Journal of Personality and Social Psychology
1983, Vol. 45, No. 4, 792-804

Copyright 1983 by the
American Psychological Association, Inc.

Bayesian Inference: Combining Base Rates With Opinions

University of Illinois at Urbana-Champaign

of Sources Who Vary in Credibility
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Subjects made judgments of the probability of an event given base-rate information
and the opinion of a source. Base rate and the source’s hit and false-alarm rates
were manipulated in a within-subjects design. Hit rate and false-alarm rate were
manipulated to produce sources of varied expertise and bias. The base rate, the
source’s opinion, and the source’s expertise and bias all had large systematic effects.
Although there was no evidence of a “base-rate fallacy,” neither Bayes’ theorem
nor a subjective Bayesian model that allows for “conservatism” due to misperception
or response bias could account for the data. Responses were consistent with a scale-
adjustment averaging model developed by Birnbaum & Stegner (1979). In this
model, the source’s report corresponds to a scale value that is adjusted according
to the source’s bias. This adjusted value is weighted as a function of the source’s
expertise and averaged with the subjective value of the base rate. These results are
consistent with a coherent body of experiments in which the same model could
account for a variety of tasks involving the combination of information from
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different sources.

The question, How should humans revise
their beliefs? has been studied by philosophers
and mathematicians, and the question, How
do humans form opinions and revise them?
has been investigated by psychologists. Early
research that compared the two questions
concluded that Bayes’ theorem was a useful
~ starting point for the description of human
inference but that humans are “conservative,”
or revise their probability judgments in a
manner less extreme than implied by Bayes’
theorem (Edwards, 1968; Peterson & Beach,
1967; Slovic & Lichtenstein, 1971).

Edwards (1968) discussed three interpre-
tations of conservatism: misperception, mis-
aggregation, and response bias. Misperception
includes the possibility that objective proba-
bilities are transformed to subjective proba-
bilities by a psychophysical function. Misag-
gregation refers to use of a non-Bayesian rule
to combine evidence. Response bias refers to
' nonlinearity in the judgment function relating
Jjudged probabilities to subjective likelihoods.
Early experimental work attempted to separate
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these interpretations, but the experiments
could not yield definitive conclusions (Ed-
wards, 1968).

Wallsten (1972) proposed a subjective ver-
sion of Bayes’ theorem to account for con-
servatism. In his formulation, subjective prob-
abilities replaced objective probabilities, the
response scale was assumed to be only ordinal
(allowing for nonlinear response bias), but the
aggregation rule was assumed to be Bayesian.
However, Shanteau (1975) found that judges
in the bookbags and poker chips paradigm
revise their opinions even when they are given
evidence that is nondiagnostic. Shanteau con-
cluded that his judges were averaging prior
probability with a subjective probability rep-
resenting the implication of each new sample
of evidence (see also Troutman & Shanteau,
1977).

Kahneman and Tversky (1973) argued that
judges neglect diagnostic information such as
base-rate information and the validity of
sources of information. Recently there has
been a debate over the claim of a “base-rate
fallacy,” the contention that subjects neglect
base-rate information crucial to a Bayesian
analysis (Ajzen, 1977; Bar-Hillel, 1980; Birn-
baum, 1983; Carroll & Siegler, 1977; Fischhoff,
Slovic, & Lichtenstein, 1979; Lyon & Slovic,
1976; Manis, Dovalina, Avis, & Cardoze, 1980;
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Tversky & Kahneman, 1980, 1982). This work
led many to the conclusion that human in-
ference is best described in terms of a list of
biases and heuristics, regarded as illusions or
discrepancies between what people should do
and what they actually do.

Unfortunately, much of the recent research
has used the objective form of Bayes’ theorem
as the null hypothesis, without allowing for
misperception or response bias. In fact, even
the objective form of Bayes’ theorem has not
been provided in its full complexity (Pitz,
1975). As Schum (1981) has shown, the algebra
can accommodate many subtle patterns of
conditioning of evidence. Birnbaum (1983)
noted that research on the “base-rate fallacy”
used an incomplete Bayesian analysis. Birn-
baum showed that behavior described as “ne-
glect of base rate” may be consistent with ra-
tional Bayesian utilization of the base rate.
Thus, it is not at all clear that Bayes’ theorem
deserves the bad press it has received in recent
years as a framework for the study of human
inference.

The purpose of this article is to test two
models of how judges use base-rate infor-
mation. A subjective version of Bayes’ theorem
and scale-adjustment averaging model (Birn-
baum & Stegner, 1979) are examined as de-
scriptions of probability judgments.

y Inference Task

Let P(L) be the probability of the event L
that a used car will remain in working con-
dition, or last, for 3 years. The base rate, or
.proportion of cars that last, is assumed to vary
for different types of cars. To denote varying
base rates, r, we write P.(L) as the prior prob-
ability that the car will last, given base rate r.

A source examines the car and reports
whether the car seems to be in “good” shape
(““G”) or “bad” shape (*‘B”), mutually exclu-
sive and exhaustive categories. The following
characteristics of the source are known: -

o P(“G”|L) = probability that the source
says the car is in good condition, given that
the car lasts (L). In signal-detection theory,
this would be termed the hit rate, P(HIT).

e P(“G”|L) = probability that the source
describes the car as good, given it actually fails
to last (£). P(“G”|L) is termed that false-alarm
rate, P(FA).
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Suppose the source’s hit and false-alarm
rates are independent of the base rate. That
is, suppose P,(“G”|L) = P(“G”|L) for all r;
similarly, P.(“G”|L) = P(“G”|L), for all r (see
Footnote 1).

The judges in this experiment were asked
to infer the probability that the car will last,
given the base rate and the source’s report.
Their judgments were compared with Bayes’
theorem and with a subjective version of Bayes’
theorem that has the same algebraic structure
but allows for conservatism due to misper-
ception and response bias.

Bayesian Model -

Because the source’s hit and faise-alarm
rates are assumed to be independent of base
rate, Bayes’ theorem can be written:
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where P,(L|“G™) is the probability that the
car lasts given the source says the car is in
good shape, and the base rate for this type of
car is . The prior odds that the car lasts given
only the base-rate information follows:
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The posterior odds, @ = P.(L|“G”)/[1 —
P,(L|“G™)], given the source’s opinion can be
expressed as follows:

_ o PHIT)
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If the source had said the car was bad (“B”),
the hit/false-alarm ratio would be replaced by
the miss/correct-rejection -ratio [P(“B”|L)/
P(“B™|L)]

Equation 3 implies that the effects of base
rate should multiply the source information.
Taking logarithms of both sides yields

(©))

log @ =
log (Q,) + log [P(HIT)] — log [P(FA)]. (4)

Equation 4 shows that if the Bayesian model
is descriptive of human inference, then' it
should be possible to monotonically transform
the subjects’ probability judgments to an ad-
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ditive decomposition of base rate, source’s hit
rate, and false-alarm rate for each level of the
source’s opinion. This implication follows be-
cause log odds (log Q) is a monotonic function
of posterior probability [P,(L|“G”)].

If the Bayesian model fails due to misper-
ception (i.e., subjects combine information
consistent with Bayes’ theorem but are “con-
servative” in their probability estimates), one
could replace the objective probabilities in
Equations | and 2 with subjective scale values.
According to this hypothesis, the model still
might provide an accurate representation of
the process by which the subject combines or
aggregates the information. Similarly, if sub-
jects differ from Bayes’ theorem due to a re-
sponse nonlinearity (e.g., a reluctance to use
extreme values on the response scale), then it
should still be possible to find a monotonic
function of the judge’s responses, such that
the additive alegbraic structure is satisfied.
However, if the data cannot be transformed
to fit the subjective Bayesian model, then one
can reject the Bayesian models as theories of
information aggregation.

Scale-Adjustment Averaging Model

Birnbaum and Stegner (1979) developed a
model for the process by which judges combine
information from sources of varying expertise
and bias. With the assumption that expertise
and bias depend on hit rate and false-alarm
rate, the scale-adjustment averaging model can
be adapted to the present task, as shown in
the following equation:

ws + whs, + WypSs,
Py = s 5
rxbo w+ W* + Wb ( )

where P, is the judged probability the car
lasts, given that a source of expertise (x) and
bias (b) gave an opinion (0), and the base rate
was r. The weights w, w* and w,, are the
- weights of the initial impression, the base-rate
information, and the source’s opinion given
by a source with expertise x and bias b, re-
spectively. The scale value of the source’s re-
port, s,, is assumed to depend on the opinion
(“G” or “B”) and the source’s bias. The other
scale values, s and s,, are for the initial impres-
sion and the base rate, respectively.
When a piece of information (either base
rate or source’s opinion) is not presented, its
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weight is set to zero. Thus, the scale-adjust-
ment averaging model implies that the effect
of a piece of information (¢.g., base rate or
source’s report) is directly proportional to its
weight and inversely related to the number
and weight of other pieces of information.
Further, the model implies that the effect of
a source’s bias is amplified by the source’s
expertise. On the other hand, Bayesian models
imply that the effect of the base rate (Equation
4) should be independent of the characteristics
of the source, P(HIT) and P(FA). Similarly,
the effect of a source’s opinion should be the
same regardless of the value (or even absence)
of base-rate information.

Method

To assure that the used car problem is comparable to
those used in previous research on the base-rate fallacy,
a preliminary study used the same procedure as in those
studies; that is, each subject received only one problem.
The main portion of the experiment used a within-subject
design, in which each subject received many problems.

Single-Judgment Task

Sixty-five undergraduates received a single problem
similar to that used in previous research on the base-rate
fallacy. Instructions were modified from the cab problem
(see Tversky & Kahneman, 1980) and read as follows:

In this experiment, you will be asked to judge the
probability that a used car will remain in working con-
dition for 3 years. For cars of the same year, make,
model, and mileage as the car you will be judging, 30%
are expected to last for 3 years.

A source, who examined the car, gave his opinion.
He had previously been tested in his ability to distinguish
between cars that actually lasted for 3 years and those
that failed. Of 100 cars that actually lasted, he correctly
identified 80 as being in “good shape.” Of 100 cars that
failed to last, he correctly judged 80 as being in “bad
shape.” The source stated that the car is in “good shape.”
What is-the probability expressed as a percentage that
the car will remain in working condition for 3 years?

Multiple-Judgment Task

Subjects were asked to make many judgments of the
probability that cars would last given base-rate information
and/or the reports of sources who examined the cars. Trials
varied in base rate, sources’ opinion, and source charac-
teristics (hit and false-alarm rates).

Instructions. Base rates were represented by blue book
values. Judges were told to assume that the probability a
used car would last was directly proportional to its blue
book value. They were told that of 100 cars with blue
book values of $300, 30 are expected to last 3 years and
the remaining 70 are expected to fail; with blue book
values of $400, 40 of 100 are expected to last, and so on.
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Figure 1. Source characteristics. (Panel A shows the format used to present conditional probabilities in
within-subjects design. Panel B shows hit rate and false-alarm rates of the eight sources used. Expertise is
hit rate minus false-alarm rate. Bias is hit rate plus false-alarm rate. VL = very low; L = low; H = high;

and VH = very high.)

They were told that the blue book value represented a
class of cars rather than any individual car. Judges were
told to assume that for the entire population of cars they
would be judging, there was an even chance that a car
would last 3 years.

Specific information for each car was represented by
the opinion of a source of known expertise and bias who
examined the car. Instructions stated that each source was
given a test of ability to distinguish between cars that
actually lasted or failed. The test results were said to be
independent of base rate (blue book value); that is, the
conditional probabilities that the source reports the car is
in good shape, given it lasted or failed, are the same for
all levels of blue book value.!

Each source was described in terms of hit rate, P(“G”|L),
and false-alarm rate, P(“G”|L), and also described in terms
of expertise and bias. There were four levels of expertise
(very low, low, high, very high) and threé levels of bias
(friend of the buyer, independent, or friend of the seller).
Instructions similar to those of Birnbaum and Stegner
(1979) discussed expertise and bias.

For example, Figure 1 (panel A) shows how the test
results for a friend of the seller with low expertise
were presented. Note that of 100 cars that lasted, this
source correctly identified 80 cars as being in good shape;
that is, P(“G”|L)=.8. Of 100 cars that failed, the
source wrongly identified 40 to be in good shape; that is,
‘PG| = 4.

The source’s bias is reflected in the column totals (hit
rate plus false-alarm rate). In the example, the friend of
the seller said 80 cars were in bad shape and 120 cars
were in good shape. The source’s expertise is reflected in
the column differences (hit rate-minus false-alarm rate).
When the low-expertise source said “good shape,” there
were 40 more correct than incorrect judgments (80-40).

Each point in Figure 1 (panel B) represents one of the
eight sources in terms of false-alarm and hit rates. For
example, the low-expertise friend of the seller is illustrated
in panel B as a point with coordinates (.4, .8) on the false-

alarm and hit rate axes, respectively, The solid djagonal
lines in Figure 1 show that each source can be represented
in terms of bias (hit + false alarm) and expertise (hit —
false alarm). The low-expertise friend of the seller is at
the intersection of “sell” on the bias curve and “L” on
the expertise curve. The two squares of dashed lines show
that the eight sources form two 2 X 2 factorial designs of
Hit Rate X False-Alarm Rate. The solid lines show that
six of the sources form a 2 X 3 (Expertise X Bias) factorial
design, in which expertise is either high or low and bias
is either seller’s friend, independent, or buyer’s friend. The
other two sources are independent, providing four levels
of expertise for unbiased sources.? Judges were instructed

! Birnbaum (1983) noted that previous demonstrations
of the base-rate fallacy did not give information crucial
to a proper Bayesian analysis, Unless the ratio of the source’s
hit rate to false-alarm rate is known to be independent of
the base rate, one cannot simply multiply prior odds by
a fixed likelihood ratio, Given reasonable assumptions -
concerning the signal-detection behavior of the source, it
can be shown that Bayes’ theorem implies a solution that
has previously been described as “neglect of base rate.”

2 The concepts of expertise and bias, as defined by Birn-
baum and Stegner (1979) are analogous to the concepts
of discriminability and bias used in signal-detection theory.
When it assumed that the stimuli produce normal distri-
butions of sensation with equal variance, the index of
discriminability, ', is defined as z[P(HIT)] — z[P(FA)],
where P(HIT) and P(FA) are the hit rate and false-alarm
rates, respectively, and z is the inverse standard normal
distribution function. The labels in Figure 1 (panel B)
treat expertise as hit rate minus false-alarm rate, which
would be 4’ if the distributions were rectangular with equal
variance. For the purposes of fitting the model, a separate

weight was estimated for each source.
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Figure 2. Comparison of between- and within-subjects response distributions for one problem. (“B” = bad
shape; “G” = good shape; L = car fails to last; L = car lasts.)

to use a page with matrices as in Figure 1 (panel A) for
each of the eight sources as an aid in making their judg-
ments.

Design and procedure. Eighty test trials were constructed
from an 8 X 2 X 5 (Source X Source’s Opinion X Base
Rate) factorial design, in which the eight sources of Figure
1 (panel B) gave opinions of either good shape or bad
shape, and the five levels of base rate were .1, .3, .5, .7,
or .9, In addition, the opinions of sources were also pre-
sented alone (without explicit base-rate information) to
produce 16 trials—from an 8 X 2 (Source X Source’s
Opinion) factorial design. On five additional trials the
subjects made their judgments given base rate alone.

Each test booklet contained 11 pages of instructions,
12 representative warm-up trials, and 101 randomly or-
dered test trials. Page orders were shuffled to provide dif-
ferent trial orders for different subjects.

Subjects. The judges were 65 undergraduates at the
University of Illinois, who received extra credit in intro-
ductory psychology and were tested in 2-hour sessions.

Results

Single-Judgment Task

Figure 2 compares frequency histograms of
responses to a single problem presented alone
(on the left) and to the same problem embed-

ded among many other problems in the within- -

subject design (on the right). The base rate in
this case was .3, the source’s characteristics
are given by P(“G”|L) = .8 and P(“G”|L) =
.2; the source said “good shape.” Bayes’ theo-
rem (Equation 1) applied to the objective
probabilities implies P(L]*“G”) = .63.

The modal response for subjects who judged
a single problem is .80, which is the hit rate

of the source. The second most frequent re-
sponse is .30, the base rate, and the third most
frequent response is .24, the product of .30
and .80. Fewer than 10% of the subjects re-
sponded between .4 and .6. The results are
similar to those of Kahneman and Tversky
(1973), Bar-Hillel (1980), and others. There-
fore, this inference problem appears similar
to those that led to the notion of a base-rate
fallacy.

In sharp contrast, subjects who received the
same problem embedded among many others
give a very different distribution of responses.
Most of the responses fall between .4 and .6,
and only one person responded .8. The mode
is .4, which is actually closer to the base rate
than to either the normative response or the
source’s hit rate. Thus, in the one-judgment
task, sub_]ects appear to respond with one of
the values given, whereas when given many
problems, they appear to integrate the infor-
mation. Fischhoff et al. (1979) also concluded
that the response distribution differs for be-
tween- and within-subject designs.?

3 There are many possible interpretations of the different
results for the within- versus between-subjects experiments
in Figure 2. Although the same subject population and
general procedures were used, the amount of practice, the
variation of variables, and the instructions were different
for the two conditions (see also Fischhoff et al., 1979).
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Figure 3. Predictions of three theories as a function of base rate. (Separate curves represent predictions for
very high [VH] or very low {VL] expertise independents who gave reports of “good” [“G”] or “bad” [“B”],
as in Figure 1, Dashed curves in all panels are for base-rate information alone. Panel A shows predictions
of Bayes’ theorem applied to the numerical values. Panel B shows predictions of best-fit subjective Bayesian
model. Curves in Panel C show predictions of scale-adjustment averaging model. Open squares show prediction
when VH expertise independent said either “good” [top square] or “bad” and no base-rate information
was given. Solid squares, solid circles, and open circles in Panel C show mean judgments.)

Within-Subject Results

Figure 3 shows predictions of three models
" and data (panel C) for a portion of the within-
subject design (independent sources of very
high and very low expertise). Predictions of
Bayes’ theorem with objective probabilities are
shown in panel A; predictions of a least squares
fit of a subjective Bayesian model (with sub-
Jjective scale-values instead of objective prob-
abilities) are shown in panel B, The lines in
panel C show best-fit predictions of the scale-
adjustment averaging model (Equation 5). The
model fitting (predictions in panels B and C)
is discussed in later sections.*

In each panel of Figure 3, predictions are
plotted against the base rate with a separate
curve for independent sources with very low
or very high expertise who gave opinions of
good: or bad shape. Solid lines show the pre-
dicted effects when both the base rate and the
source’s report were provided. The dashed line
shows the predicted effect of base rate alone.
The open squares show the predictions for a
very high expertise independent source,
P(“G”|L) = .9, P(“G”|L) = .1, who said either
“good” or “bad,” in the absence of specific
information concerning the base rate (although
the overall base rate was specified as .5).

The solid circles in panel C of Figure 3
show mean judgments based on source’s report
and the base rate. The open circles show mean

judgments given only base rate; the solid
squares show means for two judgments based
only on the source’s opinion (the very high
expertise source said either “good” or “bad”).

The slope of the solid points in Figure 3
(panel C) shows the effect of the base rate. If
there were no effect of base rate, the curves
would be horizontal. The. vertical spread be-
tween the curves shows the effect of the
source’s report. Note that the vertical spread
between the two curves labeled VH (very high
expertise source) is much greater than the ver-
tical spread between the two curves labeled
VL (very low expertise source). The data in

4 A computer program was written to estimate weights

and scale values, to calculate predictions, and to compute _ -

fit. The sum of squared deviations between predicted and
obtained judgments can be expressed as a function of the
parameter estimates as follows:

F(w, w*, Wy, 8, 8, S30) = 2 (Pi — O,

where F is a function of the estimated parameters, F; is
the predicted mean response, G, is the observed mean
judgment, and the summation is over all 101 cells in the
experimental design. The best-fit parameters are those that
minimize F, The value of F at the minimum is an index
of the badness of fit of the model. Predictions for each
observed datum can be calculated by substituting best-fit
parameter estimates into the model (e.g., Equation 5). The
computer program reads in the Oy, defines P;, defines F,
and initializes the parameter estimates; this program drives
the subroutine STEPIT (Chandler, 1969), which varies the
parameters in order to minimize F.
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Figure 3 (panel C) show that judges are sen-
sitive to the base rate, the source’s opinion,
and the expertise of the source. All of the main
effects and interactions in panel C are statis-
tically significant by analysis of variance. Of
the 65 subjects, 64 gave higher probability in-
ferences for larger base rates. Averaged over
sources and opinions, the effect of base rate
- is also large and statistically significant, (4,
256) = 625.28. (All main effects and inter-
actions in Figures 4 and 5 are statistically sig-
nificant, p <.0S5. Individual -data were ex-
amined, and it was found that the means in
Figures 3, 4, and 5 are representative of in-
dividual data.)

Fit of Subjective Bayesian Model

The subjective Bayesian model (Equation
1) was fit to the 101 mean judgments by means
of a specially written computer program that
utilized Chandler’s (1969) STEPIT subroutine
to minimize the sum of squared data-model

discrepancies (see Footnote 4). The program .

estimated subjective probabilities for the five
levels of base rate. For each of the eight sources,
subjective hit rates and false-alarm rates were
also estimated. It was -assumed that probabil-
ities of complementary events sum to one. An
overall prior was also.estimated, yielding 22
parameters to be fit to 101 judgments.

The subjective Bayesian model (panel B of
Figure 3) gives-a better approximation to the
data than the Bayesian model with objective
probabilities (panel A). Although it does a rea-
‘sonably good job of describing the effect of
base rate and source’s opinions (compare panel
B of Figure 3 with points in panel C), it makes
some systematic errors.

Both versions of the Bayesian model imply
that it should be possible to rescale monoton-
ically the solid and dashed lines in panels A
and B (Figure 3) to parallelism (Equation 4).
However, the judgments in panel C show that
the effect of base-rate information is smaller
when the source’s report is provided. The
slopes of the curves connecting the solid points
are less steep than the slope of dashed line
connecting the open points. This crossover in-
teraction is an ordinal violation of the Bayesian
models and implies that deviations from the
Bayesian models cannot be explained by mis-
perception or response bias.

MICHAEL H. BIRNBAUM AND BARBARA A. MELLERS

In addition, notice that if the base rate is
.9 (without a source’s opinion), the mean
probability judgment is .87. However, when
the very low expertise source gives a “‘good”
report, the judged probability of the car lasting
drops to .74. According to the Bayesian model,
inclusion of that source’s report should raise
the probability judgment.

The Bayesian model also implies that the
effect of the source’s report alone should be
the same as the effect of the source information
when accompanied by base-rate information.
However, the effect of source information is
smaller when presented with base rate than
without. To illustrate, note that if a very high
expertise source says the car is in good shape,
the mean judgment is about .9 (upper solid
square in Figure 3, panel C). However, when
the judges are also told that the base rate for
this type of car is .5, the mean judgment is
reduced to .7. According to the' Bayesian
model, these two probability judgments should
be identical. (Note that open squares fall di-
rectly on the solid lines in panels A and B.)
These aspects of the data can be explained by
the scale-adjustment averaging model (open
squares in panel C).

Fit of the Scale-Adjustment Averaging Model

The scale-adjustment averaging model
(Equation 5) was also fit to the data by means
of a program that iteratively minimized the
sum of squared data-model discrepancies (see
Footnote 4). This model also requires esti-
mation of 22 parameters from the data. The
sum of squared discrepancies was less than
half that for the Bayesian model. The root-
mean squared deviation was .022; the largest
absolute discrepancy was .06.

The 22 parameters of Equation 5 are as
follows: five values of s, (base-rate scale values),
eight values of w,, (weights of the eight
sources), six values of s, (scale values of the
two opinions by three levels of bias), two values
of w* (weight of the base rate alone or with
source’s report), and the prior scale value, s.

-The weight of the initial impression (prior)

was set to 1.00 with no loss of generality.
Weight of information when it is not presented
was set to 0. ‘

The estimated weights and scale values for
the scale-adjustment averaging model are given
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Table 1 .
Estimated Parameters for Scale-Adjustment
Averaging Model

Source’s bias
Sourée Seller Independent Buyer
Weights of sources

Expertise
Very low —_ 082 —_
Low A1l 153 129
High 361 582 408
Very high — 935 —

Scale values of opinioﬁs

Opinion

* Good shape 1.309 1.359 1.577
Bad shape —-.166 -.003 .235

Note. Weight of initial impression (w) = 1.00; scale value
of initial impression (s) = .368; weight of base-rate in-
formation (w*) = 1.195; weight of base-rate information
alone (w* [alone]) = 2.903; scale values of base-rates (s,)
are —.049, .218, .504, .755, and 1.013, for objective base
rates of .1, .3, .5, .7, and .9, respectively (see Footnotes 4
and 5). '

in Table 1. Note that estimated weights of

sources depend mostly on the source’s exper-
tise, but biased sources have slightly less weight
than unbiased sources with the same value of
hit rate minus false-alarm rate. The fit of the
model was improved by allowing the weight
of the base rate to increase (from 1.19 to 2.90)
when only base-rate information was pre-
sented,

The scale values for the .sources’ apinions
show higher values for good reports than bad
reports, and scale values are higher for the
buyer (who is presumably biased to say cars
are in bad shape) than for the seller (who has
the opposite bias). Likewise, the scale value of
bad shape for the seller (who tends to say cars
are in good shape), is lower than the scale
values for the other two sources. The patterns
~ ofweights and scale values are similar to those

of Birnbaum and Stegner (1979).°
. Figures 4 and 5 show six two-way interac-

tions among the four variables with data and
predictions of the scale-adjustment averaging
model in the same panels to allow examination
of the model’s success at describing other as-
pects of the data, Figure 4 shows three effects
of source’s expertise. The points represent
mean judgments (averaged over other factors),
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and-the dashed lines are the predictions of the

" scale-adjustment averaging model. In panel A,

judgments based on source’s opinion alone are
shown with open points. Solid points are av-
eraged over trials in which both source’s opin-
ion and base rate were given. The effect of

* source’s opinion is predicted to be greater when

opinion is alone than with base rate, because
it is then proportional to wy,/(w + wy), which
is greater than we/(w + wy, + w*), o

In panel B of Figure 4, the divergent Ex-
pertise X Bias interaction is predicted by the
scale-adjustment averaging model (see Birn-
baum & Stegner, 1979), because expertise
multiplies the effect of bias, which is incor-
porated as an adjustment in the scale value.
The greater the expertise of a ‘source, the
greater the effect of that source’s bias.

In panel C of Figure 4, judgments are plotted
against expertise of independent sources, with
a separate curve for each level of base rate.
The vertical spread between the curves is pre-
dicted to diminish from left to right because
it is proportional to w*/(w + w* 4+ w,;), which
decreases as the expertise of the source, w,;,

‘increases. This finding is consistent with pre-

vious results (Birnbaum, 1976; Birnbaum &

Stegner, 1979; Birnbaum, Wong, & Wong, -

1976).

The scale-adjustment averaging model
(Equation 5) implies no interaction between
‘base rate and source’s opinion. However, there
is a slight divergent interaction in panel A of
Figure 5, F(4, 256) = 11.16. The same inter-
action is more pronounced for the very high
expertise source, shown in Figure 3 (panel C).
This finding is analogous to previous results
and may be accounted for by the configural-
weight, scale-adjustment averaging model-of -
Birnbaum and Stegner (1979), in which the
lower valued source of information receives

greater weight, It seems likely that the form - - °

of this interaction can be affected by changing

% In an averaging model the scale values often have greater
range than the response scale. The most extreme response
is assumed to be a weighted -average of the initial impres-
sion, which is usually near the center of the scale; and the
most extreme scale value, which must often be beyond
the end point of the response scale. Scale values should
not be compared with the response scale, as a judgment
function intervenes (Mellers & Birnbaum, 1982).
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Figure 4. Effects of source’s expertise. (Points are mean judgments; curves are predictions of scale-adjustment
averaging model. Panel A shows probability judgments as a function of the expertise of independent sources
with a separate curve for each level of opinion: Open circles show judgments based on source only; inner
dashed curves are predictions averaged over levels of base rate. Panel B shows judgments as a function of
source’s expertise with a separate curve for levels of source’s bias. Panel C shows judgments as a function
of expertise of independent sources with a separate curve for each level of base rate. VL = very low; L =

low; H = high; VH = very high.)

the judge’s point of view (Birnbaum & Stegner,
1979).

Paneis B and C of Figure 5 show the in-
teraction between base rate and bias and be-
tween bias and opinion. In both cases, the
model does a fairly good job reproducing the
data. Because independents have higher weight
than biased sources of the same expertise (Ta-
ble 1), the effect of an independent’s opinion
(vertical separation between- curves in Figure
+ 5, panel C) is greater than that of either biased
source. Furthermore, the weights explain why
the effect of base rate (slope in Figure 5, panel
B) is less when the source is independent than
it is when sources are biased. In summary,
despite some systematic deviations (panel A),
the scale-adjustment averaging model generally
gives a good fit to major features of the data.

Discussion

Base-Rate Fallacy

The term base-rate fallacy was coined to
describe the supposed tendency to neglect
base-rate information in favor of individuating
information. Many of the studies that claimed
to find evidence of a base-rate fallacy presented
only one problem to a.given subject. Our con-
dition with one judgment yields similar data
to those of Tversky and Kahneman (1980,

1982), Bar-Hillel (1980), and others. However,
the present results show that when judges are
presented with many problems, they utilize
the base rate and are sensitive to expertise and
bias of the source. Fischhoff et al. (1979) also
found an effect of base-rate information in
within-subjects designs.

It is difficult to interpret the effect or lack
of effect of variables that have been manip-
ulated between subjects. The problem is that
when different subjects experience different
stimulus contexts, responses cannot be com-
pared without taking the different contexts into
account. For example, by comparing judg-
ments between subjects, it has been found that
the number 450 can be judged greater than
the number 550; however, one need not con-
clude that 450 actually seems greater than 550,
because when judgments are compared within
subjects, one finds that 550 is indeed judged
greater than 450 (Birnbaum, 1974b, Figure
2). For a more complete discussion of between-
and within-subjects designs, see Birnbaum
(1982) and Mellers and Birnbaum (1982).
~ The case for a base-rate fallacy is also weak-
ened by a theoretical analysis of the problems
used in previous research. Birnbaum (1983)
noted that several of the problems (cab prob-
lem, lawyer vs. engineer, light bulb) have a
complex Bayesian solution in which behavior
that has been described as “neglect” of base
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Figure 5. Effects of base rate, source’s opinion, and source’s bias, (Curves are predictions of scale-adjustment

averaging model; points are data. Panel A shows mean
curve for each level of source’s opinion, averaged over

judgments as a function of base rate with a separate
the eight sources. Panel B shows mean judgments as

a function of base rate with a separate curve for each level of bias of the sources, averaged over source’s -
opinion and two levels of expertise. Panel C shows mean judgments as a function of source’s bias, with a
separate curve for each level of source’s opinion, averaged over base rate and source’s expertise.)

rate may actually be consistent with a rational
Bayesian utilization of base rate.

In sum, despite the fact that the result of
Kahneman and Tversky, Bar-Hillel, and others
can be replicated in the single-judgment task,
there are three reasons for a skeptic to doubt
the claim that humans neglect base rate. The
three reasons can be termed empirical, meth-
odological, and theoretical. First, the empirical
evidence concerning the base-rate fallacy is
inconsistent. The major result does not appear
in within-subjects designs or with certain ver-
sions of instructions (see Bar-Hillel, 1980;
Birnbaum, 1983; Tversky & Kahneman,
1982). Second, the methodological problem is
that comparison of numerical judgments be-
tween groups of subjects assumes that the
mapping from subjective values to overt re-
sponses is the same for all subjects, an as-
sumption that has been challenged by research
on contextual effects (Birnbaum, 1974b; Mell-
ers & Birnbaum, 1982). Third, there is a theo-
retical problem with much of the previous re-
search. The problems posed to the subject have
been vague enough to allow several rational
solutions, depending on how the subject in-
terprets the problem. Birnbaum (1983) has
shown that the Bayesian solution to the cab
problem used in previous studies requires the
assumption that the hit to false-alarm ratio
will be independent of base rate. However, re-
search in signal detection shows that this ratio

can increase as base rate decreases; therefore,
Bayes’ theorem does not necessarily imply an
effect of base rate for problems such as the
cab problem.

Bayes” Theorem and Conservatism -

Bayes’ theorem gives a better first approx-
imation to the data than would the theory that
subjects disregard base rate and source char-
acteristics. For example, if subjects ignored
base rate, the data curves in Figures 3 (panel
C) and 5 (panels A and B) would be horizontal.
If subjects ignored source characteristics, the
curves marked VH and VL would coincide in
Figure 3 (panel C), curves in Figure 4 would
be horizontal, and the curves in Figures 4
(panel B) and 5 (panel B) would coincide.
Bayes’ theorem correctly predicts the direction
of the major effects of base rate and source
characteristics.

The objective form of Bayes’ theorem (Fig-
ure 3, panel A) predicts judgments that are
too extreme. The present data show a pattern
of deviations between objective Bayesian pre-
dictions and judgments that might be de-
scribed at first glance as “conservatism,” as in
Edwards (1968). For example, when the base
rate is .9 and the very high expertise source
says “good shape,” the Bayesian prediction is

.99, whereas the mean judgment is only .92

(Figure 3, panel C). The subjective form of
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Bayes’ theorem (Figure 3, panel B) gives a
better second approximation to the data. By
allowing the subjective impact of evidence to
be less than the objective probabilities dictate,
the subjective form of Bayes’ theorem provides
‘a better fit to the judgments.

However, even the subjective form of Bayes’
theorem does not provide a satisfactory ac-
count of all of the data. The misperception
and response bias interpretations of conser-
vatism will not suffice to explain how increas-

ing the evidence can decrease the response,

and vice versa, (as in Figure 3, panel C). For
example, when the very high expertise inde-
pendent source says the car is in good shape,
the Bayesian prediction is .9 and the mean
response is .87. When subjects are also in-
formed that the base rate is .7, Bayes’ theorem
implies an increase in the probability the car
will last (to .96). However, the mean response
was only .81, a decrease in probability. This
example and others indicate that subjects are
not simply being conservative: They can ac-
tually do the opposite of that implied by either
form of Bayes’ theorem.

The scale-adjustment averaging model can
explain the above results as well as the overall
conservatism. The model implies that addi-
tional faint praise can actually hurt the overall
evaluation if the original evidence was already
strong. Thus, humans appear to aggregate ev-
idence by judging the average strength of ev-
idence rather than by using Bayesian algebra
in which a lot of weak evidence can imply a
strong conclusion. The results in Figure 3
(panel C) are directly analogous to findings in
intuitive regression (Birnbaum, 1976).

Conceptually, the scale adjustment aver-
" aging model can be interpreted as an attempt
by the subject to strike a balance among the
values of the evidence (Birnbaum & Stegner,
1979). The value of the evidence depends on
the source’s report and is adjusted according
to the source’s bias. This value is then mul-
tiplied by the source’s expertise (or discrim-
inability). These premises explain how exper-
tise amplifies bias in Figure 4 (panel B). By
interpreting the response as a balance between
the source’s report and the base rate, the model
explains how weak but favorable evidence can
decrease the overall response (Figure 3, panel
C), and it explains how increasing source’s

MICHAEL H. BIRNBAUM AND BARBARA A. MELLERS

expertise simultaneously amplifies the effect
of source’s opinion (Figure 4, panel A) and
decreases the effect of base rate (Figure 4,
panel C).

Research in Source Credibility

The present results fit in well with related
research on how judges combine information
from sources that vary in credibility (see Table
2). Birnbaum and Stegner (1979) found that
the scale-adjustment averaging model gave a
good description of estimates of the value of
used cars based on estimates provided by
sources, It is interesting that the same model
describes both estimates of value and proba-
bility inferences. This finding appears consis-
tent with Shanteau (1970) who concluded that
judges use the same model for probability es-
timates and inferences based on samples drawn
from an urn. :

The scale-adjustment averaging model can
be viewed as an extention of earlier averaging
models of information integration (N. An-
derson, 1971; Rosenbaum & Levin, 1968,
1969; Shanteau, 1975). It is important to note
that there are a variety of different averaging
models and there has been considerable theo-
retical discussion of how to represent devia-
tions from early forms of the averaging model
(T. Anderson & Birnbaum, 1976; Birnbaum,
1974a; Birnbaum & Stegner, 1979; Riskey &
Birnbaum, 1974). At present, a configural-
weighted, scale-adjustment averaging model
appears to provide a consistent account of a
wide variety of data (Birnbaum, 1982).

There now exists an array of consistent re-
sults linked by analogy, as in Table 2. The
same model has given a good account of data
in the following tasks: intuitive numerical pre-
dictions, based on independent numerical cues
of known correlation with the criterion (Birn-
baum, 1976); likableness of hypothetical per-
sons described by adjectives provided by ac-
quaintances of varied length of acquaintance
with the target (Birnbaum et al., 1976); judg-
ments of value of used cars based on blue
book value and the opinions of sources who
examined the cars (Birnbaum et al., 1976;
Birnbaum & Stegner, 1979); predictions of IQs
of adopted children based on IQs of biological
and adoptive parents and environmental so-
cioeconomic status (Birnbaum & Stegner,
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Table 2

Analogies Among Variables in Source Credibility Research
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Judgment

Messages (s)

Source expertise (w)

Numerical predictions®
Likableness of hypothetical people®

Value of used cars®*

Predicted 1Q¢ '

Predicted exam performance®

Probability inferences; P(L|“G”)f

Numerical cues
Adjectives )
Source’s estimates; Blue book value

IQs of biological and adoptive
parents; SES of environment

IQ test; Study time

Sources report, “G”"; Base rates,

. P

Cue-criterion correlations
Length of acquaintance
Mechanical knowledge

Individual differences in importance
of heredity vs. environment

Reliability of IQ and study time
measures

Hit and false-alarm rates of sources;
P(“G”|L) and P(*G”|L)

Note. Each row represents a different experimental situation.
® Birnbaum (1976). ® Birnbaum, Wong, & Wong (1976).  Birnbaum & Stegner (1979). ¢ Birnbaum & Stegner (1981).
¢ Surber (1981). f Present experiment: For inferences, P(L) = probability the car will last; “G” is the report of the

source (“good shape™).

'1981); and predictions of performance based
on unreliable or reliable measures of IQ and
study time (Surber, 1981).

In these studies, weight is used to represent
cue-criterion correlation, source’s length of
acquaintance with the target person, source’s
mechanical expertise, perceived importance of
heredity or environmental information, and
reliability of information (length of test) of IQ
test or study time sample, respectively. In the
present case of probability inferences, weight
is mostly a function of source’s hit rate minus
false-alarm rate. Thus, weight is based on a
source’s perceived ability to discriminate the
true states of nature. ‘

In this set of analogies, the scale value of
information depends on the source’s message:
the value of the cue, the likableness of the
adjective; the source’s estimate, the value of
parents’ IQs, and the value of IQ test or study
time, respectively. In the present study, scale
value depends on the source’s opinion (good
or bad shape).

In the scale-adjustment averaging model, the
source’s bias also affects the scale value. In
both the present study and that of Birnbaum
and Stegner (1979), it was found that the effect
of bias on the judgments was greater for sources
of higher expertise. Thus, when a source is

believed to be biased, judges appear to adjust
- the value of the source’s message before com-
bining it with other information.

Conclusions

In sum, subjects utilize base-rate infor-
mation in the within-subject design but give
data comparable to previous findings when
they are given only a single problem. Although
subjects utilize the base rate, neither the ob-
jective nor subjective versions of Bayes’ theo-
rem gives a satisfactory account of the judg-
ments. Instead, a scale-adjustment averaging
model gives a reasonably accurate account of
the data. In this model, base-rate information
is averaged with information from other
sources. The scale value of the source’s opinion
depends on the report and the bias of the
source, whereas the weight of the source de-
pends primarily on the source’s expertise.
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