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Abstract8

This paper illustrates how to use true and error methods instead of the test of correlated9

proportions to test a theory that implies no psychological difference between two conditions.10

Lexicographic semiorder models have been proposed as descriptive models. Birnbaum and11

Gutierrez (2007) and Birnbaum (2010) reported what appeared to be evidence of violations of12

interactive independence, a property that is implied by any lexicographic semiorder model13

or mixture thereof. However, a new, more general true and error theory has since been14

developed (Birnbaum & Quispe-Torreblanca, 2018) that might, in principle, account for15

differences in response proportions between conditions. A defender of lexicographic semiorder16

models might therefore argue that apparent violations are due to error. Data from these17

previous studies are re-analyzed to explore whether or not the new error theory can account18

for the results. The analyses yielded clear answers: interactive independence can be rejected19

even when this flexible error theory is allowed. This paper illustrates how to apply the new20

methods to test if response proportions differ between two experimental conditions.21
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1 Introduction22

In recent years, new methods and software have been developed for the analysis of response23

proportions based on true and error theory (Birnbaum, 2008, 2012, 2013; Birnbaum &24

Quispe-Torreblanca, 2018). These methods can give different conclusions from those reached25

by the test of correlated proportions (McNemar, 1947; Lichtenstein & Slovic, 1971; Conlisk,26

1989) that has been used in the past. This paper illustrates the application of these new27

methods using data that had been published using older methods of analysis.28

The following is a classic method to compare rival theories: One theory implies that29

two situations are psychologically equivalent and the other implies that the two situations30

differ systematically. In the example used here, one class of risky decision making theories31

implies that two choice problems should lead to the same true preferences and another class32

of theories implies that the two choice problems can lead to different preferences.33

If we can reject the hypothesis that any differences between the conditions might be due34

to random error, we could reject one theory in favor of the other.35

The common statistical approach has been to compare response proportions in the two36

conditions and to test whether these proportions might have arisen "by chance" (by sampling)37

from a single underlying choice probability. These studies are usually done within-subjects,38

and this paper will focus on that situation. The common statistical method for this situation39

has been the test of correlated proportions.40

As shown in the Appendix, the test of correlated proportions is not really the right41

statistic to compare theories and it need not reach the same conclusions as methods based42

on estimations of error in the data. The methods will differ when the measures in the two43

conditions have different rates of error, when error rates might depend on true preferences,44

or when mixtures arise, for example, because different people might have different true45

preferences. In such cases, there can be a statistically significant difference in response46

3



proportions even when there is zero difference between conditions and there can be zero47

difference in response proportions even when most, if not all, of the participants have opposite48

behavior in the two conditions.49

1.1 Need for replications50

In order to do a proper true and error analysis, one must obtain replications in order to51

estimate error rates. To replicate, one obtains at least two responses to each choice problem52

from each participant. The test of correlated proportions does not require replications, nor53

does it estimate error rates or take them into account. Conclusions from that test are based54

on the (often implicit) assumption that error rates are the same for all dependent variables.55

There are two variants of true and error theory (TET): In individual true and error theory56

(iTET), at least one individual serves in many sessions, and within each session, each choice57

problem is replicated at least twice. In group true and error theory (gTET), each of many58

participants serve in at least one session, and each choice problem is replicated at least twice59

in each session. The key assumption in either form of TE theory is that preference reversals60

to the same choice problem by the same participant in the same experimental session are61

due to error.62

The TEMAP2.R software (Birnbaum & Quispe-Torreblanca, 2018) provides statistical63

calculations for a family of true and error models for experiments with two conditions. As-64

suming the experimenter has properly replicated each choice problem, the software can esti-65

mate error rates under different assumptions concerning errors. The program also estimates66

the probabilities of true behavior patterns in a mixture.67

In studies of an individual, the true and error models allow that the person may have68

different true in different sessions, for example, because parameters drift over time (Birnbaum69

& Wan, 2020). In studies of group data, different people may have different true preferences,70

for example, because different people may have different parameters. The examples analyzed71
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here will be cases of gTET, where the program will estimate the relative frequencies of72

different true preference patterns.73

1.2 Expected Utility versus Lexicographic Semiorders74

Would you rather have $45 for sure or would you prefer a 50-50 chance to win either $1075

or $90? Such decisions are called "decisions under risk" because the explicit consequences76

have known probabilities. Let A = (xA, pA; yA) represent a prospect (a "gamble") with a77

probability of pA to win $xA and otherwise (with probability 1 − pA) receive $yA, where78

xA ≥ yA.79

This paper deals with a test between two classes of risky decision making models, inter-80

active and non-interactive. Expected utility theory is an example of an interactive model,81

and lexicographic semiorder (LS) models are examples of a non-interactive models.82

According to expected utility (EU) theory, a person prefers A = (xA, pA; yA) over B =83

(xB, pB; yB) (denoted, A � B, where � represents "is preferred to") if and only if the84

expected utility of A exceeds that of B. That is,85

A � B ⇔ pA(u(xA)) + (1− pA)(u(yA)) > pB(u(xB)) + (1− pB)(u(yB)) (1)

where u(x) is the monotonic utility function for money. Note that in this theory, increas-86

ing the probability to win x multiplies u(x), so increasing p can be said to "compensate" for87

decreasing the value of x. Because different people might have different utility functions, in88

a group of people, some might truly prefer A and others prefer B.89

In the LPH lexicographic semiorder (LPH LS), the decision maker first compares the90

lower consequences of the two alternatives (yA, yB) and if the difference exceeds a threshold91

(a parameter), the prospect with the better lowest consequence is chosen (without consider-92

ing the other attributes); but if the difference does not exceed threshold, the decision maker93
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next compares the probabilities. If the difference in probabilities exceeds a threshold, the94

alternative with the better probability is chosen; but if the difference does not exceed thresh-95

old, the highest consequences are then examined and the prospect with the better highest96

consequence is chosen. LS models can imply violations of transitivity (Tversky, 1969); that97

is, it is possible to find A,B, and C, such that A � B,B � C, and C � A.98

Another individual might use a LS model to compare gambles, but she might use a99

different order of considering the attributes. For example, a person might examine the highest100

consequences first, then the lowest, then the probabilities (HLP LS). Different individuals101

might also use different threshold parameters, which could also produce different preferences.102

So, both of the theories under consideration can produce mixtures of true preference patterns103

when we analyze group data.104

Rather than compare models by asking how "well" they fit data obtained with a hap-105

hazard sample of choice problems, it can be useful to conduct experiments that test critical106

properties. A critical property is a property that can be deduced as a theorem from one107

theory and might be violated according to the other theory.108

Birnbaum (2010) and Birnbaum and Gutierrez (2007, p. 107) devised and reported tests109

of critical properties that must be satisfied by any mixture of LS models. Among these110

critical properties is interactive independence, which is the assumption that the effect of111

differences between attribute values is independent of any attribute that has the same value112

in both alternatives. This property must be satisfied by a mixture of LS models but it113

can easily be violated by expected utility theory. An example test is described in the next114

section.115
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1.3 A Test of Interactive Independence116

Interactive independence requires that for all A = (xA, p; yA), B = (xB, p; yB), A′ =117

(xA, p
′; yA), and B′ = (xB, p

′; yB),118

A � B ⇔ A′ � B′. (2)

Note that p is common to both A and B, which have the same consequences as A′ and B′,119

respectively, except that the (common) probability is now p′ instead of p. In the test below,120

xA > xB > yB > yA; because A has greater variance in outcomes it is thus more "risky"121

compared to B; I use the notation R and S for "risky" and "safe" gambles, to remind the122

reader of these relations. Interactive independence can be tested in the following two choice123

problems:124

1. Which do you prefer?125

R = ($7.25, 0.05; $1.25, 0.95)126

or127

S = ($4.25, 0.05; $3.25, 0.95)128

2. Which do you prefer?129

R′ = ($7.25,0.95; $1.25, 0.05)130

or131

S ′= ($4.25, 0.95; $3.25, 0.05)132

Note that R is a "risky" gamble in which one might win either $7.25 or $1.25, and S133

is a "safer" gamble in which the least one can win is $3.25, but the most one can win is134

$4.25. In this case, the expected value of S is greater than that of R. In the second choice135

problem, the consequences of S ′ and R′ are the same as those of S and R, respectively, but136
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the probability to win the higher prize (in both gambles) is higher than it is in Problem 1.137

In the second problem, it is R′ that has the higher expected value.138

According to interactive independence, a person will prefer S over R if and only if she139

prefers S ′ over R′. In any LS model or mixture of LS models, a person can have only pref-140

erence patterns RR′ or SS ′ ( Birnbaum, 2010, p. 376, p. 383), so interactive independence141

must be satisfied, apart from error.142

On the other hand, if probabilities and consequences interact, as they do in expected143

utility theory (and many other theories), then a person might prefer S over R in the first144

choice problem, and prefer R′ over S ′ in the second choice problem. This pattern of pref-145

erences is denoted SR′ and would be indicative of an interaction; that is, any systematic146

reversal is in violation of interactive independence, which allows only SS ′ and RR′ response147

patterns. Depending on the utility function in EU theory, a person might have preference148

patterns of SR′, SS ′ or RR′.1149

The main question is, If we observe some violations, are they "real" evidence of interac-150

tion, or might they be attributed instead to random error? This question can be answered151

by means of analysis in true and error models, described in the next section.152

1.4 True and Error Models153

Figure 1 diagrams possible errors in two choice problems. In the first choice problem (left154

side of Figure 1), if a person truly prefers R, she or he might erroneously respond S with155

probability e. If the person truly prefers S, he or she might respond R with probability156

f . In Choice Problem 2 (right), the corresponding errors occur with probabilities e′ and f ′,157

respectively. The model in Figure 1 is denoted TE4 because there are 4 different error rates.158

A special case of this model, TE2, assumes e = f and e′ = f ′, and a further special case,159

1Many u(x) functions can work; for example, the SR′ pattern is implied when u(x) = x; if u(x) = xb,
the RR′ pattern is implied when b ≥ 3.82; if u(x) = 1− e−ax, the SS′ pattern follows when a ≥ 1.02
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Figure 1: True and Error Models for two choice problems. In TE4, all four error terms are
free; TE2, assumes e = f and e′ = f ′; TE1 assumes e = f = e′ = f ′. After Birnbaum &
Quispe-Torreblanca (2018).

TE1, assumes that e = e′ = f = f ′.160

A person might have any of four true preference patterns for two choices: SS ′, SR′, RS ′,161

or RR′, which have probabilities of pSS′ , pSR′ , pRS′ , and pRR′ , respectively.162

According to TE-4, the probability to show the SR′ response pattern on two replications163

is as follows:164

P (SR′, SR′) = pSS′(1−e2)(e′)2+pSR′(1−e2)(1−f ′)2+pRS′(f)2(e′)2+pRR′(f)2(1−f ′)2 (3)
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where P (SR′, SR′) is the theoretical probability to observe SR′ response pattern on both165

replications; pSS′ , pSR′ , pRS′ , and pRR′ , are the probabilities of the four possible true prefer-166

ence patterns; and the error rates, e, f, e′, and f ′, are as defined in Figure 1.167

Note that in each of the four possible true preference states, there is a pattern of errors168

that can produce each possible observed response pattern. For example, when a person has169

the true pattern of SS ′, then that person can respond SR′ SR′, (RS ′on two replications)170

by making no error on the two presentations of the choice between S and R and by making171

errors on both presentations of the choice between S ′ and R′.172

There are 16 equations (including Equation 1) for the 16 possible response patterns. The173

16 corresponding observed frequencies (counts) of these response patterns have 15 degrees of174

freedom (df), because the 16 frequencies sum to the total number of response patterns. In175

gTET with two replicates in one session, this total is the number of participants; in iTET,176

where one individual served in a number of sessions, it is the number of sessions.177

Interactive independence is a special case of TE in which pSR′ = pRS′ = 0, so it uses178

two fewer degrees of freedom. I will use the notation "LS" for assumption of interactive179

independence (even though other models besides LS models can also imply interactive inde-180

pendence). According to LS models, a person never has either of these preference patterns181

(SR′ or RS ′) as a "true" set of preferences, but this combination of responses can occur by182

error.183

Combining the assumptions about true states with assumptions about the errors, there184

are six models: TE4, TE2, and TE1, with respective special cases of LS4, LS2, and LS1,185

which are created by adding the assumption pSR′ = pRS′ = 0.186

It might seem that if we allow such a flexible error theory as in Figure 1, then it would187

be impossible to test TE and LS models. However, because the four probabilities of true188

response patterns (SS ′, SR′, RS ′, and RR′) sum to 1 (pSS′ + pSR′ + pRS′ + pRR′ = 1),189

they use only 3 degrees of freedom. In TE4 there are four error terms as well (e, f , e′, and190
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f ′), which means that TE4 has 8 parameters to estimate that consume 3 + 4 = 7 df. With191

two choice problems and two replications per person, there are 24 = 16 possible response192

patterns in the data, which have 15 df. Therefore there are 15 − 7 = 8 df left to test the193

model. Thus, even the most flexible model is testable, and within that general TE4 model,194

we can test the special case of interactive independence, LS4, which has an additional 2 df.195

1.5 Replications and degrees of freedom196

If a study yielded data consisting of only four frequencies of the 4 possible response patterns,197

as in Table 9 of Appendix, then the data have only 3 df. The Appendix shows how the198

test of correlated proportions could easily lead to wrong conclusions analyzing such a study.199

These old-fashioned studies cannot be relied upon to test LS, because there can remain many200

possible, equally good interpretations of the same data. However, with a proper experimental201

design that includes replications, it becomes possible to identify best-fit parameters, including202

error rates, and test the models.203

Replications provide the information (degrees of freedom) required to estimate error rates,204

test the TE models, and test LS as a special case of TE Birnbaum (2004, p. 59-60). The key205

assumption is that when the same participant responds twice to the same choice problem in206

the same session, any reversals of preference are due to random error.207

Table 1 shows the frequencies (counts) of the number of times that each of the 16 response208

patterns was observed in a test of interactive independence (Birnbaum & Gutierrez, 2007).209

Problems 1 and 2 were replicated twice to each of 321 participants, embedded in randomized210

and counterbalanced sequences among many other similar choice problems. For example, 10211

of the 321 participants had the SR′ on the first replicate and the SS ′ pattern on the second212

replicate, and 190 participants had the SR′ pattern on both replicates, denoted SR′SR′.213
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Table 1: Frequencies of each Response Pattern

Responses on Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′

SS ′ 24 21 0 3

SR′ 10 190 3 7

RS ′ 0 1 14 2

RR′ 6 7 3 30

Note: Data from Birnbaum & Gutierrez (2007)

1.6 Index of Fit214

The free, open-source program, TEMAP2.R, can be used to perform statistical analysis to215

fit and test the six models.2 The program analyzes frequency tables, such as Table 1. It216

program estimates parameters to minimize either the standard χ2 index of fit or the G index217

(sometimes called G2), which is equivalent to a maximum likelihood solution.3218

G = 2
∑∑

Oij ln (Oij/Eij) (4)

where the summation is over the 16 cells, Oij is the observed frequency (count) in Row i219

and Column j, Eij is the corresponding "expected" ("predicted" or "fitted") frequency in220

the cell according to the particular TE model.221

Each of the 16 "expected", or "predicted" frequencies is based on the "best-fit" parameter222

values estimated from the data. Each is equal to the number of participants in a group223

analysis, n, multiplied by the model’s calculated probability (as in Equation 2).224

2TEMAP2.R is freely available in the online supplement to Birnbaum & Quispe-Torreblanca (2018); the
URL is:
http://journal.sjdm.org/vol13.5.html

3Programming for Bayesian analysis of true and error models has been presented by Lee(2018) and by
Schramm (2020). In cases studied so far, Bayesian and classical statistical analyses have led to similar
solutions and conclusions, although some caution is needed in the interpretation of Bayesian posterior prob-
abilities of models with complex nesting (Birnbaum, 2019).
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The G index is similar to χ2 and is also asymptotically Chi-Square distributed. Because225

LS models are special cases of TE in which 2 fewer df are consumed, the difference in fit226

between the TE model and its corresponding LS special case is asymptotically Chi-Square227

distributed with 2 df.228

TEMAP2.R can be applied in cases with relatively small samples. It employs Monte Carlo229

simulation to construct sampling distributions of the statistics, and it uses bootstrapping to230

estimate confidence intervals on the fitted parameters.231

2 Reanalysis of Birnbaum & Gutierrez (2007)232

Birnbaum and Gutierrez (2007), in a series of studies, searched for violations of transitiv-233

ity predicted by a lexicographic semiorder model using stimuli similar to those of Tversky234

(1969), who had argued that certain participants might have used a lexicographic semiorder235

that could lead to intransitive preferences. Interspersed among trials intended to replicate236

the choice problems used by Tversky (1969), Birnbaum and Gutierrez (2007) included the237

replicated tests of interactive independence described above, presented to 321 participants.238

Table 1 contains data of Birnbaum and Gutierrez, though Table 1 and this method of analysis239

were not presented in that paper.240

Table 2 shows the computed indices of fit, G, from TEMAP2.R for the six models, fit241

to Table 1. TE4, TE2, and TE1 models have 8, 10, and 11 df, respectively; corresponding242

LS models have an additional 2 df; critical values of χ2(df) for df = 2, 8, 10, and 11 for243

α = 0.05 level of significance are 5.99, 15.51, 18.31, and 19.68, respectively. The differences244

in fit between each TE model and its LS special case are presented in the last row of the245

table. These are tests of interactive independence, and therefore tests of LS. All of the LS246

models have indices of fit more than 10 times the corresponding values for the TE models of247

which they are special cases and all differences are significant.248
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Table 2: Indices of fit, G, of TE models to empirical data in Table 1.

Models TE4 TE2 TE1

TE full 30.8 31.1 38.4

LS 320.1 369.3 771.6

Difference 289.3 338.2 733.2

Table 3: "Predicted" (best-fit) frequencies of repeated pattern SR′; Empirical = 190

Models TE4 TE2 TE1

TE full 182.6 173.2 173.1

LS 64.6 63.5 20.1

There are also some violations of the TE models. According to any of the TE models,249

the matrix in Table 1 should be symmetric. However, the frequency of SR′SS ′ is 10 and250

that of SS ′SR′ is significantly greater, 21./footnoteSee Birnbaum and Quan (2020) for sim-251

ulation studies of the robustness of TE models with respect to systematic violations. The252

TEMAP2.R program calculates the best-fit values ("predicted") corresponding to Table 1.253

These predictions showed that except for this violation, each of the TE models gave a fairly254

good approximation to the values in Table 1. The difference in fit between the TE4 and TE2255

is theoretically Chi-Square distributed with 2 df, and the difference between TE2 and TE1256

should be distributed with 1 df. The difference between TE4 and TE2 is not significant, but257

the small difference between TE2 and TE1 is significant ( χ2(1) = 38.4−31.1 = 7.3, p < 0.05).258

The predictions of the LS models were all quite bad, especially in their best-fit values for259

the largest observed frequency in Table 1 (190), for the repeated response pattern, SR′SR′.260

Table 3 shows the best-fit predicted values for the six models. The LS4 model predicted261

64.6 for this frequency, and the other LS models were even worse; all were far below the262

actual value of 190. Therefore, the LS models fail because they are not able to account for263

the large number of people who repeatedly show the SR′ pattern of violation of interactive264
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Table 4: Best-fit estimates of parameters in TE models

Model Parameter

Model pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 20 56 12 13 00 39 22 00

TE2 08 75 05 11 04 08 =e′ =e

TE1 09 75 05 11 06 =e′ =e =e

Note: Values expressed as percentages; i.e., 05 indicates 0.05.

independence.265

Table 4 shows the maximum likelihood estimated parameters of the three TE models266

that appear to provide better approximations to the data. (The probabilities are expressed267

as percentages to save space in the table; e.g„ 04 indicates 0.04.) The best-fit estimates268

indicated that the percentages of participants with SR′ pattern as their true preference269

pattern were 56%, 75%, and 75%, according to TE4, TE2, and TE1, respectively. The270

corresponding 95% confidence intervals based on 10,000 bootstrapped samples were 50−81,271

70−81, and 70−80, respectively, giving confidence that the majority of the sample violated272

interactive independence in the manner predicted by interactive models such as expected273

utility, under any of the error assumptions.274

3 Reanalysis of Birnbaum (2010)275

Birnbaum (2010, Experiment 3) reported tests of interactive independence in two series of276

choice problems including the following:277

R = ($95, p; $5)278

or279

S = ($55, p; $20)280
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Table 5: Test of interactive independence with p = 0.01 and p′ = 0.99 )

Replicate 1 Responses on Replicate 2

Series A SS ′ SR′ RS ′ RR′

SS ′ 10 8 0 2

SR′ 6 77 1 11

RS ′ 1 0 2 6

RR′ 1 10 2 16

Series B SS ′ SR′ RS ′ RR′

SS ′ 4 12 2 3

SR′ 16 84 0 5

RS ′ 0 0 1 2

RR′ 0 7 4 10

Note: Data of Birnbaum (2010, Exp. 3, n = 153.)

where there were five levels of p (and p′): 0.01, 0.10, 0.50, 0.90, and 0.99. There were 153281

participants who responded to each choice problem twice. There were also two variations282

(Series A and B) with slightly different values of the consequences ($50 and $15 instead of283

$55 and $20), providing another check on consistency of the findings.284

Results for both series are shown in Table 5 for p = 0.01 and p′ = 0.99, and in Table 6285

for p = 0.10 and p′ = 0.90. The modal response pattern in all four cases is again SR′ on286

both replications, with 77 and 84 of the participants in Series A and B of Table 5 and 48287

and 58 of the participants in Series A and B of Table 6.288

Tables 7 and 8 show the statistical tests for the six models and the tests between each289

TE model and its LS special case. In all 12 cases (4 sets of data by 3 TE models in Tables290

7 and 8), the large differences in fit testing interactive independence indicate that the LS291

models can be confidently rejected under any of the error models.292

The differences among the TE models are small in comparison to differences between TE293
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Table 6: Test of interactive independence with p = 0.1 and p′ = 0.9 )

Replicate 1 Responses on Replicate 2

Series A SS ′ SR′ RS ′ RR′

SS ′ 12 9 1 1

SR′ 10 48 2 12

RS ′ 0 0 1 2

RR′ 2 14 0 37

Series B SS ′ SR′ RS ′ RR′

SS ′ 17 6 1 1

SR′ 12 58 1 13

RS ′ 3 1 0 1

RR′ 0 10 2 27

Note: Data of Birnbaum (2010, Exp. 3, n = 153.)

and LS models; however, in one case of four (Table 8, Series A), TE4 fits significantly better294

than TE2, and in one case (Table 7, Series B), TE2 and TE4 fit significantly better than295

TE1. Nevertheless, I do not think that any definitive conclusion for preferring one form of296

the TE models could be safely generalized from these findings to future studies that might297

have different procedures and choice problems (see Birnbaum, 2020, for further discussion).298

The parameter estimates for TE4, TE2, and TE1 fit to the four data sets in Tables 5299

and 6 are included in the Supplement. The estimated incidence of violations of interactive300

independence (pSR′ were all substantial. As one would expect from interactive models, these301

are larger in the case of p = 0.01 and p′ = 0.99 than in the case where p = 0.1 and p′ = 0.9.302

For example, for TE2 Series A and B, the estimated incidences are 0.73 and 0.85 when303

p = 0.01, and they are 0.56 and 0.60 when p = 0.10.304

In sum, reanalyses of four conditions of Birnbaum (2010) reinforce the reanalysis of305

Birnbaum and Gutierrez (2007): We can reject interactive independence (and LS models)306
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Table 7: Indices of fit, G, of TE models fit to tests of interactive independence with p =
0.01, p′ = 0.99.

Series A TE4 TE2 TE1

TE full 8.9 11.5 11.5

LS 83.8 131.4 291.8

Difference 74.9 120.0 280.3

Series B TE4 TE2 TE1

TE full 14.2 15.5 24.7

LS 111.7 160.4 345.0

Difference 97.5 144.9 320.3

because they show that these conclusions can be reached with new values of consequences,307

new levels of probability, and a new set of participants.308

4 Discussion309

The reanalyses of Birnbaum and Gutierrez (2007) and Birnbaum (2010) give a very clear310

answer to the fundamental issue whether LS models can be saved with the new error model.311

Those studies had employed the TE2 model because TE4 had not yet been developed. But312

even when the TE4 error model is fit, the results show large and statistically significant313

violations of the property of interactive independence. Because this property is implied314

by any mixture of LS models, these models must be rejected as descriptive. Birnbaum315

and Quispe-Torreblanca (2018) reanalyzed the data of Birnbaum, Schmidt, and Schneider316

(2017), and confirmed that the constant consequence paradox of Allais is "real" and cannot317

be explained by TE4 either.318

Tversky (1969) used a LS model to describe data of selected participants, who he thought319

might have shown evidence of intransitive preferences. In recent years, a good deal of evi-320
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Table 8: Indices of fit, G, of TE models fit to Birnbaum (2010) test of interactive indepen-
dence with p = 0.10, p prime = 0.90.

Series A TE4 TE2 TE1

TE full 8.7 18.3 19.1

LS 35.0 91.8 207.7

Difference 26.3 73.5 188.6

Series B TE4 TE2 TE1

TE full 6.6 9.2 10.0

LS 42.6 114.3 239.3

Difference 36.0 105.1 229.3

dence and argument has been published debating how to properly investigate and analyze the321

property of transitivity (Birnbaum, 2013; Birnbaum & Bahra, 2012, Birnbaum & Diecidue,322

2015; Birnbaum & Gutierrez, 2007; Birnbaum & Wan, 2020; Butler & Pogrebna, 2018;323

Cavagnaro & Davis-Stober (2014); Müller-Trede, Sher, & McKenzie (2015); Ranyard, Mont-324

gomery, Konstantinidis, & Taylor (2020); Regenwetter, et al., 2011).325

Birnbaum and Gutierrez (2007), Birnbaum (2010), and Birnbaum and Bahra (2012) at-326

tempted to replicate Tversky (1969) and were able to find only a very small number of people327

who showed indications of the intransitive behavior reported by Tversky, but even those few328

often showed violations of interactive independence. Thus, even if one finds cases who ex-329

hibit intransitive preferences, these may not be best described by LS models. Birnbaum and330

Gutierrez (2007) concluded that the small incidence of possible intransitive behavior might331

be due instead to an assimilation illusion that operates prior to integrative and interactive332

evaluation of the gambles. For example, when two pies representing probability are similar333

enough, the same value enters in the interactive process that combines probability and utility334

before gambles are compared.335

Because the conclusions of previous research regarding interactive independence were not336
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Table 9: Hypothetical data for a test of R � S ⇔ R′ � S ′ )

Response Responses in Problem 2

Problem 1 S ′ R′

S 29 36

R 06 29

Note: P (R) = 35; P (R′) = 65.

changed by this reanalysis, one might be tempted to conclude (by induction on a very small337

number of cases) that we can assume that the old methods of analysis are "good enough" for338

psychologists to employ for making scientific conclusions about theories of behavior. I think339

that attitude would be a mistake because of the possibilities that one can reach systematically340

wrong conclusions from the older methods. Some worrisome cases are described in the341

Appendix.342

5 Appendix: Test of correlated proportions343

A "standard" statistical test in this situation has been the binomial test of correlated pro-344

portions (McNemar, 1947), It was applied by Lichtenstein and Slovic (1971) to a study of345

preference reversals (who developed a simple form of true and error theory and explained346

the limitations of this test for that purpose). A version of this test was explained to the347

economics audience in the case of the Allais paradox by Conlisk (1989), who also stated348

limitations.349

In previous research testing if a response probability changed, many studies have been350

done without replication. A number of participants might be asked to respond to both351

questions, or a single participant might be asked on many occasions to respond to both352

questions. Investigators would then compare the frequencies of the SR′ response pattern353

and the opposite pattern, RS ′, and if these were significantly different, one would reject the354
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hypothesis that the probability of response was the same.355

Many research articles have used this test of correlated proportions; for example, see356

the articles reviewed in Blavatskyy, et al. (in press). However, this statistical test does not357

rule out the null hypothesis that preferences were the same in the two choice problems, if358

the choice problems have different rates of error, because such random errors can produce359

inequality of these two types of reversals (Birnbaum & Quispe-Torreblanca, 2018). Put360

another way, if responses are based on true preferences but contain error, then we must have361

a way to measure error in order to use responses to make inferences about true preferences.362

The hypothetical data in Table 9 represent data obtained in a study with n = 100 testing363

whether or not two choice problems induce the same true preferences. The Null hypothesis364

asserts that a person prefers either R and R′ or prefers S and S ′, but a person cannot truly365

prefer R and S ′ or prefer S and R′. Such a response pattern could occur only by error.366

The test of correlated proportions tests the hypothesis that the probability of choosing367

R in the first choice problem is the same as the probability of choosing R′ in the second368

problem. The test asks if the marginal proportions differ significantly; which in Table 9369

is the same as asking if 36 is "significantly different" from 06 (McNemar, 1947). The null370

hypothesis is a binomial with n = 36 + 6 = 42 trials, and we compute this probability given371

H0: p = 0.50. In this case, the probability to observe 36 or more SR′ reversals out of 42372

preference reversals is about one in a million.373

when n is relatively large, the binomial can be approximated by a normal distribution374

and one can compare a calculated z value with the standard normal distribution. With375

n = 42 and p = 0.5, the mean and standard deviation are µ = 21 and sigma = 3.24,376

so z = (36 − 21)/3.24 = 4.63, an extremely improbable value. This standard formula for377

z is sometimes called "Conlisk’s z-test" in the Economics literature and is equivalent to378

McNemar’s (1947) test.379

We also see in this example that the marginal proportion to prefer R in the first choice380
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Table 10: H0: Implications of Interactive Independence in TE4 )

Response Responses in Problem 2

Problem 1 S ′ R′

S pRR′(e)(e′) + pSS′(1− f)(1− f ′) pRR′(e)(1− e′) + pSS′(1− f)(f ′)

R pRR′(1− e)(e′) + pSS′(f)(1− f ′) pRR′(1− e)(1− e′) + pSS′(f)(f ′)

Note: P (R) = pRR′(1− e) + pSS′(f) ; P (R′) = pRR′(1− e′) + pSS′(f ′)

problem is 0.65, which is significantly greater than 0.5 by a binomial test, and the marginal381

proportion to prefer R′ in the second choice problem is only 0.35, which is significantly less382

than 0.5 by the same test.383

Therefore, a person using these older methods might conclude that we should reject the384

null hypothesis that the response probabilities are the same and therefore reject the null385

hypothesis that the two conditions generated the same subjective responses. However, the386

last part of this argument, in italics, does not follow, because it does not properly take error387

into account. The next section shows that the results in Table 9 are consistent with the null388

hypothesis that interactive independence holds and random errors (as in Figure 1) generated389

the results.390

According to the null hypothesis, no one truly prefers both R and S ′ nor truly prefers391

both S and R′, so pRS′ = pSR′ = 0. The theoretical probabilities of the four possible response392

patterns are shown in Table 10 according to this null hypothesis. Many people are surprised393

to learn that the values in Table 9 can be perfectly reproduced by this LS4 model. The394

parameters are: pRR′ = pSS′ = 0.5; e′ = f = 0.1, and e = f ′ = 0.4.395

From this analysis (and example), it should be clear that one should not use the test396

of correlated proportions to argue that two conditions are not equivalent, if the dependent397

measures might contain errors as in Figure 1. Similarly, simply because one case produces398

a proportion that is significantly greater than 0.5 and another case produces a proportion399
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significantly less than 0.5, one cannot reject the null hypothesis that the two experimental400

conditions induced the same preferences.401

It should also be clear that with methods of analysis based on data limited as in Table402

9, one cannot answer the questions one wishes to answer. The data in Table 9 are perfectly403

compatible with the theory that no one reversed preferences, but they are also consistent404

with the theory that people systematically switched from R to S ′. But we cannot distinguish405

these two theories of Table 9, unless we have some way to measure the errors, which we can406

do if we obtain replications and use an appropriate model.407

One can construct examples in which the test of correlated proportions declares a dif-408

ference is significant and true and error model allows one to retain the null hypothesis and409

also construct cases in which the test of correlated proportions declares no difference and the410

test of true and error leads to the conclusion that most of the participants actually reversed411

preferences. Therefore, this test should not be used in connection with situations in which412

the dependent variables can be construed to contain error that might be represented as in413

Figure 1, unless the model is restricted to TE1.414
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Supplement467

Table S.1 includes the parameter estimates for the four sets of data in Tables 5 and 6. The468

raw data of both Birnbaum and Gutierrez (2007) and of Birnbaum (2010), as well as those469

of many other studies, are contained in Birnbaum’s archive, which can be found at the fol-470

lowing URL:471

472

http://psych.fullerton.edu/mbirnbaum/archive.htm473
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Table 11: Best-fit estimates of parameters in TE models

Model Parameter

p = 0.01 pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 Series A 26 58 08 08 11 50 00 00

TE4 Series B 02 72 04 22 00 31 33 14

TE2 Series A 08 73 02 18 09 09

TE2 Series B 03 85 01 11 06 14

TE1 Series A 08 73 02 18 09

TE1 Series B 04 84 01 11 10

p = 0.10 pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 Series A 28 29 03 40 06 45 22 01

TE4 Series B 25 46 00 29 08 26 19 04

TE2 Series A 11 56 00 33 12 10

TE2 Series B 16 60 00 24 11 08

TE1 Series A 11 56 00 34 11

TE1 Series B 16 60 00 24 10

Note: Values expressed as percentages; i.e., 05 indicates 0.05.
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