kahneman (1992), this ratio of weights
increases and then decreases as p increases, with a net
decrease from 2.76 to 2.11 as p goes from 0.1 to 0.45.
Therefore, CPT implies violations of the opposite pat-
tern (S'R2’) from that implied by TAX. CPT predicts
no violation in Example 3, given its previous param-
eters, but it does predict violations of the form S'R2’
in Choices 8 and 10 in Table 3. To account for the
same pattern as predicted by TAX, CPT would need
an S-shaped probability weighting function (i.e., with
v > 1), rather than inverse-S.

3.4. Restricted Branch Independence

The experimental design also allows one to test a
special form of restricted branch independence (RBI),
which in this experiment can be written as follows:

S=@,py;p;iz,1-2p)
R=W,p;y;p;z,1-2p)
S'=0,1=-2p;x,p;y;p)
=R =, 1-2p;x,p;¥;p).

if and only if
(17)

This version of RBI is a special case in which both
(x,p) and (y,p) branches have equal probabilities.
There will be an SR’ violation of RBI (i.e.,, S > R and
R’ > §') if and only if the following holds:

w, _ u)—u(x) ws

>——r <5 2
wy  u(y)—u(y’)  w,

where w; and w, are the weights of the highest and
middle branches, respectively (when both have prob-
ability p in gambles S and R), and w), and wj are

(18)
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the weights of the middle and lowest branches with
probability p in gambles S’ and R/, respectively. Both
RAM and TAX models imply this type of violation,
SR'. With their parameters, the ratios are 2/1 > 3/2 in
both of these models. Although RAM and TAX satisfy
all three or two of the three distribution independence
properties, respectively, they both systematically vio-
late RBL

CPT also systematically violates RBI; however, it
violates it in the opposite way from that of RAM
and TAX, given its inverse-S weighting function.
Define a weakly inverse-S function as a strictly increas-
ing function satisfying the following: for all p <
p*: W(2p) — W(p) < W(p) — W(0) and W(1 —p) —
W(1 -2p) <W(1) — W(1—p). Therefore, w, < w; and
w), < wy. It follows that w,/w; <1 < wj/w). There-
fore, CPT with a weakly inverse-S weighting func-
tion implies that violations of RBI should have the
relations S<R and R’ < §’; i.e, the RS pattern. So,
if the opposite pattern is observed, as predicted by
RAM and TAX, it contradicts any weakly inverse-S
function. (A strongly inverse-S function is one that
is weakly inverse-S and also satisfies the following:
W(p) >p Vp<p and W(p) <p Vp > p'. If one can
reject the weakly inverse-S, one rejects the stronger
form.)

4. Methods

In each of two experiments, participants made 20 or
22 choices between pairs of gambles. They viewed
materials via the Internet. They were informed that
three lucky participants in each experiment would
be selected at random to play one of their chosen
gambles for money, with prizes as high as $108, so
they should choose carefully. Prizes were awarded
as promised. Each choice was displayed as in the
following example:

1. Which do you choose?
O A: 0.50 probability to win $0
0.50 probability to win $100
or

O B: 0.50 probability to win $25
0.50 probability to win $35

Instructions read (in part) as follows:

Think of probability as the number of tickets in a bag
containing 100 tickets, divided by 100. Gamble A has
50 tickets that say $100 and 50 that say $0, so the prob-
ability to win $100 is 0.50 and the probability to get $0
is 0.50. If someone reaches in bag A, half the time they
might win $0 and half the time $100. But in this study,
you only get to play a gamble once, so the prize will be
either $0 or $100. Gamble B’s bag has 100 tickets also,
but 50 of them say $25 and 50 of them say $35. Bag B
thus guarantees at least $25, but the most you can win
is $35. Some will prefer A and others will prefer B. To
mark your choice, click the button next to A or B....

4.1. Experimental Design

Table 1 shows the main experimental design of
Experiment 1. The “safe” gambles (denoted S in
Table 1) contain branches with (x,y) = ($44, $40).
The “risky” gambles (denoted R in Table 1) had
two branches with a greater range of consequences,
(', y') = ($96, $4). Choices 9 and 12 provide a test
of 3-LDIL Choices 15 and 18 provide a test of 3-UDL
Choices 5 and 6 form a test of 3-2 LDL

Choices 9 and 15 allow a test of RBI, because the
consequence on the common branch of 0.80 to win $2
has been changed from $2 to $100. Choices 12 and 18
form another test of RBI where the common branch
has a probability of 0.10.

In addition to the choice sets displayed in Table 1,
there were 10 other variations of the first five choices
in Table 1, where only the values for the prizes
in the “safe” gambles were altered. These values
were ($38, $34) and ($32, $28) instead of ($44, $40),
respectively.

The first four choices served as a “warm-up,” and
were the same as the first four in Birnbaum (1999b).
These choices replicated previous findings, showing
risk aversion for 50-50 gambles and satisfaction of
consequence monotonicity in 90% or more of the
choices. There were two conditions, labeled 2i and 2i*,
which had opposite trial orders for choices 5-20.

Experiment 2 was designed to create violations of
3-LDI and 3-UD], according to the parameterized CPT
model. It used a different mechanism of probability
(drawing colored marbles randomly from an urn).
Order of branches within gambles and positions of S
and R in each choice (first or second) were also coun-
terbalanced in Experiment 2 relative to Experiment 1.
Experiment 2 also tested new variations of other prop-
erties previously published, which will be reported
in the discussion by way of reviewing the case
against CPT. Complete materials can be viewed at
http://psych.fullerton.edu/mbirnbaum/archive htm.

4.2. Participants

Participants in Experiment 1 consisted of 1,075 people
recruited by links on the Internet and from the usual
psychology “subject pool” at California State Uni-
versity, Fullerton. The two conditions (with opposite
trial orders for choices 5-20) had 524 and 551 partici-
pants, respectively. Of these, 688 (65%) indicated they
were female and 374 were males (some did not report
gender). Age ranged from 18 to 83, with a mean of
29.5 years; 17.5% indicated that they were 40 or older;
44% reported that they held college degrees; and 3%
had doctoral degrees. Experiment 2 had 503 partici-
pants, with a greater proportion of college students.
Their mean age was 25.5, with 12.4% older than 40;
65% females; 28.3% were college graduates and 3%
held doctorates.
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5. Results

Tables 1 and 2 present choice percentages for the two
groups and overall percentages (based on n=1,075).
All choice percentages in Table 1 are significantly dif-
ferent from 50%, by individual binomial tests. For
n=>524, the binomial (p = 1/2) has a mean of 262
and a standard deviation of 11.45, so the 95% confi-
dence interval on the mean proportion ranges from
0.46 to 0.54. For n=1,075, the 95% confidence inter-
val is 0.47 to 0.53. All values in Table 1 fall outside
these intervals, and are therefore significantly differ-
ent from 50%. Throughout this paper, the term “sig-
nificant” and asterisks refer to this standard.

Predictions of TAX, RAM, and CPT models using
parameters estimated from previous data are pre-
sented in the six columns in the right of Table 1.
Calculated certainty equivalents are shown for each
gamble according to each model. In Table 1, we see
that the TAX and CPT models disagree in four rows:
Choices 9, 12, 15, and 5. Bold type indicates cases
where a model correctly predicts the modal choice
when models disagree.

In all four cases in Table 1 where TAX and CPT
disagree, TAX correctly predicted the modal choice
(bold type). The TAX model implies no violations
of 3-LDI (row 9 versus 12), but it correctly predicts
a violation of 3-UDI (row 15 versus 18). Note also
the predicted violation of restricted branch indepen-
dence between choices 9 and 15. Here, CPT with
its inverse-S weighting function erroneously predicts
that R > S in choice 9 and R’ < S’ in choice 15; how-
ever, the TAX model correctly predicts the modal
choices. Although the changes in choice proportion
are not large by absolute standards (56% — 42% =
14%), they are each significantly different from 50%,

in opposite directions. By the more sensitive (within-
subjects) test of correlated proportions, there were 273
who reversed choices between 9 and 15 in the direc-
tion predicted by TAX compared to only 128 who
switched in the opposite direction (z =7.29).

According to the CPT model, choice 6 should yield
the opposite decision from that in choices 5 and 12.
However, this predicted violation of 3-2 LDI did
not materialize; percentages in choices 5 and 6 are
34% and 31%, respectively. Failure to reject does not
“prove the null hypothesis,” of course, so it is possible
that with some other choices of gambles this predic-
tion might still hold up. Nevertheless, CPT predicted
violations of RAM and TAX, but the results did not
confirm its predictions.

TAX and RAM differ in only one predicted choice
in Table 1 (choice 15). RAM allows no violations of
either 3-LDI or 3-UDI, whereas the TAX model pre-
dicts a particular violation of 3-UDI in choices 15
and 18. Although CPT can violate 3-UD], it failed to
predict this violation correctly predicted by TAX. In
sum, the data in Table 1 are most consistent with
the TAX model, which correctly predicted the modal
choice in all six rows of Table 1. Next best was the
RAM model, which predicted five of six choices cor-
rectly. The data are least consistent with the CPT
model, which predicted the correct choice only in the
two cases where it agreed with TAX and RAM.

Table 2 shows the same tests as in Table 1, except
that consequences of the “safe” (S) gambles are
reduced. In Table 2, RAM and TAX agree in all pre-
dictions of the direction of choice (hence, RAM values
are not shown). In Table 2, the CPT model disagrees
with TAX/RAM on all five choices. In four of these
cases, TAX/RAM makes the correct prediction, and
CPT is correct in one case. Choices 16 and 19 show

Table 2 Tests of Distribution Independence and Branch Independence
Choice Condition Prior TAX Prior CPT
No. S R All (1,075) 2i(524) 2i* (551) S R S R
10 0.80 to win $2 0.80 to win $2 471 443 49.8 10.0 9.8 92 145
0.10towin $34  0.10 to win $4
0.10to win $38  0.10 to win $96
13 0.10 to win $2 0.10 to win $2 37.2 40.5 341 233 229 263 358
0.45towin $34  0.45to win $4
0.45to win $38  0.45 to win $96
16 0.10to win $34  0.10 to win $4 59.9 58.9 60.7 577 634 75 .7
0.10to win $38  0.10 to win $96
0.80 to win $100  0.80 to win $100
19 0.45towin $34  0.45 to win $4 442 42.3 46.0 403 439 451 426
0.45to win $38  0.45 to win $96
0.10 to win $100  0.10 to win $100
7 050towin $34  0.50 to win $4 38.8 38.5 39.1 353 347 357 393
0.50 to win $38  0.50 to win $96

Note. Entries show percentages choosing R.
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another violation of 3-UDI, similar to that in Table 1.
However, none of the previously fit models correctly
predicted this violation. However, it would be consis-
tent with TAX if some participants had slightly differ-
ent parameters from those used in the calculations. It
would be consistent with CPT only if the parameters
are very different from those estimated in previous
studies (y > 1).

Among other results of Experiment 1 (not shown),
CPT and TAX/RAM disagreed only in choice 17,
where TAX and RAM correctly predicted that sig-
nificantly more than half (63%) would prefer R’ =
(5100, 0.8; $96,0.1; $4,0.1), whereas CPT predicted
that the majority should have chosen S’ = ($100, 0.8;
$32,0.1; $28, 0.1) instead.

Table 3 shows results from Experiment 2 of two
tests of 3-UDI and 3-LDI. These tests were designed so
that CPT predicts violations, whereas RAM and TAX
predict no changes. Here, the CPT model predicts that
people should choose R in choice 6 and S in choice 12,
S in choice 8, and R in choice 10. Instead, most peo-
ple (69%) chose S in both choices 6 and 12, and the
majority chose R in both choices 8 and 10. In fact, the
percentage who chose R in choice 10 is significantly

Table 3 Tests of Distribution Independence and Branch Independence
(Experiment 2)
Choice Prior TAX Prior CPT
% R
No. S R n=503 § R S R
6 60 blueto 60 green to 236 217 138 199 213
win $2 win $2
20 red to 20 black to
win $56 win $4
20 whiteto 20 purple to
win $58 win $96
12 10blackto 10 white to 18.7+ 369 229 410 358
win $2 win $2
45greento  45red to
win $56 win $4
45 purple to 45 blue to
win $58 win $96
8 20 whiteto 20 yellow to 708« 473 574 617 60.7
win $28 win $4
20 blue to 20 green to
win $30 win $96
60 red to 60 black to
win $100 win $100
10 45 whiteto 45 black to 59.1* 341 439 393 426
win $28 win $4
45 purple to 45 green to
win $30 win $96
10 blue to 10 red to
win $100 win $100

Note. In these tests, prior CPT predicts violations of both 3-LDI and 3-UDI,
and RAM makes the same predictions as TAX in these tests. Entries show
percentages who chose R.

*Indicates percentages significantly different from 50%.

smaller than that in choice 8 (z =5.08), contrary to
the CPT model. Both TAX and RAM models correctly
predicted all four modal choices, and CPT was correct
only in the two cases for which it agreed with those
models.

Experiment 2 also included a test of restricted
branch independence in choices 20 and 16 (not
shown). It was found that 109 people chose S =
($40,0.2; $38,0.2; $2,0.6) over R = ($96,0.2; $4,0.2;
$2,0.6) and chose R’ = ($100,0.6; $96,0.2; $4,0.2)
over S = ($100,0.6; $40,0.2; $38,0.2), whereas
only 51 had the opposite pattern, RS, z =4.58. This
pattern is opposite the predictions of any weakly
inverse-S weighting function in CPT but agrees with
RAM and TAX.

In sum, TAX and CPT models with parameters esti-
mated from previous data made different predictions
in 10 cases in Experiment 1, and in nine of these, the
majority choice was correctly predicted by TAX. In one
case, RAM and TAX disagreed, with the TAX model
correctly predicting that choice. In one case, prior CPT
correctly predicted the majority. In none of the tests
of 3-LDI or 3-2 LDI were there significant reversals of
the majority preference; so CPT’s predictions failed to
materialize. However, in two of four tests of 3-UDI
there were significant reversals of the majority choice,
of the type consistent with TAX. Therefore, these data
indicate that 3-UDI can be rejected, but that 3-LDI
and 3-2 LDI can be retained, pending further tests.
In Experiment 2, CPT predicted violations of both 3-
LDI and 3-UD]I, but the majority did not switch pref-
erences, consistent with predictions of RAM and TAX.
In both experiments, violations of RBI were systematic
and opposite the predictions of the inverse-S weight-
ing function of CPT.

6. Discussion

These studies add three new tests to the growing case
against the CPT model. Whereas RAM must satisfy all
three properties and TAX satisfies two, CPT can vio-
late them all. There were significant violations in tests
of 3-UDI, which is evidence against the RAM model.
This violation was consistent with (and predicted by)
TAX with its previous parameters. The CPT model
can violate this property, but it failed to predict this
violation with its previous parameters.

When CPT was used to design tests of 3-2 LDI,
3-UD], and 3-LD], its predictions were not confirmed
empirically in either experiment. Failure to find pre-
dicted violations does not prove that there are no
violations, but when a model fails to make accurate
predictions to new tests and rival models are success-
ful, it seems reasonable to prefer those models that
continue to be accurate.

Defenders of CPT sometimes assert that RAM and
TAX are more flexible (able to account for more data
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patterns than CPT), and that is why they have outper-
formed CPT in previous tests comparing these mod-
els. This claim of greater flexibility for RAM and TAX
is overstated, however, and it does not apply to the
present tests. In this paper, CPT is the most flexi-
ble model (in principle) because it could (post hoc)
account for violations of all of the properties tested in
Tables 1-3. Furthermore, this paper compared models
without estimating parameters from the data, so the
models compared are equally inflexible.

One can change parameters (giving up the
inverse-S weighting function) and fit CPT to the data
in Tables 1-3. Indeed, with the following weighting
function,

op”
S+ (-p)

where y =1.292 and & = 0.724, and with u(x) = x#,
where 8 =0.608, CPT correctly reproduces the modal
choices in Tables 1-3. However, this weighting func-
tion with y > 1 is S-shaped, rather than inverse-S
shaped, so this version of CPT would not account
for the data of Tversky and Kahneman (1992), nor
those of Wu and Gonzalez (1996), nor other sets
of data, including the Allais paradoxes (Birnbaum
2004a). Two other empirical properties contradict CPT
with an inverse-S weighting function: violations of
restricted branch independence in four-branch gam-
bles, and violations of four-distribution indepen-
dence (Birnbaum 2004a, Birnbaum and Chavez 1997,
Birnbaum and Navarrete 1998).

These experiments had many trials in which a per-
son could have cancelled the common branch. If peo-
ple cancel consistently, as proposed by Kahneman and
Tversky (1979), there would have been no systematic
violations of RBI, or 3-UDL If we treat the editing
principle of cancellation as a freestanding scientific
theory rather than as a partial process, we must reject
it when we observe systematic violations of restricted
branch independence or upper distribution indepen-
dence, as in Table 1. On the other hand, if we treat
cancellation as something that occurs only part of the
time, we conclude that without it, violations of the
inverse-S weighting function would have been even
stronger (Birnbaum 2004a).

There are three ways to interpret the results: First,
it is possible that CPT might hold, but its param-
eters change from choice to choice and experiment
to experiment in such a way that one cannot use it
to predict. Second, it is possible that these studies
might have yielded more compatible results if some
missing ingredient had been included in the experi-
ments (different people, different procedures, differ-
ent incentives, etc.). Third, it is possible that CPT is
simply not an accurate description of how people
make decisions.

W(P) (19)

In my opinion, the best interpretation is that CPT
is not an accurate descriptive model. It may approx-
imate some empirical results, but it appears to be
accurate only when its predictions agree with those
of TAX. This conclusion runs against what has been
a growing consensus in economics in favor of the
CPT model (Starmer 2000). However, it is impor-
tant to keep two considerations in mind: first, CPT
and TAX models give very similar predictions for
two-branch gambles and agree in 94% of randomly
devised choices between three-branch gambles. Sec-
ond, those studies supporting CPT did not compare
it against RAM or TAX.

In addition to results from my lab, others have
also reported results that do not fit with CPT. For
example, Neilson and Stowe (2002) found that CPT
parameters estimated in lab studies that test one phe-
nomenon do not necessarily agree with results of
other tests. Gonzalez and Wu (2003) tried to predict
the values of three-branch gambles from parameters
estimated from either original prospect theory (PT) or
CPT applied to two branch gambles. They concluded
that neither PT nor CPT provided predictions as accu-
rate as the RAM model.

6.1. Strong Paradoxes That Refute Cumulative
Prospect Theory

Because the findings in Tables 1-3 can be described by

CPT with different parameters, these results might be

described as “weak” paradoxes. However, there are

six “new, strong paradoxes” that contradict any form

of RDU, RSDU, or CPT.

First, event-splitting effects (violations of coalescing
combined with transitivity) were reported by Starmer
and Sugden (1993), Humphrey (1995), and replicated
by others. Birnbaum (1999a) noted that these results
are consistent with the TAX model and violate any
form of CPT. Although Luce (2000) expressed doubt
about the between-subjects tests in those studies,
Birnbaum (1999b, 2004a, b) reported strong violations
within subjects.

A new test of event splitting is shown in choices 9
and 15 in Table 4, from Experiment 2. Here, R is the
same and S is presented with its higher branch either
split (choice 9) or coalesced (choice 15). Results show
that significantly less than half (41.6%) chose R when
it is paired with the split version of S. However, sig-
nificantly more than half (69.5%) chose the same R
paired with the coalesced version of S; 177 partici-
pants switched from S to R compared with only 36
who had the opposite reversal, z = 9.66. The TAX
model correctly predicted this reversal. CPT with any
functions and parameters requires the same decisions
in choices 9 and 15 of Table 4.

Choice 7 in Table 4 might be described as a “trans-
parent” new test of coalescing. These two gambles
should be identical under any version of CPT; how-
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Table 4 New Tests of Event-Splitting (Choices 9, 15, and 7), Upper
Tail Independence (Choices 22 and 19), and Stochastic
Dominance (Choice 5) in Experiment 2
Choice Prior TAX Prior CPT
% R
No. S R n=>503 S R S R
9 10redto 10 green to 416« 111 93 99 137
win $40 win $90
10 blue to 10 yellow to
win $40 win $4
80 whiteto 80 orange to
win $2 win $2
15  20redto 10 green to 69.5* 90 93 99 137
win $40 win $90
80 blue to 10 white to
win $2 win $4
80 yellow to
win $2
7 90redto 85 green to 674 46.0 659 735 735
win $98 win $98
05 whiteto 05 yellow to
win $12 win $98
05 blue to 10 orange to
win $12 win $12
22 80redto 80 black to 67.3* 650 690 835 79.9
win $110 win $110
10 yellow to 10 purple to
win $44 win $96
10 blue to 10 green to
win $40 win $10
19 80redto 90 green to 33.1* 603 572 750 714
win $96 win $96
10 whiteto 10 yellow to
win $44 win $10
10 blue to
win $40
5 G:9redto H:85redto 574« 470 654 744 734
win $99 win $98
05 whiteto 05 white to
win $14 win $96
05 blue to 10 blue to
win $12 win $11

*Indicates percentages significantly different from 50%.

ever, significantly more than half (67.4%) chose the
gamble in column R, which has two high-valued
branches, as opposed to the gamble in column S,
which has two low-valued branches, z =5.53, consis-
tent with TAX.

Second, Wu (1994) reported violations of upper
tail independence, which violate CPT. He theorized
that the violations might be due to editing, rather
than to a basic flaw in the CPT model. Wu’'s find-
ings were replicated (with variations) by Birnbaum
(2001), who noted that the pattern of violation is con-
sistent with the TAX model. A new test of upper
tail independence from Experiment 2 is shown in
choices 22 and 19 of Table 4. Unlike previous tests of
this property, this new test does not use a smallest
consequence of $0 in all four gambles.

In choice 22, there is a common branch (80 marbles
to win $110) in both S and R. This consequence can
be reduced from $110 to $96 in both gambles without
changing the preference, according to CPT. In addi-
tion, CPT implies that the two branches that now
yield $96 can be coalesced in R without changing
its utility. However, the percentage choosing R drops
from significantly more than half in choice 22 (67.3%)
to significantly less than half in choice 19 (33.1%).
209 participants showed this switch, compared with
only 37 who showed the opposite reversal, z =
11.0. The TAX model with its previously estimated
parameters predicts this reversal, and no version of
CPT can reproduce it.

Third, Birnbaum (1997) deduced that his mod-
els should show violations of first-order stochas-
tic dominance in a special choice recipe. Birnbaum
and Navarrete (1998) then tested this recipe and
found that undergraduates show about 70% viola-
tions in four variations of the recipe, significantly
more than 50% in each test. Choice 5 in Table 4 is a
new version of this test.

Note that in choice 5 of Table 4, G dominates H,
because for any prize, the probability of winning that
amount or more is either the same or greater in G than
it is in H. The probability of winning $99 or more,
$98 or more, $14 or more, and $12 or more is higher
in G than in H, and for other values ($96, $11, etc.),
it is the same in G and H. In this test, unlike previ-
ous ones, two of the three branches even have higher
consequences in G than in H. So, if a person were
using a heuristic of comparing consequences on corre-
sponding branches, and choosing the gamble with the
greater number of higher consequences, that person
should also conform to stochastic dominance in this
test. Any version of CPT requires that people should
choose G over H, except for random error. However,
TAX predicts that the majority will choose H over G.
In fact, significantly more than half the participants
(57.4%, z = 2.34) chose H, in violation of stochastic
dominance, the counting heuristic, and any version
of CPT.

It is important to distinguish tests of first-order
stochastic dominance as above from other types of
“stochastic dominance” such as those debated by
Levy and Levy (2002) and Wakker (2003). Although
CPT with its nonlinear weighting function may be
able to account for the results of Levy and Levy
(2002), it cannot account for violations of first-order
stochastic dominance, as reported by Birnbaum and
Navarrete (1998) or in the new example of choice 5 in
Table 4.

Forth, Wu and Markle (2004) developed an exam-
ple from Levy and Levy (2002) to construct a test of
gain-loss separability, which they concluded is vio-
lated, in contradiction to CPT. They fit a type of con-
figural weight model to their results. If their results
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hold up, violations of this property represent another
important refutation of CPT. The pattern of viola-
tion is consistent with either RAM or TAX, even with
a linear utility function, with the assumption that
the configural weight parameter depends on whether
the gambles include all gains, all losses, or mixed
consequences.

Birnbaum (1997) deduced two theorems from
RDU/CPT, called lower cumulative independence
(the fifth paradox) and upper cumulative indepen-
dence (the sixth paradox). These can be deduced from
coalescing, consequence monotonicity, co-monotonic
restricted branch independence, and transitivity. Vio-
lations can also be interpreted as contradictions in
the probability weighting function of CPT (Birnbaum
et al. 1999, Appendix). Birnbaum and Navarrete
(1998) found systematic violations of both properties,
as predicted by the TAX model but contradicting CPT.

These six “strong” paradoxes contradict any form
of CPT—no choice of utility function and weighting
function could resolve them. Although CPT might be
modified to account for the three new independence
properties in Tables 1-3 with new parameters and
functions, there are no functions and parameters that
allow CPT to account for “strong” paradoxes, as in
Table 4.

Birnbaum (2004b) replicated four of these strong
paradoxes with a dozen different variations of proce-
dure, including different ways to present probability
and format choices. Research with thousands of par-
ticipants has been accumulated, showing that findings
refuting CPT are quite robust with respect to these
procedural variations. Tutorials on the “new para-
doxes” are available from http://psych.fullerton.edu/
mbirnbaum/talks/.

6.2. Concluding Comments
The present data add three new phenomena to the list
that must be explained by descriptive theory: (1) Sys-
tematic violations of 3-UDI were observed, which
were correctly predicted by TAX but not by CPT and
which violate RAM. (2) Results failed to refute 3-LD],
a property that should be violated by CPT, but not by
either RAM or TAX. (3) Data also failed to violate 3-2
LDI, another failure to confirm implications of CPT
where RAM and TAX predicted correctly.
Subsequent to the completion of this research,
Marley and Luce (in press) developed a general the-
oretical analysis of a class of ranked additive util-
ity representations that includes the class of ranked
weighted utility representations. They conclude that
the latter class is equivalent to general TAX, and thus
includes special cases such as the parameterized TAX
and RAM models. The weighted utility class also
includes RDU, CPT, and Marley and Luce’s (2001)
gains decomposition utility (GDU). Their (lower)

GDU model, like the special TAX model, implies
satisfaction of 3-LDI and violates 3-UDI. So, this
GDU model is also consistent with the findings in
Tables 1-3.

However, the lower GDU model (Marley and Luce
2001) implies upper coalescing (that one can coalesce
upper branches of a gamble when their consequences
are equal). Therefore, lower GDU is not consistent
with the new test of upper coalescing (choices 9
and 15 of Table 4), nor can it describe violations
of upper tail independence (choices 22 and 19 of
Table 4). Marley and Luce developed more general
forms of GDU and worked out the conditions under
which each of the models will satisfy or violate these
new independence properties. They identified tests
that would in principle distinguish TAX from the
new GDU models, which should lead to new empir-
ical research to compare TAX and GDU models that
remain consistent with empirical choice behavior.
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