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REPLY TO THE DEVIL'S ADVOCATES:

DON'T CONFOUND MODEL TESTING AND MEASUREMENT

MICHAEL H. BIRNBAUM *

Kansas State University

Replies by E. F. Alf and N. M. Abrahams and by L. G. Rorer defend the
correlation-regression approach to model testing, contending that if a priori
measurements are assumed to be proper psychological values and if the
correct model is known, correlations can be higher for the better model. But
since psychologists cannot know in advance the correct scales and models,
popular correlational techniques are inappropriate for investigating psycho-
logical processes. It is necessary to separate measurement from the evaluation
of a model. A further attempt is made here to clarify the relationships be-
tween different methods of analysis.

Birnbaum (1973) criticized a currently
popular use of correlation that confounds
measurement with model testing, demonstrat-
ing that a poorer model can achieve higher
correlations with the data when a priori
measurements are used.

Recent replies by Alf and Abrahams
(1974) and by Rorer (1974) correctly con-
tend that once the data have been properly
diagnosed by other techniques, it may be
possible to use regression so that the correla-
tion coefficient is higher for the correct model.
But the fundamental question should be:
What are the advantages or disadvantages of
correlational techniques for exploring psycho-
logical theories under conditions where the
correct models and psychological values of
the stimuli are unknown?

Under these conditions, correlations of fit
can be misleading since they depend on such
factors as (a) unreliability of response, (b)
experimental design (which includes varia-
tion and covariation of independent varia-
bles), (c) stimulus metric, (d) response met-
ric, and (e) number of estimated parameters,
as well as (/) the "goodness" of the model.
When correlational analyses are reported, the
journal reader has no way of knowing what
the original data (and the pattern of devia-
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tions of fit) look like. Consequently, unless
the data are appropriately presented, the
correlation coefficient cannot be unambigu-
ously interpreted as an index of fit (Ander-
son, 1971, 1.972; Birnbaum, 1973; Darling-
ton, 1968).

Alf and Abrahams (1974) and Rorer
(1974) argued that correlations measure the
"goodness" of the model, basing their argu-
ments on the assumption that the evaluation
of psychological laws is logically dependent
on a priori measurements of the variables.
But the appropriate scaling of psychological
variables can hardly be known a priori. The
present paper is a further effort to discuss an
approach that separates measurement from
model testing by scaling the stimuli in accord
with the model to be tested (Anderson, 1970,
1971, 1972; Krantz, Luce, Suppes, & Tversky,
1971; Krantz & Tversky, 1971).

Measurement and Model Testing

Measurement and model testing go hand in
hand. The basic idea of measurement is to
assign numerical values to objects so that
laws relating the measured variables describe
empirical relationships among the objects.
The basic idea of model testing is to ask
whether a particular set of assumptions can
account for a set of observed relationships.
Measurements "make sense" with respect to
empirical laws relating theoretical variables
that can be measured.

Hopefully, the world is simple and can be
described by a set of laws that are inter-
locked by a small number of measured varia-
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bles. Measurements of the same variable
derived from different empirical laws should
agree. In physics, the agreement is so good
that it is often taken for granted that mea-
surements of length, time, and mass, for ex-
ample, can be measured independently of the
model under investigation. But even in physics
the measurement approach has its advantages
(see Footnote 3).

Figure 1 presents an outline of psychologi-
cal measurement for a situation in- which the
response depends on the combined effect of
two variables. Extension to a greater number
of variables is straightforward. The stimuli,
indexed i and ;', have subjective values st

and Sj. The integration function, /, represents
the psychological law, or model, that describes
how the subjective values combine to form an
overall impression, *jy. The overt response,
Rih is assumed to be a monotonic function,
/, of the psychological impressions.

There are three psychological issues to be
distinguished: (a) finding the subjective val-
ues, Si and Sj, is called measurement (scal-
ing) ; (b) establishing and testing the model,
*y = I(sit Sj); (c) finding the response junc-
tion, J, between the integrated impression, *,
and overt response, R.

The measurement approach derives scales
(s) from the data in accord with the model
to be tested. In principle, one need not have
a priori measurements of the stimuli. In the
special case where simple physical measure-
ments are available, the relationship between
subjective values and physical values, <f>, is
called the psychophysical function, s — H(<j>).
The form of H can be determined after fitting
the model and need not be assumed to test
the model. Thus, psychophysical scaling can
be separated from the test of the model.

The popular regression approach attempts
to fit the data as some function of the a
priori measurements of the stimuli, R =
F((j>i, <f)j). This function is a composition
that confounds the stimulus scale, H, response
scale, /, and theoretical model, I, all in one.
Every different possible transformation be-
tween a priori values and subjective values, H,
results in a different F and is therefore con-
sidered a different "model." A user of these
techniques could easily find himself comput-
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FIGURE 1. Outline of psychological measurement.
(The stimuli, referenced by the indexes i and ;', have
subjective values st and sj; they combine according
to the psychological law, * = I(si, Sj), to form an
integrated impression, ^u, which is related to the
overt response, R, by the response function, R =

ing hundreds of correlations of fit for dif-
ferent equations that represent the same /
function. Omission of one "model" could be
disastrous, since this procedure requires one
to fit every possible equation and choose the
one with the highest correlation. Even worse,
when subjective values cannot be expressed as
a function of a priori values (i.e., if two stim-
uli with the same a priori value have different
psychological values), the approach is doomed
to failure.

The fact that F is a confounded composi-
tion implies that correlations of fit for any
function, F, cannot be unambiguously in-
terpreted. Very little can be inferred from the
finding that one equation correlates higher
with the data than another; another possible
equation excluded from the analysis might
have correlated even higher.

The measurement approach permits an
evaluation of the possibilities for the psycho-
logical model, /, without making any assump-
tions about H and assuming only that / is
monotonic. Each psychological issue can be
pursued separately. Separate evaluation of H,
I, and / enhances understanding without sac-
rificing prediction. The following examples il-
lustrate how models lead to measurements
and show that a priori measurements are un-
necessary and often inappropriate for the
evaluation of a psychological law.
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Examples of Psychological Measurement

Additive model. Figure 2 plots the hypo-
thetical data of Birnbaum (1973, Table 2)
against subjective values of the stimuli de-
rived from the additive model, SP -̂ = s^, + Sj.
When / is linear, the additive model predicts
that the curves will be parallel. The curves
need not be linear functions of the a priori
values of the stimuli. Since the curves in
Figure 2A are parallel, the marginal means
are linearly related to the additive model
scale values (Anderson, 1970, 1971). The
figure shows that the subjective values are
equally spaced. In Birnbaum (1973, Figure
2B), the same data are nonlinear when plotted
against a priori values of 1, 2, 4, 8, and 16.
In this example, the subjective values are
logarithmically related to the a priori values.

The correlation approach advocated by Alf
and Abrahams (1974) and Rorer (1974)
confuses the linearity of the curves (the form
of H) with their parallelism (the form of./).
Consequently, although the additive model
correlates perfectly with the data when the
subjective scales are employed, the correlation

using a priori stimulus values is .933, less than
the .998 correlation for the logarithmic form
of the multiplicative model. The contention
that the higher "correlation truly reflects the
superiority of the multiplicative model [Alf
& Abrahams, 1974, p. 73]" is misleading
since the multiplicative model predicts a
diverging fan of curves.

The additive model can be tested very
simply, without the use of either a priori
measurements, correlation coefficients, or any
elaborate statistics. All one need do is plot
the data and visually inspect whether the
curves are parallel. If the curves are parallel,
an additive representation of the data exists.
If the curves are systematically nonparallel,
further analyses (discussed below) may be
required to assess the possibility and propriety
of transforming the data to parallelism.

There are regression techniques for fitting
the additive model without relying on a priori
measurements. An appropriate technique
would employ dummy variables for the levels
of the independent variables or use poly-
nomial expansion of the a priori scales (see
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FIGURE 2. A: Hypothetical additive data. (Scales derived in accord with

the additive model "&u = Sf + Sj, will reproduce each data point. Curves are
linear functions of subjective scales, but would be logarithmically related to a
priori scales; see text.) B: Hypothetical multiplicative data. (Scales derived
from the multiplicative model, •*•« = si • n, reproduce each data point.
Abscissa values are spaced so that curves form a bilinear fan, determining
scale values; slopes are scale values for other variables. Intersection of curves
defines the location of the zero points of the scales.)
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e.g., Cohen, 1968). When combined with ap-
propriate tests of deviations of fit, such tech-
niques may be useful in instances where com-
plete factorial designs are not feasible (as
illustrated in Birnbaum, 1974b); however,
nonorthogonality of the independent variables
can create additional problems for correla-
tions (Darlington, 1968).2

Multiplicative model. Figure 2B plots the
data from Table 2 of Birnbaum (1973). The
crossing curves clearly violate the additive
model. The functional scales (Anderson,
1970, 1971) have been derived from the data
in accord with the multiplicative model, *„•
= Si • Sj. The projections of the crossover
correspond to the functional zero points for
the dependent variable and the independent
variable plotted on the abscissa.3

Birnbaum (1973) showed that if the sub-
jective values are linearly related to a priori
values, currently popular correlational tech-
niques could indicate that the additive model
provides a "better" representation of these
data, correlating .930 (compared with .899)
in spite of horrendous deviations.4

2 Correlations of fit are highly dependent on the
experimental design. Dudycha and Naylor (1966)
compared correlations and concluded that cue inter-
correlations affect the way subjects process informa-
tion. However, Schenk and Naylor (1968) cautioned
that the results may be a statistical artifact of the
correlation coefficient. Birnbaum and Veit (1973)
and Birnbaum, Kobernick, and Veit (1974) illustrated
more appropriate techniques that unconfound the
experimental design from the statistical analysis.

3 The ideal gas law, that the volume of gas is
directly proportional to the ratio of temperature to
pressure, could be used to measure temperature and
determine absolute zero. But if a priori measures of
temperature (Centigrade or Fahrenheit) were used,
an investigator comparing correlation coefficients
might erroneously have concluded that temperature
and pressure combine additively unless he made the
appropriate graph of the data. Plotting volume as
a function of temperature with a separate curve for
each level of pressure would reveal a bilinear fan
of curves that intersect near —273° Centigrade.

4 Refer (1974) implicitly assumed that the zero
points of the a priori scales are the subjective zero
points. Unfortunately, Rorer made several additional
errors that could lead to confusion unless corrected:
(a) In his analysis of the multiplicative model,
Rorer must have meant "power function" ( F =

X") rather than "exponential" (Y = a?). Even with
this correction, his analysis remains in error because
(6) he confused logarithmic transformation with

Data transformation. The third example,
for a symmetric, factorial design (Figure
3A), shows a divergent interaction that would
be inconsistent with both additive and multi-
plicative models if the response function, /,
were assumed to be linear. Such an interac-
tion may be attributed to nonlinearity of /
rather than nonadditivity of the integration
function. If the dependent variable, R, is con-
sidered to be only an ordinal measure of the
psychological variable, then "additivity" has
a weaker, more general definition (see Krantz
et al., 1971; Krantz & Tversky, 1971). A
data matrix would be termed "additive" if it
were possible to find scales st and Sj, such
that RH > KM whenever Si + s}> SK + $i\
that is, if scales can be found so that the
additive model correctly generates the empiri-
cal ordering. The data of Figure 3A are "addi-
tive" in this ordinal sense, as shown in Figure
3B where the dependent variable has under-
gone a square-root transformation. As can be
seen, the transformation (interpreted as J'1)
renders the curves parallel. Once the curves
are parallel, the marginal means again esti-
mate the scale values of the stimuli, which in
this case are nonlinearly related to the a
priori values, but linearly related to 1, 5, 8,
10, and 11.

A difference between functional measure-
ment (Anderson, 1970, 1971) and conjoint
measurement (Krantz et al., 1971; Krantz &
Tversky, 1971) has centered over the pro-
priety of rescaling data that would be incon-

addition of a priori cross-products to a linear equa-
tion, and misreported Birnbaum's (1973) analysis.
(c) Rorer applied the popular (but erroneous) in-
terpretation of the magnitude of the linear coeffi-
cients in the equation Y = 4 Xi + 6 X2 — Xi • X? +
6 to imply that one should expect the linear model
to correlate highly with data generated from the
equation. The coefficients cannot be interpreted so
simply. For example, the linear model would achieve
a correlation of zero with data generated using a
3 X 3 factorial design with levels of Xi — 5, 4, and
3, and levels of Xz='!, 6, and 5. (d) He confused
the psychophysical function with nonlinear trans-
formation of the dependent variable, (e) He con-
fused parallelism of the curves with absence of a
significant XiXa term. Even if the Xs were properly
scaled variables, absence of bilinear interaction does
not imply additivity. Rorer is correct, however, in
his assertion that a comparison of correlations can-
not be unambiguously interpreted.
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nonparallelism of the curves is inconsistent with the additive model under the
assumption that the J function is linear. B: Each point is the square root of
the corresponding point in Panel A. (Parallelism indicates that the transformed
data are additive; nonlinearity of the curves merely indicates that the sub-
jective values are a negatively accelerated function of the physical values.
Transformation may be theoretically inappropriate in certain circumstances;
see text.)

sistent with the model unless transformed.
Functional measurement allows rescaling but
has resisted transformation of data obtained
under experimental conditions where simple
models have previously fit without rescaling.
Conjoint measurement has accepted ordinal
violations of a model as convincing, arguing
that deviations that can be removed by mono-
tone transformation may be without psychor
logical significance (Krantz et al., 1971).
Birnbaum (1974a) discussed criteria for ap-
propriate transformation (see also Birnbaum
& Veit, 1974) and applied scale-free tech-
niques that can determine whether an inter-
action such as that shown in Figure 3A is
"real," or should be transformed as in Figure
3B.

Other Problems with Correlations

Aside from the measurement problem, two
well-known criticisms of correlations deserve
mention: (a) high correlations do not insure
a good fit. They can easily coexist with seri-
ous model discrepancies (Anderson, 197.1,

1972). For example, the data in Figure 2B
correlate .930 with the additive model. Proper
evaluation of a model must attend to discrep-
ancies. Plots of predicted versus obtained are
not generally adequate to portray and assess
discrepancies of fit. (b) The squared multiple
correlation generally represents the ratio. of
predicted to total variance. Since the investi-
gator controls the experimental design and
hence the total variance, he also controls the
magnitude of the correlation coefficient.
Furthermore, when correlations of fit are com-
pared, certain experimental designs favor one
model over another. Consequently, correla-
tion is neither an "absolute" index such that
a certain value could be considered a "good"
fit, nor is it a "relative" index such that
correlations for different models can be un-
ambiguously compared.

Tell Truth and Shame the Devil

Let's give the devil his due: The devil can
speak true, sometimes. Sometimes correlation
means causation; sometimes a high correla-
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tion of fit means that a model is a good rep-
resentation of a psychological process; some-
times the "better" representation correlates
higher. Although correlation can be used ap-
propriately, in its current uses it is the tool of
the devil.

When misused, the tools of statistics often
deceive, conveying misimpressions of the
original data from which they were calculated
(Huff, 1954). The cautious reader should
think of Figure 2B next time he sees a cor-
relation in the .90s. Unless the data were
appropriately presented, the reader would
have no way of knowing that supposedly addi-
tive data (.93 correlation) contain critical
violations of the theory.

Shakespeare wrote, "I can teach thee, coz,
to shame the devil by telling truth." To tell
the truth, psychologists should report graphs
of the data that allow inspection of critical
predictions of the theory. It is less important
to know that the fit is "pretty good" than it
is to know that the deviations are not bad.
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