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Scale-free tests of an additive model
for the size-weight illusion*
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In two experiments, Ss rated the difference in heaviness between two objects varying in both size and
weight. Assumption of the subtractive model and the use of factorial designs allow separation of
judgmental effects from psychophysical processes. Difference ratings were rescaled by monotone
transformation to fit the subtractive model, yielding scale-free values for the size-weight combinations.
The subtractive model provided a good description of the difference ratings, but critical violations of the
additive model for the size-weight illusion were obtained. The experiments illustrate how ordinal
information can be used to differentiate additive from multiplicative processes.

*Size-weight illusion™ refers to the fact that the
subjective heaviness of an object depends upon its size
as well as its weight. The smaller the object, holding
physical weight constant, the heavier it feels when
lifted. Although both weigh the same, a pound of lead
does feel heavier than a pound of feathers.

Theories of the Size-Weight Hlusion

Two general theoretical interpretations have led to
two alternative models of the illusion. The expectancy
interpretation (e.g., Anderson, 1970) assumes that
judgments of heaviness reflect the contrast between
felt weight and the expected weight based on size.
Since larger objects would be expected to be heavier,
they seem lighter.

The expectancy theory led to an additive model,
which can be written:

h = s - s%, (1)

where h is the heaviness of the object, s reflects the
subjective heaviness due to physical weight apart from
the effect of size, and s* represents the effect of size on
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heaviness. According to this model, the magnitude of
the illusion (the effect of size) is independent of
weight.

The alternative interpretation is that subjective
heaviness is a judgment of density, i.e., the ratio of
perceived weight to size of an object (e.g., Huang,
1945). The larger an object (holding weight constant),
the less the density; hence, the lighter it feels.

The ratio model (Sjoberg, 1969) predicts that the
illusion (the effect of size) should be directly
proportional to weight:

h = s/s%, 2
where h, s. and s* are defined as above.

Scale-Dependent Tests

Although the models give quite different
quantitative accounts of the illusions, both models
have received some support from experimental
studies. Anderson (1970, 1972) observed that ratings
of heaviness appear to satisfy the parallelism
prediction of the additive model. J. C. Stevens and
Rubin (1970) and Sjoberg (1969), using magnitude
estimations, found that the apparent effect of size
increased as weight increased, possibly indicative of a
ratio model.

These seemingly contradictory results may be due
to the nonlinear relation between ratings and magni-
tude estimations. If magnitude estimations and
ratings are exponentially related, and if R(h) = s - s*,
then M(h) = exp(s - s*) = es/es™, where R(h) repre-
sents the rating of heaviness and M(h) represents
the magnitude estimate. Thus, if ratings satisfy
an additive model, magnitude estimations would be
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expected to fit a multiplicative model (Birnbaum &
Veit, 1974). Anderson (1972) assumed the additive
model, and concluded that magnitude estimations
“must be biased and invalid,”” since magnitude
estimation data show a divergent interaction. If one
were to assume the ratio model, however, then the
parallelism obtained by Anderson (1970, 1972) might
be taken as evidence against the rating scale.

The basic problem is that unless one response
procedure—ratings or magnitude estimations—is
assumed to be valid, the previous research cannot test
between Eqs. 1 and 2. Unless one can assume one
model or the other, neither response procedure can be
validated. The situation is circular. Because the
ordinal predictions of additive and multiplicative
models are equivalent (Krantz, Luce, Suppes, &
Tversky, 1971), Egs. 1 and 2 cannot in principle be
differentiated by the ordinal information in a simple
experiment without some further constraint. The
previous tests can be called “‘scale-dependent,” since
the conclusions depend upon the choice of the
dependent variable.

Scale-Free Tests

This paper applies new scale-free techniques that
have recently been applied in person perception to
separate cognitive processes from judgmental effects
(Birnbaum, 1972, 1974). This approach can separate
multiplicative from additive models, for example,
without having to assume that the dependent variable
is an interval measure. The key idea is to gain greater
ordinal constraint by embedding the process to be
studied within a simpler process.

In the present experiment, Ss judge the difference
in heaviness between two objects varying in both size
and weight. This experiment requires only the
minimal assumption that judged differences are an
ordinal scale of subjective differences:

Rjj = J(hj - hj, 3

where Rjj is the overt response, hj and hj are the
heavinesses of the objects, and J is the monotone
function relating subjective differences to overt
responses. The assumption of Eq. 3 allows separate
estimation of J and of the heavinesses, h;j, unique to
an interval scale. Once the scale-free values of h are
determined, it is a simple matter to test whether they
satisfy Eq. 1 or Eq. 2.

Two important ordinal implications of the additive
model of the size-weight illusion can be tested through
the assumption of Eq. 3. The first implication of the
additive model is that differences in heaviness
between two same-sized objects should depend only
on their weights, independent of size. This follows
from Eqgs. 1 and 3, since the constant size, s*, drops
out of the equation; i.e., R = J[(s, - s*) - (s, - s¥)] =
J[s;-s,]. The ratio model predicts that these
differences should be inversely related to size since R
= Jlsy/s* -sp/s*] = J[(s; -sp)/s*]. A second
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implication of the additive model is that differences
betwen two equal-weight objects should depend only
on their sizes, independent of weight. The ratio model
predicts these differences should be a monotonically
increasing function of weight.

METHOD

Experiment 1

The Ss were run individually, seated at a table, separated from E
by a screen. On each trial, E placed two objects before S, who lifted
them simultaneously, one in each hand, and rated the difference in
heaviness. Ratings were made on a 9-point scale from 1 (right-hand
object is very, very much lighter) to 9 (right-hand object is very, very
much heavier), with 5 designated “no difference.”

Stimuli. The stimuli were black, plastic blocks, approximately
cubical in shape. They were weighted inside with lead and clay. An
8-mm hook was mounted on the top for lifting. Nine different
objects were constructed from a 3 by 3, Size by Weight, factorial
design. The three levels of weight were 100, 150, and 200 g. The
block dimensions for the three levels of size were 50 x 50 x 55,
62 x 62 x 70, and 78 x 78 x 87 mm in width, length, and height,
respectively.

Design. The objects presented to the two hands formed a 9 by 9,
Left Hand by Right Hand, symmetric factorial design, in which the
objects in either hand could be one of the 9 (i.e., 3 by 3) size-weight
combinations. The overall design can thus be expressed as a
(3 by 3) by (3 by 3), Left Hand (Weight by Size) by Right Hand
(Weight by Size), factorial design.

Procedure. Following a warm-up of representative practice trials,
the 81 presentations were presented in random order, with a
different random order for the second replicate.

Subjects. The Ss were 20 University of California, Los Angeles
undergraduates fulfilling a requirement in introductory psychology.

Experiment 2

As in Experiment 1, Ss lifted two blocks simultaneously, one in
each hand, and rated the difference in heaviness. The chief
difference between the experiments was the design and choice of
stimulus levels. Experiment 2 used a -9-to-+9 scale in which the
even-numbered points were given category labels varying from -8
(right-hand object is very, very much lighter) to +8 (right-hand
object is very, very much heavier) centered at O (equal in heaviness).

Stimuli. The basic set of blocks were constructed from a 7 by 3,
Weight by Size, factorial design in which the seven levels of weight
were 50, 75, 100, 150, 200, 300, and 400 g. The three levels of size
and other aspects of the stimuli were identical to those of
Experiment 1.

Design. The basic design was a 4 by 21, Standard by
Comparison, factorial design, in which the S judged the difference
in heaviness between the Standard and Comparison objects
presented to the two hands. The standard object could be 50 g in
the smallest size, 100 g in the medium size, 200 g in the medium
size, or 400 g in the largest size block. The 21 comparison objects
were generated from the 7 by 3, Weight by Size, factorial design
described above. The design was enlarged by allowing the standard
object to be in the left and right hands; in addition, there were 2
replications of this entire design. The complete design can thus be
conceptualized as a 2 by 2 by 4 by (7 by 3), Replicate by Hand by
Standard by Comparison (Weight by Size) factorial design.

An additional set of eight trials per hand-replicate were produced
by pairing standards of 50 g in the largest size and 400 g in the
smallest size with comparisons of 50 and 400 g in the smallest size
and 50 and 400 g in the largest size.

Procedure. The 184 trials of each replicate were separately
randomized for each S and session by shuffling a deck of cards that
represented the trials. Following a warm-up of 20 representative
trials, the two sessions were tun with a 10-min rest between
sessions, requiring about 3 h to complete.

Subjects. The Ss were 16 University of California, San Diego
undergraduates, half of either sex, who were paid $1.88/h for their
services.
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RESULTS

Experiment 1

Subtractive Model for Difference Judgment.
Figure 1 plots the mean judgment of difference as a
function of the marginal means for the right-hand
object. Separate curves are for different left-hand
objects. Since the difference ratings represent right
minus left, the curves have positive slope.

If the subtractive model (Eq. 3) is valid and if the
judgment function, I, is linear, the curves should be
parallel except for error. As can be seen in the figure,
the curves are very nearly parallel; i.e., the slopes of
the curves are nearly equal.

Analysis of variance measures the nonparallelism of
the Right by Left interaction, which was small in
magnitude and nonsignificant, F(64,1216) = 1.31.
The nonsignificance of this interaction, based on
many degrees of freedom., and the apparent
parallelism of the curves can be taken as support for
the subtractive model with an interval response
measure.

Size-Weight Illusion. Figure 2 plots the heaviness
scale values for the 9 right-hand objects as a function
of size, with a separate curve for each weight. Since
the subtractive model fits, the subjective values are
the marginal means, each point representing the
mean of 360 judgments, averaged over 20 Ss, 2
replicates, and 9 left-hand objects. If there were no
illusion, the curves in Fig. 2 would be horizontal. 'The
figure illustrates the usual illusion—the smaller the
size, the greater the heaviness. The large effects of size
are of course statistically significant, F(2,38) =
110.40; they are also significant for left-hand objects,
F(2,38) = 142.88.

The additive model for the size-weight illusion
predicts that the slopes of the curves in Fig. 2 (the
illusion) should be independent of weight; that is, the
curves should be parallel. The curves show a small but
very regular divergence—the effect of size is greater
for the 200-g weights than for the 100-g weights. The
interaction is statistically significant, F(4,76) = 2.57;
it is also significant for left-hand objects, F(4,76) =
3.34.

Scale-Free Tests of Additivity. These interactions
cannot be attributed to nonlinearity of the rating
scale. Critical difference ratings illustrate ordinal
violations of the additive model. According to Eq. 3,
assuming only that J is monotone, the rating of
difference in heaviness between a 200-g object and a
100-g object of the same size should be independent of
the size under the additive model, since R =
I(s200 - s*) - (5100 - s®)] = J[s200 - s100]. The open
circles in Fig. 1 connected by dashed lines illustrate
the type of ordinal violation of the additive model that
would be predicted by the ratio model. The ratio
model implies that these ratings be inversely related to
size, since R = I[s200/s* - s100/s*] = J[(s200 -
$100)/s*]. The dashed curve shows that ratings of the
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Fig. 1. Mean ratings of difference in heaviness, plotted as a
function of the heaviness of the right-hand object. Each curve
represents a different size-weight object in the left hand. Abscissa
values for the right-hand objects are spaced according to the
marginal means. Open circles and dashed curve illustrate critical
comparisons discussed in text (Experiment 1).

difference in heaviness between 200- and 100-g objects
of the same size increase with decreasing size.

To assess these ordinal violations, a 3 by 3, Size by
Weight-Difference, subdesign was assessed by
analysis of variance (after reversing the scale for
left-hand objects). According to the additive model,
there should be no main effect of size. Instead, the
effect of size was highly significant, F(2,38) = 10.91.
Consistent with the divergent interaction shown in
Fig. 2, the greater the size, the less the effect of the
weight difference.

A similar 3 by 3, Weight by Size Difference,
subdesign was also analyzed in similar fashion. The
additive model predicts that the effect of size
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Fig. 2. Heaviness values (marginal means) for the size.weight
illusion, plotted as a function of size, with a separate curve for each
level of weight (Experiment 1).
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Fig. 3. Mean ratings of difference in heaviness, plotted as a
function of the weight of the comparison with a separate curve for
each standard. Parallelism of the curves supports the subtractive
model of difference judgment (Experiment 2).

difference should be independent of weight, whereas
the ratio model would predict that it should be
directly proportional to weight. An example of this
comparison is illustrated by the three open squares in
Fig. 1, which show that the difference in heaviness
between the smallest and largest size is slightly greater
for 200 g than for 100 g. The results for these
comparisons were not as clear, however, and the
effects of weight were nonsignificant, F(2,38) = 1.62.
This statistical nonsignificance may be due to the fact
that the variation in weight was only 100 g in
Experiment 1.

In summary, Experiment 1 provides support for the
subtractive model with a linear judgment function.
Although the traditional size-weight illusion was
observed, it did not conform to the additive model.
Instead, the illusion indicates a small, but regular,
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Fig. 4. Heaviness values for the size-weight combinations, as a
function of weight with a separate curve for each size.
Nonparallelism violates the additive model of the size-weight
illusion (Experiment 2).
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divergent interaction in the direction that would be
predicted by the ratio model. The Size by Weight
interaction cannot be attributed to the rating scale
because it is confirined by critical ordinal violations of
additivity.

Experiment 2

Subtractive Model for Difference Judgment.
Figure 3 plots the mean judgment of difference in
heaviness as a function of the weight of the
comparison object with a separate curve for each
standard object. Each curve has been averaged across
the three sizes for the comparison object. The scale
was reversed by reflecting the signs of the responses
for that part of the design in which the standard
object was in the right hand. The corresponding
figures, drawn separately for each hand, were very
similar to those of Fig. 3.

According to the subtractive model, with the
assumption of a linear judgment function, the curves
in Fig. 3 should be parallel. The curves appear nearly
parallel, and the analysis of variance test for
interaction was nonsignificant, F(18,270) = 1.61.
However, this is only part of the test of the subtractive
model. The test of the entire 4 by 21, Standard by
Comparison, design indicated small, but statistically
reliable, deviations, F(60,900) = 2.84. Part of the
problem appears to be due to a slight nonlinearity in
the J function, possibly reflecting a slight tendency for
some Ss to minimize small differences, as though they
would respond “0” to difficult comparisons. Overall,
the subtractive model appears to provide a reasonable
account of the mean ratings.

Size-Weight Illusion. Figure 4 shows the heaviness
values for the 21 size-weight comparison objects. Each
point is the mean of 256 judgments, averaged over 16
Ss, 4 standards, 2 hands, and 2 replications. The
heaviness values are plotted as a function of weight,
with a separate curve for each size. The distances
between the curves represent the illusion, which is
very large and, of course, statistically significant,
F(2,30) = 65.88.

The additive model of the size-weight illusion
predicts parallel curves for Fig. 4. The curves are
clearly nonparallel, showing a marked divergence
from 50 to 200 g. The interaction is statistically
significant, F(12,180) = 10.64. The data, plotted
separately for each hand, for each standard, and for
each replicate, showed similar divergent interactions.
Figure 4 supports the findings of Experiment 1,
providing further evidence against the additive model.

The data were plotted as in Fig. 4 separately for
each S. A separate analysis of variance was also

- performed for each S. Of the 16 Ss, 15 showed

significant effects of size, 13 showed divergent
size-weight interactions that were similar in form and
magnitude to Fig. 4. ‘

The curves for the single-S counterparts of Fig. 3
were negatively accelerated for 13 of 16 Ss, and they
were approximately parallel for 10 of 16 Ss. Three Ss
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shéwed a slight tendency to respond “0” to small
differences, causing the curves to be flatter near an
ordinate value of 0. An equal number of Ss showed
slightly steeper slopes near the ordinate value of 0,
apparently reflecting the opposite response bias, to
exaggerate small differences. These two analyses
showed that the majority of single-S data very closely
resembled the group averages.

Scale-Free Tests. To remove any residual
nonlinearity in the J function, each S’s raw data was
separately fit to the subtractive model (Eq. 3) using
MONANOVA, a computer program (Kruskal &
Carmone, 1969) based on Kruskal’s (1965) monotone
rescaling procedure. Since the subtractive model did
quite well without transformation, it was not
surprising that the J functions derived from
MONANOVA were nearly linear for most Ss. with
slight cubic (S-shaped) trends for a few of the Ss. The
slight cubic transformations were interpreted as
correction of response biases (to exaggerate or
minimize small differences). From the fit of the 4 by
21 subtractive model, MONANOVA yielded
scale-free heaviness values for the 21 (3by7)
size-weight comparison objects for each S.

These scale-free values were then subjected to
analysis of variance, giving results similar to those for
the raw ratings. Figure 5 plots the mean of the
scale-free heaviness values. The results are very
similar to those of Fig. 4. The effect of size was again
significant, F(2,30) = 74.84, as was the Size by
Weight interaction, F(12,180) = 8.40. The fact that
the Size by Weight interaction remained divergent
and statistically significant shows that the violations
of the additive model cannot be attributed to
nonlinearity in the rating scale. Although this analysis
gives the same conclusions as the analysis of the
untransformed ratings, it illustrates how the
subtractive model can be used as the basis for
response rescaling, allowing a scale-free test of a
substantive model.

Figures 4 and 5 show a mild divergent interaction
that would be inconsistent with the additive model.
Divergence would be consistent with the ratio model,
but the curves also show a mild tendency to
reconverge from 200 to 400 g, which would be
inconsistent with the ratio model. The heaviness
function for the smaller object appears to have more
curvature than that for the larger object. This effect is
analogous to Stevens and Rubin’s (1970) finding of
different power function exponents for objects of
different size.

Scales for Weight and Size. Figure 6 shows the
marginal effects of size and weight for each S derived
from the scale-free MONANOVA values. The effects
of weight are very similar (negatively accelerated), for
all but three of the Ss. Under the assumption of either
an additive or ratio model for the size-weight illusion.
these marginal effects of weight would represent the
psychophysical functions for heaviness. However,
because of the shortcomings of both models, these
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Fig. 5. Scale-free values for the size-weight combinations, plotted
as in Fig. 4, derived from fit of the subtractive model
{Experiment 2).

scales should be limited in generality to the sizes
studied. Most single-Ss also show a moderate effect of
size, as shown by the vertically spaced points.

In summary, Experiment 2 provides some highly
consistent data that indicate a divergent size-weight
interaction, contrary to the additive model. Evidence
against the ratio model is provided by the finding that
the heaviness functions are more concave downwards
for smaller sized objects. The subtractive model for
difference judgments appeared to provide a nice
account of the difference ratings, in spite of small
deviations that may be attributable to slight
nonlinearity in the rating scale. When the data are
transformed to fit the subtractive model, the
size-weight interactions remain. Different Ss showed
similar size-weight interactions with similar negatively
accelerated scales for heaviness.

DISCUSSION

These experiments suggest several conclusions:
(1) The subtractive model appears to give a good fit to
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difference ratings; (2) this good fit can be taken as
support for the linearity of category ratings; (3) the
assumption of the subtractive model permits a
scale-free test between additive and ratio formulations
of the size-weight illusion; (4) the data contain ordinal
violations of the additive model of the size-weight
illusion—the illusion (the eftect of size) appears to be
smaller for lighter weights. The implications of these
conclusions for measurement, model testing, and the
perception of heaviness are discussed below.

Subtractive Model

The assumption of the subtractive model, Eq. 3, is
the basis for the present scale-free tests of Eqs. 1 and
2. These experiments also provide tests of internal
consistency for the subtrative model.! Although the
present experiments only require ordinal consistency,
the near parallelism of Figs. 1 and 3 shows that the
data are also “‘metrically” consistent with Eq. 3 under
the assumption that ratings are an interval response
measure (i.e., that J in Eq. 3 is linear).

The subtractive model has also had a fair degree of
success in previous research with ratings of differences
in heaviness (Birnbaum & Veit, 1974), differences in
likeableness (Birnbaum, 1974), and preferences for
foods (Shanteau & Anderson, 1969). Curtis, Rule,
and their associates have obtained consistent results
for heaviness using the subtractive model as a scaling
framework (summarized in Rule & Curtis, 1973).

A final assumption of the present scale-free
approach deserves brief comment. It has been
implicitly assumed that the procedure of lifting two
blocks and judging the difference does not affect the
process by which size and weight combine to form
heaviness. This nonreactive assumption seems
reasonable for the present situation and is supported
by the overall success of the subtractive model and the
comparability of the findings with the results for
simple ratings of single blocks. However, there are
probably situations in which the process of comparing
multidimensional stimuli that are similar on one or
more dimensions may induce cancellation or other
short-cut ~ strategies that would disrupt the
information integration process (e.g., Tversky, 1969).
Such effects would show up as violations of the
subtractive model and would preclude use of the
present approach.

Size-Weight Illusion

Contrary to the additive model of the size-weight
illusion, the magnitude of the illusion depends on
weight. The divergent interactions in Figs. 2, 4, and 5
show systematic deviations from additivity: Lighter
weights are less affected by the variation in size. These
violations of additivity cannot be attributed to
nonlinearity in the rating scale, since Experiment 1
shows that direct ratings of heaviness differences
depend on size, and Experiment 2 shows that even
after ratings are transformed to fit the subtractive
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model of difference judgment, the Size by Weight
interaction remains.

Although divergent interactions would be
consistent with a ratio model, the data of
Experiment 2 (Figs. 4 and 5) also contain some
evidence against the ratio model, since the curve for
the smaller block exhibits slightly more curvature.
Both additive and ratio models imply that the
psychophysical relationship between heaviness and
weight be independent of size. The present results
suggest that the psychophysical function may depend
on size.

The relationship between heaviness and weight is
negatively accelerated for all three sizes. Negatively
accelerated psychophysical scales have been obtained
in previous studies using additive and subtractive
models (Anderson, 1972; Birnbaum & Veit, 1974;
Rule & Curtis, 1973). However, magnitude
estimations of heaviness have typically been fit with
positively accelerated functions (Stevens & Galanter,
1957). Research based on additive and subtractive
models has generally supported rating scales,
indicating that magnitude estimation may induce a
positively accelerated judgmental transformation that
confounds the study of psychophysical processes
(Birnbaum & Veit, 1974).

Anderson (1972) obtained ratings of size-weight
combinations that appeared nearly parallel. Size and
weight may be nearly additive for the range of sizes and
weights employed by Anderson (1972); however, it is
also possible that a slight nonlinearity in the rating
scale, possibly produced by the extreme ‘‘anchor”
stimuli used in that study, may have distorted the
results. Birnbaum, Parducci, and Gifford (1971) have
shown that nonlinearity in rating scales can be pro-
duced by varying the stimulus distribution. The advan-
tage of the present approach is that it requires only that
the dependent variable be a monotone function of
subjective differences to test the model.?

Although these results pose problems for the addi-
tive model, they would not seem to seriously damage
the expectancy theory of the illusion. As anyone who
has lifted an empty milk carton thinking it full will tes-
tify, expectancy plays an important role in heaviness
judgment. - Research with an analogous size-
numerosity illusion (Birnbaum & Veit, 1973;
Birnbaum, Kobernick, & Veit, 1974) indicates that
manipulation of the expectancies (by varying the
size-numerosity correlation) can lead to reversal of the
illusion. The violations of the additive model in the
present study may indicate that other factors (in
addition to expectancies) are also at work in the
size-weight illusion, or that size-based expectancies do
not combine with weight additively.

One possibility is that each weight is judged in part
with respect to the expected distribution of weights for
its size. Instead of contrasting felt weight with the
mean expected weight, felt weight is compared with
the entire distribution of expectancies. If this process
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of comparison follows Parducci's range-trequency
theory (Birnbaum, 1974; Parducci, 1974), then the
greater the range of expected values, the less the effect
of felt weight on heaviness; and the greater the
median expected value, the less the judged heaviness.
If objects of all sizes were made of all substances, then
the median weight would be greater for larger objects
and the range of weights would also be larger. This
explanation could thus give a qualitative account of
the present interactions. It could be tested by using
systextual design such as that employed by Birnbaum
and Veit (1973). Systematically varying the range of
expectancies should affect the interaction.

Conclusions

This study illustrates how additive and multiplica-
tive models can be differentiated using ordinal
information. The subtractive model for difference
judgment scems to work quite well in accomplishing
this goal. Results indicate that category ratings are
nearly linearly related to subjective differences. The
large size-weight illusions did not appear to conform
to the additive model. Critical ordinal tests revealed
that differences in heaviness due to size or weight,
ceteris paribus, were not independent of weight or
size, in violation of the additive model. But the
negatively accelerated functions for heaviness showed
slightly more curvature for smaller sizes, apparently
inconsistent with the ratio model. These experiments
illustrate a basis for distinguishing between simple
alternatives, but like so many critical tests in
psychology, the data are not wholly consistent with
either simple model.

REFERENCES

ANDERsON, N. H. Averaging model applied to the size-weight
illusion. Perception & Psychophysics, 1970, 8, 1-4.

AnDERsON, N. H. Cross-task validation of functional measure-
ment. Perception & Psychophysics, 1972, 12, 389-395.

BirnBaUM, M. H. The nonadditivity of personality impressions.
Journal of Experimental Psychology Monograph, 1974, 102,
543-561.

BirNBAUM, M. H. Using contextual effects to derive psychophysical
scales. Perception & Psychophysics, 1974, 15, 89-96.

BirnBaUM, M. H., KoBErNICK, M., & VEIT, C. T. Subjective
correlation and the size-numerosity illusion. Journal of Experi-
mental Psychology, 1974, 102, 537-539.

BirnBAUM, M. H., Parpucct, A., & Girrorp, R. K. Contextual
effects in information integration. Journal of Experimental
Psychology, 1971, 88, 158-170.

BirnBauM, M. H., & VEIT, C. T. Judgmental illusion produced by
contrast with expectancy. Perception & Psychophysics, 1973, 13,
149-152.

Birnsaum, M. H., & VEIT, C. T. Scale convergence as a criterion
for rescaling: Information integration with difference, ratio, and
averaging tasks. Perception & Psychophysics, 1974, 15, 7-15.

Huang, [ The size-weight illusion and the “weight density
HMlusion.” Journal of General Psychology, 1945. 33, 65-84.

Krantz. D. H., Luce, R. D., Suppes, R.. & TVERsky, A.
Foundations of measurement. New York: Academic Press, 1971.

KruskaL, I. B. Analysis of factorial experiments by estimating
monotone transformations of the data. Journal of the Roval
Statistical Society |B]. 1965, 27, 251-263.

KruskaLr, J. B., & CarmoNE, F. J. MONANOVA: A FORTRAN
IV program tfor monotone analysis of variance. Behavioral
Science, 1969, 14, 165-166.

Parpucci, A. Contextual effects: A range-frequency analysis. In
E. C. Carterette and M. P. Friedman (Eds.), Handbook of
perception. Vol. 1l. New York: Academic Press, 1974.

Ruie, S. )., & Curtis, D. W. Conjoint scaling ot subjective num-
ber and weight. Journal of Experimental Psychology, 1973, 97,
305-309.

SHANTEAU, . C., & ANDERsON, N. H. Test of a conflict model for
preference judgment. Journal of Matihematical Psychology, 1969,
6, 312-325.

SIOBERG, L. Sensation scales in the size-weight illusion. Scandi-
navian Journal of Psychology, 1969, 10, 109-112.

Stevens, J. C., & RuBiN, L. L. Psychophysical scales of apparent
heaviness and the size-weight illusion. Perception & Psycho-
physics, 1970, 8, 225-230.

STEVENS. 5. 5., & GALANTER, E. Ratio scales and category scales
for a dozen perceptual continua. Journal of Experimental
Psychology, 1957. 54, 377-411.

TveRsKY, A. Intransitivity of preferences. Psychological Review,
1969, 76, 31-48.

NOTES

1. If one were to assume instead that “‘difference” ratings repre-
sented subjective ratios, then the near-parallelism of Figs. 1 and 3
would be taken as evidence that ratings are an exactly logarithmic
function of impressions (Birnbaum & Veit, 1974). But the data
would still refute the additive model of the size-weight illusion since
Figs. 2, 4, and 5 would represent the log of heaviness. Exponential
transformation of the ordinates of Figs. 2, 4, and 5 would increase
the divergent interaction, making the fit of the additive model even
worse. Under the interpretation that Ss are rating ratios, the non-
parallelism in Figs. 2, 4, and S also constitute evidence against the
ratio model of the size-weight illusion, since it implies parallelism in
a logarithmic plot. In general, to assume that difference ratings
represent some other arbitrary function would require an
explanation of the parallelism of Figs. 1 and 3. It would be
necessary to postulate a judgmental transformation that exactly
compensates for the nonadditive composition function. The most
simple interpretation seems to be that Ss are forming differences
and that ratings of differences are nearly linear functions of
subjective differences.

2. A more general form of averaging model could describe the
present size-weight interaction by allowing mathematical weights to
vary with size and weight. Lighter weights would have greater
importance relative to size. This approach seems unattractive,
however, since the mathematical weights that would be inferred
from judgments of average heaviness would vary directly with
weight (Birnbaum & Veit, 1974).
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