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Abstract8

This article criticizes conclusions drawn from the standard test of correlated proportions9

when the dependent measure contains error. It presents a tutorial on a new method of10

analysis that uses a fairly general error model called the true and error model of choice. This11

method allows the investigator to separate measurement of error from substantive conclusions12

about effects of the independent variable but it requires replicated measures of the dependent13

variable. The method is illustrated with hypothetical examples and with empirical data from14

tests of Lexicographic semiorder (LS) models as descriptive models of risky decision making.15

LS models imply a property known as interactive independence. Data from two previous16

studies are re-analyzed to test interactive independence. The new analyses yielded clear17

answers: interactive independence can be rejected; therefore, lexicographic semiorders can18

be rejected as descriptive models, even if a flexible error model is allowed. The new methods19

of analysis can be applied to situations in which the test of correlated proportions has been20

used in the past, where it is possible to obtain replicated measures.21
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1 Introduction29

This paper criticizes conclusions drawn from a statistical test that has been and continues30

to be widely used in psychology and economics, and it presents new methods that can31

address the criticisms. The test of correlated proportions (McNemar, 1947) is used to test32

the statistical significance of a difference between response proportions obtained in a within-33

subjects design. The new methods are based on models known as true and error (TE)34

models, which are analogous to, but not the same as, models used in classical test theory35

(Novick, 1966; Spearman, 1904). These models extended models of Lichtenstein and Slovic36

(1971), combined with constraints provided by replications (Birnbaum, 2004, p. 59-60).37

This paper presents new techniques developed and refined in recent articles (Birnbaum,38

2013; 2019; Birnbaum & Bahra, 2012a, 2012b; Birnbaum & Wan, 2020; Birnbaum, Schmidt,39

& Schneider, 2017; Birnbaum & Quispe-Torreblanca, 2018).40

Examples are presented to show how the new methods can lead to different conclusions41

from those reached by older ones. Hypothetical data show how the test of correlated pro-42

portions can be significant and yet the results can be attributed to random error, and how43

two proportions can be exactly equal so the test will be nonsignificant, and yet there is a44

significant difference between conditions when analyzed by deeper methods.45

The following is a classic method to compare rival theories: One theory implies that two46

situations are equivalent and the other implies that there is a systematic difference. The47

experimenter manipulates situations as an independent variable and measures responses as48

a dependent variable. Suppose Conditions 1 and 2 of Table 1 are two situations that are49

theoretically equivalent, and the two possible responses of the dependent variable are S and50

R. The entries in Table 1 represent hypothetical frequencies of the responses in the two51

conditions.52

Suppose the hypothetical data in Table 1 came from a between-subjects experiment in53
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Table 1: Hypothetical data for a test between two conditions

Independent Dependent Variable

Variable S R Row Totals

Condition 1 65 35 100

Condition 2 35 65 100

Column Totals 100 100

Note: The χ2(1) = 18, p < 0.01.

which there were 200 participants, 100 randomly assigned to each condition. Table 1 shows54

that in Condition 1, 65 of 100 participants responded S, whereas in Condition 2, only 3555

made this response. The Fisher exact test (for small n) or the standard Chi-Square test56

of independence can be used to assess whether data in a table like this are likely to have57

occurred given the null hypothesis that the probability to respond S is the same in both58

conditions. In this case, χ2(1) = 18, p < 0.01, so an experimenter would reject theories that59

implied no difference in response probabilities between these conditions in favor of theories60

that would allow these results. (Upper and lower case, P (S) and p(S) are used here to denote61

the obtained proportion and inferred probability of an observed response, respectively.)62

Now suppose the data in Table 1 arose from a within-subjects experiment in which 10063

participants experienced both Conditions 1 and 2 (with suitable counterbalancing). The64

analysis of within-subjects data is a bit more complicated, because it involves not only65

the marginal response proportions in the two conditions, but also the correlation (non-66

independence, or contingency) between the responses by the same people in the two condi-67

tions. The test of correlated proportions (McNemar, 1947), developed for this situation, is68

described in the next section.69
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Table 2: Hypothetical data for a within-subjects test between two conditions

Response in Response in Condition 2

Condition 1 S ′ R′ Row Totals

S 29 36 65

R 6 29 35

Column Totals 35 65 100

Note: The test of correlated proportions compares equality of

frequencies of SR′ against RS ′; i.e., 36 versus 6.

1.1 Test of correlated proportions70

Table 2 is a cross-tabulation that reveals the contingency between responses by the same71

people in the two conditions. The row and column sums of Table 2 are the same as the row72

entries of Table 1. To distinguish responses in the two conditions, let S ′ and R′ designate the73

responses in Condition 2 corresponding to S and R of Condition 1, respectively. If people74

responded S if and only if S ′, then off-diagonal entries would be zero. In Table 1, responses75

are not perfectly correlated, nor are responses in the two conditions independent, which76

would require that p(SS ′) = p(S)p(S ′), where p(SS ′) is the probability of the conjunction.177

Instead, responses are positively correlated. A majority made the same responses in both78

conditions (29 + 29 = 58) but 36 people switched from S to R′ and 6 switched in the opposite79

direction.80

The test of correlated proportions tests the hypothesis, H, that the probability of re-81

sponding S in the first condition is the same as the probability of responding S ′ in the sec-82

ond condition; i.e., H: p(S) = p(S ′). The proportions are certainly different, since P (S) =83

0.65 6= 0.35 = P (S ′). Asking if marginal probabilities are equal is equivalent to asking if84

the two types of response reversals are equally probable (McNemar, 1947); this equivalence85

holds for both observed proportions and probabilities: p(S) = p(S ′) ⇔ p(SR′) = p(RS ′).86

1In Table 2, P (SS′) = 0.29 6= P (S)P (S′) = (0.65)(0.35) = 0.2275.
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In other words, we can ignore cases where the participant made the same responses in both87

conditions and examine only cases where a person switched responses. The hypothesis that88

marginal response probabilities are equal, H: p(R) = p(R′), that an equal number switch in89

either direction, can be tested for these data by a binomial distribution with n = 36 + 6 =90

42 trials, where p = 0.50. The binomial probability to observe 36 or more SR′ reversals out91

of 42 preference reversals is about one in a million, so we would reject the hypothesis H that92

the marginal response probabilities are equal.293

As n grows large, the binomial can be approximated by the normal distribution and94

one can compare a calculated z value with the standard normal distribution. The mean and95

standard deviation for a binomial are µ = np and σ =
√
np(1− p). With p = 0.5 and n = 4296

for Table 1, µ = 21 and σ = 3.24, so z = (36 − 21)/3.24 = 4.63, an extremely improbable97

value, leading to the same conclusion as the binomial calculation. This standard formula98

for z is often called "Conlisk’s z-test" in the economics literature after Conlisk (1989); it is99

equivalent to McNemar’s (1947) Chi-Square test. Whether calculated by exact binomial, by100

the normal approximation (Conlisk’s z test), or via the equivalent Chi-Square (McNemar,101

1947; Lichtenstein & Slovic, 1971), these calculations are all tests of correlated proportions.102

Note that in this example, the marginal proportion, P (S) = 0.65, is significantly greater103

than 0.5 by a binomial test, but the marginal proportion, P (S ′) = 0.35, is significantly less104

than 0.5. This case seems a strong one for concluding that the response probabilities, p(S)105

and p(S ′), are not equal.106

A person applying these methods for Table 2 can conclude that we should reject hypoth-107

esis H that the response probabilities are the same and might therefore reject a theory that108

true preferences are equivalent and the observed results are due to random response errors.109

However, the last part of this argument, in italics, does not follow if we allow a plausible110

2The binomial calculation assumes that participants respond independently of each other, which is not
controversial when people are tested separately.
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Figure 1: True and Error models for two choice problems: In TE4, all four error terms are
free; TE2, assumes e = f and e′ = f ′; TE1 assumes e = f = e′ = f ′. After Birnbaum &
Quispe-Torreblanca (2018).

theory of error to intervene between true preferences and observed responses in the depen-111

dent measure. The next section shows that the results in Table 2 are compatible with the112

null hypothesis, H0, that the two conditions produced the same true preferences, and that113

random errors are responsible for the observed difference in response proportions.3114

3The test of correlated proportions was discussed by Lichtenstein and Slovic (1971) and by Conlisk
(1989). Although these authors had acknowledged limitations of the test, it became the standard method for
analyzing paradoxes of choice in both psychology and economics. For example, a recent review by Blavatskyy,
Ortmann, & Panchenko (2022) summarizes strength and direction of evidence regarding the Allais paradox
in terms of Conlisk z values from 81 experiments. As will be shown here, significant z values do not rule out
the theory that the "paradox" is produced by random error.
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Table 3: Implications of Null Hypothesis, H0: pSR′ = pRS′ = 0.

Response Responses in Problem 2

Problem 1 S ′ R′

S pRR′(e)(e′) + pSS′(1− f)(1− f ′) pRR′(e)(1− e′) + pSS′(1− f)(f ′)

R pRR′(1− e)(e′) + pSS′(f)(1− f ′) pRR′(1− e)(1− e′) + pSS′(f)(f ′)

Note: p(R) = pRR′(1− e) + pSS′(f) ; p(R′) = pRR′(1− e′) + pSS′(f ′).

1.2 True and Error Models of Choice115

The true and error model in Figure 1 was developed in the context of choice theory, where116

the dependent measure is a choice response by a person who is asked to read descriptions of117

alternatives and to state which of the two alternatives she or he would prefer. For example,118

"would you rather have S = $45 for sure or R = a fifty-fifty gamble to win either $100 or $1?"119

Such choices are known as decisions under risk, because the consequences and probabilities120

are known to the decision maker. In this literature, the notations, S and R, are often used121

to designate "safe" and "risky" options, respectively.122

When presented on multiple occasions with the same choice problem, the same person123

does not always make the same response. Humans might make errors; i.e., a person might124

truly prefer S � R (where � denotes "truly preferred to" ), and yet the person responds125

"R" or vice versa. How might people make errors in such an experiment? A person might126

mis-read the problem, might mis-remember or mis-aggregate the information, might mis-127

remember her or his evaluations or decisions, or might accidentally push the wrong button128

to signal the response.129

For the rest of this article, the examples will refer to preferences between risky prospects,130

as in the experiments reanalyzed in this paper, but the reader should keep in mind that the131

methods described here are also applicable to many other situations in which the dependent132

measure of an experiment contains error as in Figure 1.133
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In research on risky decision making, the "conditions" are related choice problems de-134

signed to be equivalent, according to one theory of human decision making and expected135

to differ, according to a rival theory. That is, one can deduce from one theory that S � R136

if and only if S ′ � R′, where � denotes "is truly preferred to". This theory implies that137

except for error, a person should prefer S and S ′ in Conditions 1 and 2, or prefer R and R′,138

respectively. That is, if the responses contained no error, all of the data in Table 2 would139

fall on the diagonal.140

Figure 1 depicts possible errors in two choice problems. In Choice Problem 1 (left side of141

Figure 1), if a person truly prefers R, she or he might erroneously respond S with probability142

e. If the person truly prefers S, he or she might respond R with probability f . In Choice143

Problem 2 (right), the corresponding errors occur with probabilities e′ and f ′, respectively.144

The errors are assumed to be mutually independent and to have probabilities less than 1/2.145

Let pS denote the probability that a person truly prefers S, which is distinguished from146

p(S), the probability that a person responds "S". In general, a person might have any of147

four true preference patterns: SS ′, SR′, RS ′, or RR′, which have probabilities of pSS′ , pSR′ ,148

pRS′ , and pRR′ , respectively.149

According to H0: pSR′ = pRS′ = 0, no person ever has opposite true preferences in the150

two choice problems. This definition is not the same as H, which is that p(SR′) = p(RS ′),151

that the probabilities of the two types of observed preference reversals are equal. Assuming152

H0, it follows that the probabilities that a person would show each response pattern are as153

given in Table 3. In other words, any off-diagonal entry is due to error, according to H0.154

For the rest of this paper, "H0" will refer to this null hypothesis, which is different from H,155

which is the null hypothesis of the test of correlated proportions.156

Table 3 shows that H0 does not imply H, nor does H imply H0: According to H0, the157

probability of the two types of response reversals need not equal each other. For example,158

if pRR′ = pSS′ = 0.5; e′ = f = 0.1, and e = f ′ = 0.4, then the null hypothesis, H0, is159
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compatible with the data of Table 2; one can reproduce the frequencies in Table 2 from the160

null hypothesis in Table 3 using these parameters. Thus, H0 can be satisfied and H violated.161

Therefore, no one should reject H0 based on rejection of H in the test of correlated propor-162

tions. Similarly, this example also shows that simply because one proportion is significantly163

greater than 0.5 and the other is significantly less than 0.5, one cannot reject H0 that the164

two experimental conditions induced the same true preferences, because these results can165

also be reproduced using the same parameters.166

Although H0 (Table 3) is perfectly compatible with Table 2, other theories are also167

compatible with those data, including H1, the theory that e = f = e′ = f ′ = 0.1, pSS′ =168

pRR′ = 0.313, pSR′ = 0.375, and pRS′ = 0. Indeed, the values in Table 2 can be reproduced169

by many other such theories in which H0 is false. If we knew by some method (but not170

simply by assumption or faith) that all error rates are equal, then the data in Table 2 would171

indicate a violation of H0. The data in Table 2 have only three degrees of freedom (since172

the four entries sum to the number of participants), and the model of Figure 1 allows 7173

parameters: e, e′, f , f ′, pSS′ , pSR′ , and pRS′ , so there are many possible solutions. In other174

words, there are multiple ways to describe the data and one cannot determine which of them175

is more likely true.176

It should therefore be clear that with the experimental design as in Table 2 and the test177

of correlated proportions, we cannot properly test H0 and therefore cannot answer questions178

we wish to address. Fortunately, we can estimate errors and test theories, if we do a better179

experiment that includes replications and we analyze the pattern information in the data,180

as shown in the next two sections.181

1.3 Estimating Error from Replications182

One can estimate error rates from variation of response by the same person to the same183

choice problem in the same brief session (Birnbaum, 2004, p. 59-60). To replicate, one184
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Table 4: TE analysis of replication of a single choice problem.

Response in Responses in Replicate 2

Replicate 1 S R

S pR(e)(e) + (1− pR)(1− f)(1− f) pR(e)(1− e) + (1− pR)(1− f)(f)

R pR(1− e)(e) + (1− pR)(f)(1− f) pR(1− e)(1− e) + (1− pR)(f)(f)

Note: p(R) = pR(1− e) + (1− pR)(f)

presents each choice problem twice to each participant, suitably separated, counterbalanced,185

and embedded among other choice problems.186

In the simplest design for individual true and error theory (iTET), one individual serves187

in many sessions, and within each session, each choice problem is replicated twice (Birnbaum188

& Bahra, 2012a, 2012b). In the simplest design for group true and error theory (gTET), each189

of many participants serve in one session each, and each choice problem is replicated twice190

in the session. The key assumption in either form of TE model is that preference reversals191

to the same choice problem by the same participant in the same brief experimental session192

are due to random error.193

In studies of an individual, iTET allows that the person may have different true pref-194

erences over time. This theory is modelled by the assumption that the person may have195

different preferences in different sessions but the same preferences hold within a brief session196

(Birnbaum & Wan, 2020). In studies of group data, different people may have different true197

preferences. The reanalysis of studies in this paper are cases of gTET.198

Suppose we present one choice problem (e.g., S versus R) twice to the same participants,199

suitably embedded among many other trials. A participant can have four possible response200

patterns (combinations of expressed preferences) for these two replicated trials: The person201

can respond S or R on both occasions (SS or RR response patterns), or can make a reversal202

of preferences (SR or RS patterns) between the replicates. According to the TE model of203

Figure 1, the probabilities of the four patterns (for Choice Problem 1 replicated) are as given204
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in Table 4.205

Table 4 shows that responses to replicated choice problems are not expected to be inde-206

pendent, but instead, there will likely be a positive correlation in which the entries on the207

diagonal will be more probable, and the off-diagonals will be less probable and equal. Note208

that the four cells of Table 4 constrain 3 parameters, so we have gained constraint relative to209

Table 3. But there is even more information available, if we replicate both choice problems210

and use the information from all 16 response patterns.211

With two choice problems and two replications each, there are 2 by 2 by 2 by 2 = 16212

possible response patterns. These pattern data provide not only the constraints required to213

estimate the parameters, but also to test the model. From the relative frequencies of the 16214

response patterns, which have 15 degrees of freedom (df), one can estimate four error rates,215

four probabilities of true preference patterns (which sum to 1 and thus consume 3 df), and216

there remain 8 df to test the TE model. One can then test H0 as a special case of the TE217

model, because it has two fewer parameters, since pSR′ = pRS′ = 0.218

Tables 5, 6, and 7 contain hypothetical examples of such arrays, in which the row and219

column marginal sums match the frequencies of Table 2, where H is rejected. However,220

these examples illustrate cases in which the null hypothesis, H0 (pSR′ = pRS′ = 0) should be221

rejected (Table 5), where H0 can be retained (Table 6), and where the TE model itself can222

be rejected (Table 7). Table 8 contains hypothetical data in which H is satisfied perfectly223

and yet TE analysis indicates that H0 should be rejected.224

The next section is a tutorial on TE methods, showing how these hypothetical cases are225

analyzed to reach these conclusions.226
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2 True and Error Analysis227

According to the TE model of Figure 1, the probability to show the SR′ response pattern228

on two replications, denoted SR′, SR′, is as follows:229

p(SR′, SR′) = pSS′(1− e)2(e′)2 + pSR′(1− e)2(1− f ′)2+

pRS′(f)2(e′)2 + pRR′(f)2(1− f ′)2
(1)

where p(SR′, SR′) is the theoretical probability to observe SR′ response pattern on both230

replications; pSS′ , pSR′ , pRS′ , and pRR′ , are the probabilities of the four possible true prefer-231

ence patterns; and the error rates, e, f, e′, and f ′, are as defined in Figure 1.232

Note that in each of the four possible true preference states, there is a pattern of errors233

that could produce each possible observed response pattern. For example, if a person has the234

true preference pattern SS ′, then that person can respond SR′,SR′ (SR′ on two replications)235

by making no error on the two presentations of the choice between S and R and by making236

errors on both presentations of the choice between S ′ and R′.237

There are 16 equations (including Equation 1) for the 16 possible response patterns. The238

16 corresponding observed frequencies (counts) of these response patterns have 15 degrees of239

freedom (df), because the 16 frequencies sum to the total number of response patterns. In240

gTET with two replicates in one session, this total is the number of participants; in iTET,241

where one individual served in a number of sessions, it is the number of sessions for the242

individual.243

2.1 Fitting TE Models244

The free, open-source program, TEMAP2.R, can be used to perform statistical analysis to245

fit and test the six models.4 The program analyzes crosstabulation tables like Tables 5, 6, 7,246

4TEMAP2.R is freely available in the online supplement to Birnbaum & Quispe-Torreblanca (2018); the
URL is:
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Table 5: Case 1: Hypothetical Frequencies of Response Patterns; H0 Rejected.

Responses in Responses in Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′ Total

SS ′ 21 5 2 1 29

SR′ 5 25 1 5 36

RS ′ 2 1 1 2 6

RR′ 1 5 2 21 29

Note: TE fit: G(8) = 0.42; TE+H0: G(10) = 25.44, H0: G(2) = 25.02.

Table 6: Case 2: Hypothetical Frequencies Satisfying H0.

Responses in Responses in Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′ Total

SS ′ 15 10 2 2 29

SR′ 10 14 2 10 36

RS ′ 2 2 0 2 6

RR′ 2 10 2 15 29

Note: TE: G(8) = 0.47; TE+H0: G(10) = 0.58; H0: G(2) = 0.11.

and 8. The program estimates parameters to minimize either the standard χ2 index of fit or247

the G index (sometimes called G2), which is equivalent to a maximum likelihood solution.5248

G = 2
∑∑

Oij ln (Oij/Eij) (2)

where the summation is over the 16 cells, Oij is the observed frequency (count) in Row i249

and Column j, Eij is the corresponding "expected" ("predicted" or "fitted") frequency in250

the cell according to the particular TE model.251

http://journal.sjdm.org/vol13.5.html
5Programming for Bayesian analysis of true and error models has been presented by Lee (2018) and

by Schramm (2020). In cases studied so far, Bayesian and classical statistical analyses have led to similar
solutions and conclusions, although some caution is required for the interpretation of Bayesian posterior
probabilities for these nested models (Lee, 2018; Birnbaum, 2019).
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Each of the 16 "expected" (aka, "fitted" or "predicted") frequencies, Eij, is based on the252

"best-fit" parameter values estimated from the data to minimize G. Each predicted value253

is equal to the number of participants in a group analysis, n, multiplied by the model’s254

calculated probability (as in Equation 1).255

The G index is similar to χ2 and is asymptotically Chi-Square distributed. Because256

there are 15 df in the data matrix (which sums to the number of participants), there are257

15− 4− 3 = 8 degrees of freedom in the test of the TE model.258

2.2 Testing Special Cases259

Because the null hypothesis (H0: pSR′ = pRS′ = 0) is a special case of TE in which 2 fewer df260

are consumed, the difference in fit between the TE model and its corresponding H0 special261

case is asymptotically Chi-Square distributed with 2 df. That is, we calculate the fit with all262

parameters free (TE fit) and the fit with the constraint that these parameters are fixed to263

zero (TE+H0), and compute the difference, G(2) = G(8)−G(10), which is the test of H0.264

TEMAP2.R can also be applied in cases with relatively small samples where one might be265

concerned of the applicability of the asymptotic Chi-Square distribution for G. The program266

employs Monte Carlo simulation to construct sampling distributions of the test statistics,267

and it uses bootstrapping to estimate confidence intervals for the fitted parameters.268

The TE model in Figure 1 is denoted TE4 because there are 4 different error rates. A269

special case of this model, TE2, assumes e = f and e′ = f ′, and a further special case,270

TE1, assumes that e = e′ = f = f ′.6 As shown here, TE4 can produce data as in Table 2,271

even though H0 is true, but TE2 cannot reconcile Table 2 with H0. The null hypothesis,272

H0: pSR′ = pRS′ = 0 is a special case of each of these three TE models. Birnbaum (2019)273

presented a figure to show the nesting relationships among these six possible models.274

6TE1 is similar to the model in Conlisk (1989) that might justify the test of correlated proportions; TE1 is
sometimes called the "trembling hand" model. However, TE1 does not necessarily yield the same conclusions
as the test of correlated proportions, since it can reject H0 when H can be accepted.
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Table 7: Case 3: Hypothetical Frequencies Violating TE model.

Responses in Responses in Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′ Total

SS ′ 10 6 3 10 29

SR′ 16 9 1 10 36

RS ′ 1 1 1 3 6

RR′ 2 20 1 6 29

Note: TE fit: G(8) = 35.20.

2.3 Hypothetical Examples275

The values in Table 5 were constructed from the TE1 model with the assumptions that276

e = f = e′ = f ′ = 0.1, pSS′ = pRR′ = 0.313, pSR′ = 0.375, and pRS′ = 0. That is, these data277

were constructed from the assumption that H0 is false. The hypothetical values in Table 5278

are based on n = 100, rounded or adjusted to nearby integers, to produce the same row and279

column marginal totals as in Table 2.280

When Table 5 is fit to the TE4 model (with all parameters free) using TEMAP2.R, the281

TE model fits well, G(8) = 0.42, as expected, since the data were constructed from a special282

case of this model, and the best-fit estimates were approximately those used to generate the283

data. However, when pSR′ and pRS′ were fixed to zero, the constrained TE model (TE4+H0)284

does not fit well, G(10) = 25.44, so the test of H0 yields, G(10) − G(8) = 25.02, which far285

exceeds 9.3, which is the critical value of χ2(2) with α = 0.01. Therefore, if we observed286

real data as in Table 5, these TE analyses would lead to rejection of H0 (pSR′ = pRS′ = 0).287

Monte Carlo simulations of the sampling distributions also agree with the conclusions that288

TE can be retained and that H0 can be rejected. Based on 10,000 bootstrapping samples289

from Table 5, the 95% confidence interval for pSR′ is estimated to range from 0.19 to 0.50,290

indicating one can be confident of a substantial violation of H0 with pSR′ > 0.291
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Table 8: Case 4: Marginals Satisfy Test of Correlated Proportions and H0 Rejected.

Responses in Responses in Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′ Total

SS ′ 17 4 7 2 30

SR′ 4 10 2 4 20

RS ′ 7 2 4 7 20

RR′ 2 4 7 17 30

Note: TE fit: G(8) = 0.34; TE+H0: G(10) = 14.07; H0: G(2) = 13.73.

The values in Table 6 were similarly constructed to match the marginal proportions,292

except Table 6 was built on the assumption that H0 is true: pSR′ = pRS′ = 0, pRR′ = pSS′ =293

0.5; e′ = f = 0.1, and e = f ′ = 0.4. Predictions were rounded or slightly adjusted so that all294

entries are integers and the marginal proportions match. Again, TE fits the rounded values295

well, G(8) = 0.47, but this time, so does the special case of H0, G(10) = 0.58, so the test of296

H0 is G(2) = 0.11. The estimated pSR′ was only 0.05, with a 95% bootstrapped confidence297

interval from 0 to 0.24. These results indicate that we can retain H0 for Table 6.298

Therefore, the TE analysis of response patterns in the replicated experiment can distin-299

guish cases where H0 should be rejected (Table 5) or retained (Table 6), whereas the test of300

correlated proportions would lead to rejection of H in both cases.301

By comparing Tables 5 and 6, one can gain insight in how the data lead to these different302

conclusions, even though the marginal sums are the same. In Table 5 the large frequency of303

SR′, SR′ (in the diagonal entry of Table 5), and low frequencies in the off-diagonal entries304

in the SR′ row and column indicate that the SR′ response pattern is "real". In contrast, in305

Table 6, one can see that there are high frequencies on the off-diagonals of switching between306

SS ′ or RR′ in one replicate and SR′ in the other replicate (there are 40 such cases), but307

rarely from these patterns to RS ′, indicating that the errors, e and f ′, account for the large308

marginal frequency of SR′, rather than reversals of true preference from S to R′.309
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The example of Table 6 also illustrates a difference between TE4 and TE2. For Table310

6, the fit of TE2 is G(10) = 10.99 and the fit of the TE2 model with H0 (TE2 + H0) is311

G(12) = 51.10, so G(2) = 40.1, which is significant. Thus, an investigator who used only312

TE2 might conclude that H0 should be rejected in Table 6, whereas H0 can be retained if313

TE4 is allowed. Although TE2 + H0 allows that the response frequency of SR′ need not314

equal that of RS ′, it cannot imply that P (S) > 0.5 and P (S ′) < 0.5), but in this example,315

P (S) = 0.65 and P (S ′) = 0.35. Thus, these two additional error parameters in TE4 (beyond316

those of TE2) can potentially reverse the conclusions that two researchers might draw from317

the same data if they employed TE4 and TE2.318

Table 7 was constructed by arbitrarily choosing numbers in the table to produce row and319

column totals to match those in Tables 5 and 6, but without any model to guide the pattern.320

Can the TE model fit any such arbitrary data? The answer is, "no." The G(8) for the fit321

of the TE4 model is 35.2, which exceeds the critical value of χ2(8) with α = 0.01, which is322

20.1. It should be clear that there are many ways to construct a 4 by 4 array with 15 df that323

will significantly violate a model with only 7 degrees of freedom in its parameters.324

Birnbaum (2019) suggested the following method to generate arbitrary data arrays: ran-325

domly permute actual data (that is, simply take the same empirical frequencies observed in326

a real experiment and re-arrange them randomly in the table). He then attempted to fit TE4327

to each of 70,000 random permutations of empirical data with n = 107, where the original328

data fit TE acceptably, G(8) = 13.2 It was found that 99.65% of such random permutations329

had G > 20. The example of Table 7 and Birnbaum’s (2019) analysis makes clear that the330

TE model, like Factor Analysis with two dimensions, will not be expected to fit any arbitrary331

set of numbers. Like other analytic models, TE models are not only statistical devices, but332

also empirical theories that may or may not fit actual data.333

Table 8 was constructed to illustrate a case in which H0 is false, but the test of correlated334

proportions would conclude that H is perfectly acceptable. An experimenter who examined335
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only the proportions of SR′ and RS ′ choices would find that the two types of reversals are336

exactly equal, and that P (S) = P (S ′). However, Table 8 actually contains strong evidence337

against H0, since G(2) = 13.73, and the best-fit solution to TE4 indicates that pSR′ = 0.34,338

pSS′ = pRR′ = 0.33, pRS′ = 0, e = f ′ = 0.28, and e′ = f = 0.04. The bootstrapped 95%339

confidence interval for pSR′ is 0.09 to 0.47. Note that there are 28 cases of reversals in which340

SS ′ or RR′ appears in one replicate and RS ′ appears in the other, and there are only 4 cases341

where RS ′ repeats in both replicates.342

Another example might have been constructed to illustrate that H does not imply H0.343

Suppose T1 is true and pSR′ = pRS′ > 0, in which case p(S) = p(S ′), so H is satisfied344

perfectly even though H0 is false. By including replications, such cases can be detected by345

TE and one can estimate e, pSR′ and pRS′ . So even when the error model that justifies the346

test of correlated proportions is correct, that test may fail to detect true violations of H0347

that might have been detected and their magnitudes assessed by TE methods.348

In sum, TE analyses of hypothetical cases illustrate that the TE model provides a method349

for deciding whether H0 should be retained or rejected in cases where the test of correlated350

proportions is or is not significant. Case 3 in Table 7 also illustrates that the TE model itself351

is testable and may not fit the data.352

The next section applies these TE methods to real data to compare two families of models353

that make different predictions for a property known as interactive independence that can354

be violated according to expected utility (and other theories in its class) and which must355

be satisfied according to lexicographic semiorders (and other theories in its class). These356

studies had been previously analyzed by means of TE2, which as illustrated in the analysis357

of Table 6 might lead to rejection of H0 in cases where TE4 would allow H0 to reproduce358

the data.359
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3 Expected Utility versus Lexicographic Semiorders360

This section explores a test between two classes of risky decision making models: interactive361

and non-interactive. Expected utility theory is an example of an interactive model, and a362

lexicographic semiorder (LS) is an example of a non-interactive model.363

Let A = (xA, qA; yA) represent a prospect (a "gamble") with a probability of qA to win364

$xA and otherwise (with probability 1− qA) receive $yA, where xA ≥ yA. Two models that365

describe how people might choose among such gambles are presented in the next subsections.366

3.1 Expected Utility Theory367

According to expected utility (EU) theory, a person prefers A = (xA, qA; yA) over B =368

(xB, qB; yB) (denoted, A � B, where � represents "is truly preferred to") if and only if the369

expected utility of A exceeds that of B. For two-branch gambles, EU implies:370

A � B ⇔ qA(u(xA)) + (1− qA)(u(yA)) > qB(u(xB)) + (1− qB)(u(yB)) (3)

where u(x) is the utility function for money. Note that in this theory, increasing the proba-371

bility to win x multiplies u(x) and u(y), so changing the value of q can be said to "interact"372

with the effects of the consequences, x and y.373

3.2 Lexicographic Semiorders374

In the LPH lexicographic semiorder (LPH LS), the decision maker first compares the lower375

consequences of the two alternatives (yA, yB) and if the difference exceeds a threshold param-376

eter, the prospect with the better lowest consequence is chosen (without considering other377

attributes); but if the difference does not exceed threshold, the decision maker next compares378

the probabilities. If the difference in probabilities exceeds a threshold, the alternative with379
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the better probability is chosen; but if the difference does not exceed threshold, the highest380

consequences are then examined and the prospect with the better highest consequence is381

chosen. LS models can imply violations of transitivity (Tversky, 1969); that is, it is possible382

to find A,B, and C, such that A � B,B � C, and C � A, where � indicates true preference383

in the theory.384

Another individual might use another LS model to compare gambles: she might use a385

different order of considering the attributes. For example, a person might examine the highest386

consequences first, then the lowest, then the probabilities (HLP LS). Different individuals387

might also use different threshold parameters, which could also produce different preferences.388

And in EU theory, if different people have different u functions, there could also be individual389

differences among people with the same choice problem. Thus, under either EU or LS390

theories, there might be individual differences that produce variability in true preferences391

among individuals, which will be combined with variability due to random error. These two392

sources of variation in responses might make it difficult to compare the fit of these models393

to a given set of data.394

3.3 A Test of Interactive Independence395

Rather than compare models by asking how "well" they fit data obtained with an arbitrary396

set of choice problems, it can be useful to conduct experiments that test critical properties.397

A critical property is a property that can be deduced as a theorem from one theory and398

which can be violated according to the other theory.399

Birnbaum (2010) and Birnbaum and Gutierrez (2007, p. 107) devised and reported tests400

of critical properties that must be satisfied by any mixture of LS models. Among these401

critical properties is interactive independence, which is the assumption that the effect of a402

difference between alternatives on one attribute is independent of any other attribute that403

has the same value in both alternatives. This property must be satisfied by a mixture of LS404
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models (Birnbaum, 2010), but it can easily be violated by expected utility theory as well as405

by other theories, such the TAX model (Birnbaum, 2008).406

Interactive independence requires that for all A = (xA, p; yA), B = (xB, p; yB), A′ =407

(xA, p
′; yA), and B′ = (xB, p

′; yB),408

A � B ⇔ A′ � B′. (4)

Note that p is common to both A and B, which have the same consequences as A′ and409

B′, respectively, except that the (common) probability is now p′ instead of p. In the specific410

test below, xA > xB > yB > yA; because A has greater variance in outcomes it is thus more411

"risky" compared to B; the notations, R and S, are used to denote these "risky" and "safe"412

gambles. Interactive independence can be tested in the following two choice problems:413

Problem 1: Which do you prefer?414

R = ($7.25, 0.05; $1.25)415

or416

S = ($4.25, 0.05; $3.25)417

Problem 2: Which do you prefer?418

R′ = ($7.25, 0.95; $1.25)419

or420

S ′= ($4.25, 0.95; $3.25)421

Note that R is a "risky" gamble in which one might win either $7.25 or $1.25, and S422

is a "safer" gamble in which the least one can win is $3.25, but the most one can win is423

$4.25. In this case, the expected value of S is greater than that of R. In the second choice424

problem, the consequences, S ′ and R′, are the same as those of S and R, respectively, but425

the probability to win the higher prize (same in both gambles) is higher than it is in Problem426

1. In the second problem, R′ has the higher expected value than S ′.427
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Table 9: Empirical frequencies in test of interactive independence.

Responses on Replicate 2

Replicate 1 SS ′ SR′ RS ′ RR′ Total

SS ′ 24 21 0 3 48

SR′ 10 190 3 7 210

RS ′ 0 1 14 2 17

RR′ 6 7 3 30 46

Note: Data from Birnbaum & Gutierrez (2007, Exp. 2), n = 321.

According to interactive independence, S � R if and only if S ′ � R′. In any LS model or428

mixture of LS models, a person can have only two preference patterns, RR′ or SS ′ (Birnbaum,429

2010, p. 376, p. 383), so interactive independence must be satisfied, apart from error. Thus,430

LS models implies interactive independence, H0: pSR′ = pRS′ = 0.431

On the other hand, if probabilities and consequences interact, as they do in EU (and432

many other theories), then a person might prefer S � R in the Problem 1, and prefer R′ �433

S ′ in Problem 2. This pattern of preferences is denoted SR′ and would be indicative of an434

interaction. Depending on the utility function in EU theory, a person might have preference435

patterns of SR′, SS ′ or RR′.7436

4 Reanalysis of Birnbaum & Gutierrez (2007)437

Birnbaum and Gutierrez (2007) searched for violations of transitivity predicted by a lexico-438

graphic semiorder model using stimuli similar to those of Tversky (1969), who had argued439

that some participants might use a lexicographic semiorder that could produce intransitive440

preferences. Transitivity is a critical test between EU and LS theories that must be satis-441

fied by EU, but which can be violated by LS. Interspersed among trials testing transitivity,442

7For example, the SR′ pattern is implied for these choice problems when u(x) = x; but if u(x) = xb, the
RR′ pattern is implied when b ≥ 3.82; and if u(x) = 1− e−ax, the SS′ pattern follows when a ≥ 1.02.
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Table 10: Indices of fit, G, of TE models to empirical data in Table 9.

Models TE4 TE2 TE1

TE 30.8 31.1 38.4

TE + LS 320.1 369.3 771.6

LS 289.3 338.2 733.2

Birnbaum and Gutierrez (2007, Experiment 2) included tests of interactive independence de-443

scribed above. Problems 1 and 2 were presented twice to each of 321 participants, embedded444

in randomized and counterbalanced sequences among many other similar choice problems.8445

Table 9 shows the empirical frequencies (counts) of the number of times that each of446

the 16 response patterns was observed in this test of interactive independence (Birnbaum &447

Gutierrez, 2007). (Table 9 and this method of analysis were not presented in that paper.)448

The most frequent response pattern, shown by 190 participants out of 321, was to repeat449

the SR′ pattern on both replicates.450

Table 10 shows the indices of fit, G, from TEMAP2.R for the six models, fit to Table 9.451

TE4, TE2, and TE1 models have 8, 10, and 11 df, respectively; corresponding LS models452

(TE + H0) have an additional 2 df; critical values of χ2(df) for df = 2, 8, 10, and 11 for453

α = 0.05 level of significance are 5.99, 15.51, 18.31, and 19.68, respectively. The differences454

in fit between each TE model and its LS special case are presented in the last row of the455

table (LS). (Tests of H0 are tests of interactive independence and therefore tests of LS.) All456

of the TE + LS models have G more than 10 times the corresponding values for the TE457

models of which they are special cases, and all differences (LS) are significant.458

There are also violations of the TE models. According to any of the TE models, the matrix459

in Table 9 should be symmetric. However, the frequency of SR′SS ′ is 10, and that of SS ′SR′
460

8The raw data of both Birnbaum and Gutierrez (2007) and of Birnbaum (2010), as well as other data,
are available in the archive at this URL:

http://psych.fullerton.edu/mbirnbaum/archive.htm
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Table 11: "Predicted" (best-fit) frequencies of repeated pattern SR′; Empirical = 190

Models TE4 TE2 TE1

TE full 182.6 173.2 173.1

LS 64.6 63.5 20.1

Table 12: Best-fit estimates of parameters in TE models fit to Table 9.

Model Parameter

pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 20 56 12 13 00 39 22 00

TE2 08 75 05 11 04 08 =e′ =e

TE1 09 75 05 11 06 =e′ =e′ =e′

Note: Values expressed as percentages; i.e., 05 indicates 0.05.

is 21, significantly greater. The TEMAP2.R program calculates best-fit values ("predicted")461

corresponding to Table 9. These predictions showed that except for this violation, each of462

the TE models gave a fairly good approximation to the values in Table 9.9463

The difference between TE4 and TE2 is not significant, but the small difference between464

TE2 and TE1 is significant ( G(1) = 38.4− 31.1 = 7.3, p < 0.05).465

The predictions of the LS models were all quite bad, especially in their best-fit values for466

the largest observed frequency in Table 9 (190), for the repeated response pattern, SR′SR′.467

According to any of the LS models, this pattern only occurs due to errors. Table 11 shows the468

best-fit predicted values for the six models. The LS4 model predicts 64.6 for this frequency,469

and predictions for the other LS models are even farther below the actual value of 190.470

Therefore, LS models fail because they are not able to account for the large number of471

people who repeated the SR′ pattern.472

Table 12 shows the estimated parameters of the three TE models, which provide better473

9See Birnbaum and Quan (2020) for simulation studies of the robustness of TE models with respect to
systematic violations in tests of transitivity.
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Table 13: Test of interactive independence with p = 0.01 and p′ = 0.99. )

Replicate 1 Responses on Replicate 2

Series A SS ′ SR′ RS ′ RR′

SS ′ 10 8 0 2

SR′ 6 77 1 11

RS ′ 1 0 2 6

RR′ 1 10 2 16

Series B SS ′ SR′ RS ′ RR′

SS ′ 4 12 2 3

SR′ 16 84 0 5

RS ′ 0 0 1 2

RR′ 0 7 4 10

Note: Data of Birnbaum (2010, Exp. 3, n = 153.)

approximations to the data than the LS special cases. (Probabilities are expressed as per-474

centages to save space in the table; e.g„ 04 indicates 0.04.) The best-fit values indicated475

that the percentages of participants with SR′ pattern as their true preference pattern were476

56%, 75%, and 75%, according to TE4, TE2, and TE1, respectively. The corresponding477

95% confidence intervals based on 10,000 bootstrapped samples were 50−81, 70−81, and478

70−80, respectively, giving confidence that the majority of the sample violated interactive479

independence in the manner predicted by interactive models like expected utility.480

5 Reanalysis of Birnbaum (2010)481

Birnbaum (2010, Experiment 3) reported tests of interactive independence in choice problems482

of the following type:483

R = ($95, p; $5)484
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Table 14: Test of interactive independence with p = 0.1 and p′ = 0.9. )

Replicate 1 Responses on Replicate 2

Series A SS ′ SR′ RS ′ RR′

SS ′ 12 9 1 1

SR′ 10 48 2 12

RS ′ 0 0 1 2

RR′ 2 14 0 37

Series B SS ′ SR′ RS ′ RR′

SS ′ 17 6 1 1

SR′ 12 58 1 13

RS ′ 3 1 0 1

RR′ 0 10 2 27

Note: Data of Birnbaum (2010, Exp. 3, n = 153.)

or485

S = ($55, p; $20)486

where there were five levels of p (and p′): 0.01, 0.10, 0.50, 0.90, and 0.99. There were487

153 participants who responded to each choice problem twice, randomly embedded among488

many other trials. There were also two variations (Series A and B) with slightly different489

values of the consequences ($50 and $15 instead of $55 and $20), providing another check490

on consistency of the results.491

Results for both series are shown in Table 13 for p = 0.01 and p′ = 0.99, and in Table 14492

for p = 0.10 and p′ = 0.90. The modal response pattern in all four cases is to respond SR′
493

on both replications: 77 and 84 participants in Series A and B of Table 13 and 48 and 58494

participants in Series A and B of Table 14, respectively.495

Tables 15 and 16 show statistical tests for the six TE models and the tests between each496

TE model and its LS (H0) special case. In all 12 cases (4 sets of data by 3 TE models497
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Table 15: Indices of fit, G, of TE models in tests of interactive independence with p = 0.01
and p′ = 0.99.

Series A TE4 TE2 TE1

TE 8.9 11.5 11.5

TE + LS 83.8 131.4 291.8

LS 74.9 120.0 280.3

Series B TE4 TE2 TE1

TE 14.2 15.5 24.7

TE + LS 111.7 160.4 345.0

LS 97.5 144.9 320.3

in Tables 15 and 16), the large violations of interactive independence, indicate that the LS498

models can be confidently rejected under any of the error models.499

The differences among the TE models are again smaller than differences between TE and500

LS models; however, in Table 16, Series A, TE4 fits significantly better than TE2, and in501

Table 15, Series B, TE2 and TE4 fit significantly better than TE1.502

Table 17 shows the estimated parameters under three error models (TE4, TE2, and TE1)503

for the four sets of data. The estimated incidence of violations of interactive independence504

(pSR′ were substantial in all 12 cases. For example, for TE2 Series A and B, the estimated505

incidences are 0.73 and 0.85 when p = 0.01, and they are 0.56 and 0.60 when p = 0.10.506

Bootstrapped estimates of 95% confidence intervals on the parameter estimates agree that507

one can reject H0 with confidence, in favor of the hypothesis that pSR′ > 0 in all cases.508

In sum, reanalyses of Birnbaum (2010) and of Birnbaum and Gutierrez (2007) are clear:509

violations of interactive independence cannot be attributed to random error as in Figure 1.510

Although TE4 analysis has the potential to reverse the conclusions of earlier analyses, like511

TE2 or the test of correlated proportions, these reanalyses instead reinforce the conclusions512

that had been reached using those methods.513
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Table 16: Indices of fit, G, of TE models fit to Birnbaum (2010) test of interactive indepen-
dence with p = 0.10 and p′ = 0.90.

Series A TE4 TE2 TE1

TE 8.7 18.3 19.1

TE + LS 35.0 91.8 207.7

LS 26.3 73.5 188.6

Series B TE4 TE2 TE1

TE 6.6 9.2 10.0

TE + LS 42.6 114.3 239.3

LS 36.0 105.1 229.3

An important finding of these studies was that most those few participants who appeared514

to show violations of transitivity also showed systematic violations of interactive indepen-515

dence. That finding suggests that even for those few participants, we cannot retain LS516

models as a descriptive theory of the violations of transitivity. Birnbaum and Gutierrez517

(2007) suggested a rival theory for those cases in terms of an assimilation of subjective val-518

ues of similar probabilities prior to aggregation by a model with multiplicative interaction519

between probability and value.520

6 Discussion521

These analyses lead to four main conclusions: (1) The test of correlated proportions is not522

appropriate for testing if two situations are psychologically equivalent, if the dependent523

measures might contain errors. (2) Investigators should instead employ replications within-524

subjects and analyze response patterns to assess the error structure. (3) The TE models525

provide workable methods for estimating error rates and the true response patterns, as well as526

providing statistical tests of both the substantive issues and of the TE models. (4) Reanalysis527
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Table 17: Best-fit estimates of parameters in TE models fit to Tables 13 and 14.

Model Parameter

p = 0.01 pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 Series A 26 58 08 08 11 50 00 00

TE4 Series B 02 72 04 22 00 31 33 14

TE2 Series A 08 73 02 18 09 09

TE2 Series B 03 85 01 11 06 14

TE1 Series A 08 73 02 18 09

TE1 Series B 04 84 01 11 10

p = 0.10 pSS′ pSR′ pRS′ pRR′ e′ e f ′ f

TE4 Series A 28 29 03 40 06 45 22 01

TE4 Series B 25 46 00 29 08 26 19 04

TE2 Series A 11 56 00 33 12 10

TE2 Series B 16 60 00 24 11 08

TE1 Series A 11 56 00 34 11

TE1 Series B 16 60 00 24 10

Note: Values expressed as percentages; i.e., 05 indicates 0.05.

of two published experiments via the new methods gives a very clear answer to the question528

posed in the title to this paper: LS models cannot be saved by the flexible error theory of529

Figure 1. These conclusions are discussed in the next sections.530

6.1 Test of correlated proportions531

From the derivations and examples analyzed here, it should be clear that if one allows that532

the dependent measure may contain errors as in Figure 1, then one should not use the test of533

correlated proportions to decide whether two conditions are or are not equivalent. Similarly,534

simply because one condition produces a proportion that is significantly greater than 0.5535
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and another condition produces a proportion significantly less than 0.5, one cannot reject536

the null hypothesis that the two experimental conditions induced the same true responses.537

This conclusion can be restated more clearly for algebraic choice theory as follows. A538

theoretician wishes to test a risky decision making model, which implies that S � R ⇔539

S ′ � R′. Because � represents true preference, rather than expressed preference, this theory540

implies H0, that pSR′ = pRS′ = 0, which implies pS = pS′ . The test of correlated proportions,541

however, tests the null hypothesis, H, that the response proportions are equal, p(S) =542

p(S ′), which is equivalent to equality of the two types of expressed preference reversals; i.e.,543

p(SR′) = p(RS ′). In the error theory of Figure 1, only TE1 implies that the two types of544

observed preference reversals will be equal under H0, but equality does not guarantee that545

they are both zero, so a test of H is not the same as a test of H0, even when T1 is assumed.546

Furthermore, preference reversals need not be equal for H0 under either TE2 or TE4. Finally,547

TE4 does not even require that S � R⇔ p(S) > 0.5; indeed, TE4 can allow cases in which548

modal response probabilities reverse; i.e., p(S) > 0.5 and p(S ′) < 0.5, even when H0 holds–549

i.e., even when there are no true reversals of preference (pSR′ = pRS′ = 0.) In summary,550

there is a mismatch in principle between the statistical tests of correlated proportions and551

the theoretical properties of true preferences one wishes to test.552

6.2 Need for Replications553

In studies without replications, as in Table 2, Table 3 shows that one cannot answer questions554

one wishes to address because one cannot tease out measurement of error from the substantive555

question of the equivalence of conditions. The data in Table 2 are perfectly compatible with556

the theory that no one reversed true preferences, but they are also consistent with the theory557

that people systematically switched from R to S ′.558

Unfortunately, many published studies of interesting problems used the statistical test of559

correlated proportions and many studies did not even include replications. The conclusions560
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drawn from such studies can therefore be questioned, and those questions cannot be answered561

by reanalysis. For example, a recent review of evidence on the Allais paradox by Blavatskyy,562

et al. (2022) summarizes 81 experiments using Conlisk’s z statistic as an index of strength563

and direction of the paradox. As shown in this paper, this index is not diagnostic of H0; it can564

be zero when there is a large asymmetric violation of H0 or when real but opposite violations565

balance out; and it can be large in absolute value when H0 is acceptable. Consequently, it566

is unclear what conclusions, if any, can be drawn from an analysis based on the z index or567

its components that does not account for errors of measurement.568

Because neither H nor H0 implies the other, it would seem reasonable to reanalyze those569

studies that included replications and perhaps execute those studies again whose conclusions570

are important and in doubt. Birnbaum and Quispe-Torreblanca (2018) analyzed the data of571

Birnbaum, et al. (2017) and concluded that violations of the constant consequence indepen-572

dence of Allais are indeed "real"; the violations in that study cannot be explained by error573

as in Figure 1.574

Birnbaum (2008) summarized a number of "new paradoxes" that rule out both expected575

utility theory and both versions of prospect theory (Kahneman & Tversky, 1979; Tversky &576

Kahneman, 1992) as descriptive theories of risky decision making. The "new paradoxes" are577

critical tests of prospect theory that, like the Allais paradoxes, must be implied with any578

utility function and weighting function. Many of the early studies of this program of research579

used the test of correlated proportions (e.g., Birnbaum, 1999b). Birnbaum (2008) replicated580

many of these paradoxes, including violations of first order stochastic dominance, dissection581

of the Allais paradox, upper and lower cumulative independence, and violations of restricted582

branch independence and analyzed them via a simplified version of TE2. However, there is583

a need to re-run or re-analyze those studies in order to check the possibility that some form584

of prospect theory might be saved by the more complex error theory of TE4 in Figure 1.585
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6.3 True and Error Model Analysis586

When replications are included in a study, it becomes possible to fit and test TE models and587

to test H0. The model allows one to estimate not only the error rates in Figure 1, but also the588

four probabilities of the true preference patterns. These four probabilities (informed by the589

confidence intervals on them) are crucial to evaluation of the theories under consideration.590

As shown in the hypothetical examples constructed here in Tables 5−7, the TE analysis of591

replicated data can properly distinguish cases that are equivalent (have the same marginal592

proportions) to the test of correlated proportions.593

The TE model is not only a statistical device or analytic tool, but also a simple descriptive594

model that can be tested. Like any such model, TE uses simplifying assumptions. For595

example, in the analyses reported here, the model assumes that each person maintains the596

same true preferences within the session. If people changed true preferences within a session,597

it would have the effect of inflating the estimated error terms. Further, the analyses presented598

here assumed that all people have the same error rates, but we know that there are differences599

in reliability among people. To handle heterogeneity in error rates, Birnbaum and Gutierrez600

(2007) subdivided data according to the rates of within-person reliability, and analyzed the601

reliable and unreliable participants separately, which resulted in a better fit of the TE model602

to the data so analyzed. It may be that the substantive conclusions are robust with respect603

to such violations (Birnbaum & Quan, 2020), but this question deserves further study.604

There might be situations where obtaining replications would be difficult to accomplish,605

but that is certainly not a valid excuse in studies of decision making, where it is common to606

collect many responses from each participant.607

The examples analyzed here all involved within-subjects experiments in which the depen-608

dent measure could be replicated by the same person in each condition. Between-subjects609

experiments are simpler to analyze statistically, but theoretically, they are more complicated610

to analyze than within-subjects studies because there can be different relationships between611
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the subjective value and dependent measures in each group of subjects (Birnbaum, 1982;612

1999a). In a between-subject studies, 9 can be rated as a "bigger" number than 221, but613

in within-subject studies 221 is judged "bigger" than 9. Similarly, a "married woman" who614

is a rape victim is rated more "at fault" than a "divorcee" rape victim in between-subjects615

studies (Jones & Aronson, 1973; Birnbaum, 1982), However, in within-subjects studies, the616

divorcee is rated more at fault (Birnbaum, 1982). The differences between within- and617

between-subjects designs can be reconciled by a theory of how contexts in different groups618

can be different and confounded with the stimuli in between-subjects studies. Because of619

such complications, satisfactory TE methods and models have not yet been developed for620

between-subjects situations.621

6.4 Rival Methods622

Previous approaches to the analysis of variability of responses in choice studies have been623

reviewed in a number of papers (Birnbaum, 2004, 2008, 2013; Bhatia & Loomes, 2017;624

Busemeyer & Townsend, 1993; Carbone & Hey, 2000; Kvam & Busemeyer, 2020; Luce, 1997,625

2000; Regenwetter, Dana, & Davis-Stober, 2011; Wilcox, 2008). A main theme of these626

reviews is that because there are multiple sources of possible variability, previous approaches627

have been unable to separate them without arbitrary assumptions, and those assumptions628

often interacted with the main purpose of the research, which is to test alternative substantive629

models of decision making.630

A rival method to true and error models for the analysis of response proportions in within-631

subjects studies is the Qtest approach, described in Regenwetter, Davis-Stober, Lim, Cha,632

Guo, Messner, Popova, & Zwilling (2014) and updated in Zwilling, Cavagnaro, Regenwetter,633

Lim, Fields, & Zhang (2019). This approach has been applied to cases of individual data with634

the assumption that repeated responses by the same person are independent and identically635

distributed (iid); however, that iid assumption has been found to be systematically violated636
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in empirical choice data obtained from individuals (Birnbaum, 2012, 2013, 2022; Birnbaum637

& Bahra, 2012a, 2012b), including reanalysis of the data of Regenwetter, et al. (2011).638

If data satisfy iid, then there is no more information in crosstabulation matrices such as639

Tables 5-9 than in the two marginal, binary response proportions in each case. Although iid640

can occur in TE models in special cases, such as when there is just a single true preference641

pattern, iid is not generally implied. But the Qtest approach begins and ends with simple642

analysis of the binary response proportions and ignores all of the information in tables like643

Tables 5–7, so it would conclude that those cases are all the same, because P (S) and P (S ′)644

are the same in all three cases.645

If Qtest were applied to the hypothetical data in Tables 5–8, it would conclude that one646

should reject H in Tables 5, 6, and 7 and retain it for Table 8. To my knowledge, the Qtest647

method has not yet been applied in the situations analyzed here, but if it were, it could648

be criticized by the same arguments as those directed here against the test of correlated649

proportions, plus the criticism that it assumes away correlations between repeated responses650

from the same person.651

The Qtest method has been applied to tests of transitivity of preference by Regenwetter,652

et al. (2011) and Cavagnaro & Davis-Stober (2014), among others. Transitivity requires653

that S � R and R � T ⇒ S � T . Birnbaum and Wan (2020) have shown that any654

method, including Qtest, that is based strictly on binary response proportions (ignores the655

pattern data) cannot be relied upon to distinguish data that have been simulated from656

either transitive or intransitive models. In contrast, TE methods correctly diagnose the data657

with respect to the model that simulated the data. TE methods for analysis of the issue658

of transitivity have been presented in Birnbaum and Bahra (2012b), Birnbaum and Wan659

(2020), Schramm (2020), and Birnbaum (2022).660

Instead of forcing the assumption of iid in order to justify off-the shelf statistical tests or661

to simplify an analysis, it seems preferable to make use of the information provided by the662
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pattern information in the data, which typically violates iid, by means of a model that can663

describe those patterns.664

6.5 Lexicographic Semiorder Models Rejected665

The reanalyses of Birnbaum and Gutierrez (2007) and Birnbaum (2010) give a clear answer:666

the property of interactive independence can be confidently rejected. Because any LS model667

or mixture of LS models imply interactive independence (Birnbaum, 2010), these models can668

be rejected as descriptive models of risky decision making, and they cannot be saved by the669

flexible error theory of Figure 1. Other theories that imply interactive independence, such670

as the Simplified Additive Difference (SAD) model (Ranyard, et al., 2020) and the priority671

heurisitc (Brandstätter, Gigerenzer, & Hertwig, 2006) can also be rejected as descriptive by672

these results.673

Tables 12 and 17 show that the property of interactive independence is violated in a674

particular way in these tests by more than half of the sample under any of the error theories.675

However, that allows that some people might actually satisfy the property, so it remains676

possible that perhaps a subset of people might still satisfy LS models. Indeed, Tversky677

(1969) concluded that only a small proportion of the people tested showed evidence of the678

intransitive behavior that could be described by his LS model. Other studies also found679

that only a small fraction of participants show intransitive behavior (Ranyard, et al, 2020;680

Birnbaum & Gutierrez, 2007; Birnbaum & Bahra, 2012b; Birnbaum, 2010; Birnbaum, 2020;681

2022; Butler & Pogrebna, 2018).682

However, Birnbaum and Gutierrez (2007), Birnbaum and Bahra (2012b) and Birnbaum683

(2010) found that even among those who appeared to show evidence of intransitive prefer-684

ences in one design, those same individuals did not show consistency with other predictions685

of LS models with other choice problems included in the same study. For example, Birn-686

baum and Bahra (2012b) were unable to find a single case in a sample of 134 participants687
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where one could predict from an LS model of choices among gambles of the form (x, p; 0)688

to choices among (x, 1/2; y) and to choices among (100, p; y), where the levels of x, p, and689

y were chosen to form interlinked designs. Birnbaum and Gutierrez (2007) and Birnbaum690

(2010) found that most people who showed evidence of transitivity also showed violations691

of interactive independence or other properties implied by LS models. These findings imply692

that some other theory besides LS models, such as the assimilation theory of Birnbaum and693

Gutierrez (2007), is required in order to account for those few cases that appear to show694

evidence of intransitive preferences.695

Because conclusions of a few studies regarding interactive independence and the Allais696

paradox have not changed as a result of TE reanalysis, one might be tempted to infer that it697

is safe to assume that previous analytic methods are "good enough" for drawing conclusions698

about theories of behavior. I think that inference would be a mistake. The algebra shows699

that the conclusions can be changed by proper experiments and analyses. Further, the few700

cases selected for reanalysis so far have been cases where the evidence has been quite strong;701

other sets of data may yield different conclusions. Therefore, I would urge experimenters to702

employ replications and use the newer methods of analysis in order to avoid drawing false703

conclusions–conclusions that might be reversed by reanalysis or by a proper experiment with704

replications.705
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