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Scale convergence as a criterion for rescaling: Information
integration with difference, ratio, and averaging tasks*
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Ss lifted pairs of weights simultaneously, one in each hand, and judged either the difference, ratio, or average
heaviness of the t\vo weights. Data for the difference and ratio tasks were in general agreement with subtractive and
ratio models, but the averaging data showed discrepancies from the constant-weight averaging model similar to those
reported in previous psychophysical research. Rescaling was ruled out for the averaging data, because responses to pairs
of equal weight were a linear function of subtractive model scale values derived from the difference task data. Scale
values for the ratio and difference task data were related exponentially, as were the responses to the pairs, consistent
with Torgerson’s conjecture that Ss do not distinguish "differences" from "ratios." They appear to use the same
composition rule but different output functions, depending on the procedures for responding. The scale convergence
criterion can thus prevent inappropriate rescaling when a model fails and can dictate rescaling even when a model fits.

Traditionally, psychophysics was defined as the study
of the relationships between physical stimuli and
subjective impressions. A popular, contemporary type of
psychophysical scaling, such as that advocated by
Stevens (1957, 1971), can be represented as in Fig. 1A.
In this schema, H represents the psychophysical function
relating physical values (~) to impressions (s), and J
represents the function relating overt responses, R. to
the impressions. Such "direct" measurement requires
untested assumptions (Yreisman, 1964; Savage, 1966).
For example, to obtain a scale of sensation from
magnitude estimations of single stimuli, one must
assume that the J function relating magnitude
estimations to subjective values is linear, with a zero
intercept. Similarly. one might derive a scale of sensation
from category ratings through the analogous assumption
that ratings involve a linear transformation, J.

If both procedures were valid, magnitude estimation
and category judgment scales would be linearly related:
instead, magnitude estimations are usuady a positively
accelerated function of category judgments (Stevens &
Galanter, 1957). This empirical contradiction throws
doubt on anv conclusions concerning the form of H or J.

With reference to the outline in Fig. 1A, magnitude
estimation data could be explained by postulating any
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pair of functions whose composition is a power
function: for example, H power and J power, H identity
and J power, H linear-logarithmic and J exponential.
Unifactor methodology does not provide enough
leverage to discriminate between these alternatives.

Information Integration

A concern for the logic of measurement has redirected
the focus from untestable, theoryless scaling to an
increased study of algebraic models that permit
simultaneous evaluation of a postulated theory and
scaling of the stimuli (Anderson, 1970; Cliff, 1973:
Krantz, 1972: Krantz, Luce, Suppes, & Tversky, 1971;
Zinnes, 1969). This approach is represented in Fig. lB.
The basic idea is that by considering the contribution of
two or more factors simultaneously, it is possible to
measure each factor separately; the resultant scale values
are based upon a theory of integration and have meaning
with respect to the theory.

The conjoint scaling approach, related to conjoint
measurmnent (Krantz etal. 1971), assumes a valid
composition rule, I. tf the data are ordinally inconsistent
with the composition rule, then the model for I can be
rejected (Krantz & Tversky, 1971). Otherwise, the data
are transformed to fit the assumed model. Only the
ordinal information in the raw data is required in order
to derive scales compatible with the assumed model of
integration. This approach is not entirely satisfactory,
however, for if J is linear, then nonlinear monotone
rescaling might remove true discrepancies from the
model (Birnbaum, 1972).

It is not possible to distinguish between models that
are monotone transforms of one another wlren rescaling
is permitted. In this case. scales become arbitrarily
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B. FUNCTIONAL  ,i!EASURc. .,ENT

Fig. 1. (A) Outline of "direct" measurement. H represents the
psychophysical function that transforms the physical value of
the stimdus, 0 into a psychological scale value, s. J represents
the judgment function which transforms the s value into an overt
response, R. (B) Outline of functional measurement. The
physical values of the component stimuli, Oi, are transformed to
psychological scale values, si, by the psychophysical function, H.
These scale values are combined by the integration rule, I, to
form an overall impression, q’ti, which is then transformed into
an overt response. Ri~, by the judgrnent function, J.

dependent upon the assumed, but untested, model. For
example, since a logarithmic transformation of a ratio
yields a difference, this approach cannot discriminate
between subtractive and ratio models (Krantz et al,
1971).

Functional measurement (Anderson, 1970) attempts
to simultaneously evaluate the composition rule and the
response function. With the J function fixed, difference
and ratio models make different predictions for the raw
data. If the raw data satisfy tests of fit, then the validity
of the scale value.,;, the integration model, and response
scale are jointly supported. Otherwise, either the model
or response scale (or both) are invalidated.

Generally, functional measurement discriminates
between model arid response scale discrepancies in the
following manner: If there is no reason to doubt the
validity of the response scale, the test of fit provides the
basis for rejecting the model; if there is reason to believe
that the response scale is nonlinear (e.g., when the
response is on the physical continuum, as in the method
of bisection), a search is made for a monotone
transformation that will fit the model (Anderson, 1962,
1970; Bogartz & Wackwitz, 1971). The decision to
rescale the data or to reject the model is based upon
subtle theoretical considerations such as the nature of
the necessary transformation, the history of previous
experiments with the model and response mode, signs of
end or ceiling effects, and their dependence upon
variations in experimental procedures.

Scale Convergence Criterion

The following additional constraint was proposed
(Birnbaum, 1972) to aid in determining whether
deviations of fit from the model are due to an
inappropriate model or an inappropriate response scale:
the scale values of the stimuli are assumed to be
independent of the composition rule. The
psychophysical function, H, which relates scale values
derived from the hypothesized model to the physical
values of the stimuli, is thus constrained to be
independent of lhe integration task.

That measurements of the same stimuli by different
techniques should agree is one of the most obvious and
appealing concepts in psychology (Seward, 1955:
Garner, Hake, & Eriksen, 1956: Anderson, 1962; Krantz,
1972: Cliff, 1973). In the past, convergence of
operations (cf. Stevens & Galanter, 1957) and the fit of
models (cf. Anderson, 197(I) have been investigated
separately, but they have less often been studied
together.

As stated above, it is not always appropriate to
transform otherwise inconsistent data to fit an assumed
model. The scale convergence criterion, however,
suggests ~:hat an appropriate transformation be defined
as one that bot~ makes the model fit and leads to the
derivation of scale values that are appropriately related
to those derived from the fit of another model in
another situation.

In the presenl experiment, Ss are required to lift two
weights simultaneously in the two hands and judgq
either (a) the "Jifference in heaviness between the
weights in the two hands. (b)the ratio of the
heavinesses, or (c)the average heaviness of the two
weights. A different model is considered for each task,
but the scale values of the stimuli are assumed to be the
same, independent of task. The constraint is sufficient to
provide a basis for response transformation that is
independent of lhe model under investigation.

The Models

The psychological differences are assumed to follow a
subtractive model:

where si and si are the scale values of the ith and jth
levels of the stimuli presented to the right and left
hands, and vI’l~ is the psychological value of the
difference between the stimuli in the two hands.

The psychological ratios, vI,~., are assumed to follow a
ratio model:

q-/iI} = Si/Sj, (2)

The averaging model assumes that the psychological
average, ’I’i~, is a weighted average of the scale values:

J
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¯ ~. = wsi + (1 -

where w and 1 - w are the relative importances of the
stimuli in either hand.

The overt responses for each task are initially assumed
to be linear functions of the psychological impressions:

R = a~I’ + b, (4)

where a and b would depend upon the task and the
response mode. This assumption is evaluated with
respect to two criteria: (a) fit of the hypothesized model
to the raw data, and (by convergence of scale values
between tasks.

METHOD

Ss were run indixidually, seated at a table separated by a
screen from E. On each trial. E placed two stimulus xveights
before S. who lifted them simultaneously’ and judged the
difference, the ratio, or the average of the lleavinesses of the two
stimuli.

Stimuli and Design

The stimuli were plastic c,v~inders, approximately 8 cm tall
and 3 cm in diana. The cylinders were filled with cotton and lead
shot and \vere lined xvith opaque paper so that the,v were all
identical in appearance.

Tire stimulus pairs represent a sYmmetric 7 by7 factorial
design, in which the weight of the stimulus in either hand could
be 50.75, 100. !25. 150. 175, or 200 g,

There were six different random sequences of the 49 paired
presentations, which were randomly counterbalanced for the
task: each S used a different sequence for each task, but an equal
nuinber of Ss in each task used each sequence.

Each of 24 Ss performed all three tasks: 4 Ss performed the
tasks in each of the six possible orders. After the instructions
were read for each task, nine representative warm-up trials were
given to familiarize S with the new task and respoc, s¢ mode, and
to decrease transfer between tasks. Since there was no
discernible effect of task order or sequence order for the data in
any of the tasks, order is ignored in the subsequent data
analyses.

Instructions

Difference Task

Ss rated the subjective difference in heaviness on a 9-point
scale, from 1 (right hand is rerv very much lighter than the left~
to 9 (right hand is very rerv much heavier than the left),

Ratio Task

Ss were instructed to report the ratio of heaviness of tile
weight in the right hand to the heaviness of the weight in the left
hand. The instructions permitted the use of any numbers to
express this ratio, but Ss ~vere given a page with the following
printed examples: 25 = right hand is o~:e-fourth as hearv as the
left, 33 = right hand is one-third as hem’v as the left. 515 = ri,~ht
hand is one-half as twarv as the left. 100 = ratio equals one.
--- right hand is twice as heaw’ as the left. 300 = right hand is
three times as hem3, as the left. and 400 = right hand is/bur
times as heavv as the left.

.4 reragi~tg Task

Ss \~ere instructed to "judge the axerage heaxiness of the
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F(36,1260)= 1.47
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WEIGHT IN RIGHT HAND (GRAMS)
Fig. 2. Mean judgments of difference in heaviness between

right- and left-hand weights, as a function of the right-hand
weight. Separate curves represent different left-hand weights.

weights in the two hands," They’ used a 9-category scale with
labels varying from 1 Ivery rery light) to 9 very very heavy),

Subjects

The Ss were 24 UCLA undergraduates, fulfilling a requirement
in introductory psychology.

Twelve naive geophysics students, who were acquaintances of
E, were run in a preliminary study, performing the difference
and ratio tasks only. They were run in a similar fashion as the 24
Ss in the main experiment. The categor,v scale was reversed for
the difference task: these ratings were subtracted from 10 in
order to make the scale agree with that of the main experiment.
Because the data for these 12 Ss agreed in every, respect with
those of the main experiment, their data were combined with
the 24 Ss in the main study.

RESULTS

Difference Task

Figure2 plots mean .judgments of differences,
averaged across Ss. as a function of the weight in the
ri~t hand, with a separate curve for each level of
left-hand weight. The vertical separations between the
curves represent the effects of left-hand weight: the
slopes represent the effects of right-hand wei~t. Thus,
positive slopes simply indicate that judgments of the
difference in heaviness between the right hand and left
hand increases as level of weight in the right hand
increases.

The subtractive model predicts that the curves should
be parallel, since the differences between the curves are a
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Fig. 3. Mean judgments of ratios as a function of level of

fight-hand weight.

function of left-hand weight only. As can be seen in the
figure, the curves, are very nearly parallel. The mean
absolute discrepancy from the subtractive model is only
1/10 of one category.. The analysis of variance test for
interaction (nonparallelism) was small, though of
borderline statistical significance, F(36,1260) = 1.47.
Considering the power of the test and the lack of any
systematic discrepancy from parallelism in Fig. 2, the
results support the subtractive model.

It thus appears that the results are consistent with the
assumptions that Ss compute differences when
instructed to do so, and that the judgment function, J, is
linear for category ratings of differences.

Ratio Task

The mean ratio estimations divided by 100 are shown
in Fig. 3, plotted in the same way as in Fig. 2. Since the
ratio model of Eq. 2 is a multiplicative model, the
graphic prediction is one of a family of diverging c’~rves
which intersect at a common point (Anderson, 1970).
Statistically, the interaction should be significant and
located entirely in the bilinear component.

The interaction is, in fact, divergent and highly
sigrfificant, F(36,1260) = 22.53, with 82% of the
variance in the bilinear component. As can be seen in the
figure, the data follow the graphic prediction of a
bilinear fan of curves. The residual from bilinearity was
small, though of borderline significance, F(35,1225) =

1.60, indicating that the ratio model gives a good
approximation t~ magnitude estimations of "ratios.’’1

Averaging Task

Figure 4 plots mean judgments of averages as a
function of lew;l of left-hand weight, with a separate
curve for each level of right-hand weight. Judgments of
average heaviness increase with increases of weight in
both right and left hands.

The constant-weight averaging mode!, as a special case
of an additive model, predicts parallel curves for Fig. 4.
Instead, the figure shows that the curves converge
toward the right, in violation of this prediction. A test of
the interaction was statistically significant, F(36,828) =
2.49, with 54% of the interaction variance concentrated
in the bilinear component. The test of the bilinear
interaction is highly significant, F(1,23) =: 14.94.

The convergent interaction is similar to that observed
in a number of studies involving averaging of
psychophysical stimuli, for loudness averaging (Parducci,
Thaler, & Anderson, 1968), length averaging (Bimbaum,
Parducci, & Gifford, 1971), and averaging of motor
movements (Levin, Craft, & Norman, 1971).

The present results provide further evidence against a
simple averaging model, since the effect of any weight
appears to depend on the weight with which it is
paired} However, the possibility remains that the
discrepancies re!]ect nonlinearity in the J function for
the rating response. Thus, it is possible that the
constant-weight averaging model is an appropriat.e

9 AVERAGING TASK
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Fig. 4. Mean judgments of averages as a function of left-hand

weight, with a separate curve for each level of right-hand weight.
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description of the integration function, I, but that the
overt responses must be transformed to eliminate
response bias. The propriety of rescaling the data can be
examined with respect to the scale convergence
criterion.

Scale Convergence Criterion Applied

Briefly, the above findings suggest that when
instructions specify "differences," the subtractive model
fits; when instructions specify "ratios," the ratio model
fits: however, when the instructions are to judge
"averages," the simple averaging model does not fit.
According to a simplistic view of functional
measurement, the fit of the models for the first two
tasks would simultaneously validate the models and the
two response scales. The interpretation of the averaging
task would be uncertain--either the response scale or the
simple averaging model (or both) are not valid.

The next section shows how the scale convergence
assumption can help remove some of the uncertainty for
the averaging task: rescaling of the averaging data would
be considered appropriate if, after rescaling, scale values
derived from the model agreed with those from the
other tasks. The section after next shows how
comparison of scale values for the difference and ratio
tasks challenges the simplistic view of functional
measurement.

A veragiptg vs Difference Task Scales

If we assume the validity of the subtractive model for
the difference task, then the parallelism of the raw data
in Fig. 2 supports the conclusion that the J function for
category ratings of differences in this situation is linear.
Hence, the scale values derived from the model (marginal
means) form an interval scale of the stimuli. Thus, each
curve in Fig. 2 traces the shape of the psychophysical
function, H, for the subtractive model. The curves are
negatively accelerated and could be roughly
approximated by either a logaritlm-~L ~elation or a power
function with a low exponent (.18). This exponent
differs drastically from results obtained with magnitude
estimations (Stevens & Galanter, 1957), which implied
exponents greater than one. However, exponents less
than one (approximately .6) have been obtained by
investigators using additive and subtractive models (e.g.,
Rule, Curtis, & Markley, 1970: Anderson, 1972).

Since the averaging model did not fit the data, it is
more difficult to find scale values. However, when the
weights in the two hands are of equal value, almost any
model will imply that the impression of heaviness equals
the scale value. Judgments of equal pairs, Ri’~, are
therefore J(st), where J is the judgment function for
category ratings of averages. The scale convergence
criterion provides a method for finding J, and for
appropriate reseating, if the data so dictate.

Figure 5A plots Ri} as a function of the subtractive
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Fig. 5. (A)Mean judgments of equal-weight pairs for the
averaging task as a function of the difference model scale values.
(B) Scale values for the ratio model as a function of the
difference model scale values. (C) Relationship between scale
values derived from application of the subtractive model to the
data for both the difference and ratio tasks. To apply the
subtractive model to the ratio task data, the responses were
transformed to additivity, using MONANOVA. (D) Presumed J
function for the ratio task. The solid curve depicts the
relationship bet~veen the categories representing "ratios" and the
numerical response required of the S. The points show the
transformation estimated by MONANOVA that makes the ratio
data fit the subtractive model.

model scale values, derived from the difference task
data. The abscissa values are assumed to represent s and
the ordinate values are assumed to represent J(s).
Therefore, the curve in Fig. 5A represents an ahnost
perfectly linear judgment function for the averaging
task. Thus, these data do not dictate transformation.
Indeed, if the validity of the subtractive model is
assumed, the linear relationship in Fig. 5A validates the
rating scale for the averaging task. Also, this result then
implies that the nonparallelism in Fig. 4 is "real," not
due to a response bias.

A subsidiary analy’sis checked the possibility that a
mild monotonic rescaling might make the averaging data
in Fig. 4 parallel, while retaining scale values compatible
with the other tasks. The mean averaging data were
transformed to parallelism using MONANOVA, a
computer program based upon Kruskal’s {1905)
monotone rescaling mrocedure (Kruskal & Carmone.
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Fig. 6. Mean logarithm of ratio estimations for the ratio task,

plotted as in Figs. 2 and 3.

1969). Following a positively accelerated
transformation, the scale values derived in accordance
with the constant-weight averaging model were
nonlinearly related to both the difference and ratio task
scales. Response scaling would therefore be considered
inappropriate if the convergence criterion is accepted.
Thus, the interaction is "real," and one must seek
alternative integration functions, such as either the range
model (Birnbaum et at, 199)or differentially weighted
averaging models (Anderson, 1971).

Ratio vs Difference Task Scales

If the validity of the ratio model and the linearity of J
for the ratio task are assumed, then the marginal me, am
are estimates of the scale values for the right-hand
weight and of reciprocals of the scale values for the
left-hand weight. The curves in Fig. 3 describe the shape
of the psychophysical function for the ratio model,
indicating a near-linear relationship with a slight podtive
acceleration.

Figure 5B plots the scale values derived from the ratio
model as a function of the difference task scale values.
The function is markedly nonlinear, showing a positively
accelerated relationship between the two sets of scale
values. This exponential relationship was found for all
but two individual Ss. Although both models agree with
the data for their tasks, their respective scales do not
agree.

Scale convergence can provide a basis for response
transformation, even though both models fit the raw
data. The problem is to find representations of both sets
of data, so that the two sets yield compatible scale
values. The answer to this problem, explained by
analyses below, is that the same 1 function applies to
both tasks.

The ratio task data were transformed to fit the
subtractive model by means of MONANOVA. Figure 5C
p!ots the scale values obtained from this analysis as a
function of the subtractive model scale values derived
from the diffi,’rence task data. This plot is almost
perfectly linear, consistent with the interpretation that
Ss are performing the same integration function for both
tasks, regardless of instructions. The inverse of the
monotone transformation that eliminated the
interaction is slnown by the solid points in Fig. 5D. If
"ratios" are really computed by subtraction, then the
points in Fig. 5D depict the J function for magnitude
estimations of "ratios." The .I function esthnated by this
procedure is nearly exponential.

The ratio task data were t~ansformed by a logarithmic
function, whicia would counteract the effect of the
presumed exponential J function. The mean log ratio
response is shown in Fig. 6. Although the interaction is.
statistically significant, F(36,1260) = 2.69, the curves.
appear roughly parallel and do not show any systematic
deviations from parallelism. The 49 points in Fig. 6 were
a nearly perfect linear function of the mean ratings in
Fig. 2, indicating that the responses for the two tasks
were indeed nearly exponentially related. In additio.n,.
the marginal mean log ratios were linearly related to the
subtractive model scale values for all but two individual.
Ss.

These findings eliminate the possibility that bmh
difference and ratio models apply with a common scale.
If Rg = (si/si)~, then log Rrt = a[log si - log si]. Hence,
the marginal mean logs would be a logarithmic, rather
than linear, function of subtractive model scale values.
The same argument applies to the MONANOVA results
shown in Figs. 5C and 5D. If the ratio model were
correct and J was a power function, the points in Fig. 5C
would be logarithmic rather than linear. MONANOVA
gives the same scale values to both sets of data, because
the responses for the two tasks, RR and RD, are
monotonically (exponentially) related.

The findings that the raw data fit the simple ratio and
subtractive models and that scales agree only when both
sets of data are fit to the same model suggest that one of
the simple models applies to both tasks.

It should be emphasized that the present data suggest
that Ss perform the same I function for "differences"
and "ratios," bat these data do not permit specification
of what the I function is. This point deserves
elaboration. The data are compatible with either of the
following theories: (1) RD = a(si - sj) + b, and Rrt =

exp(si - si); ot (2) R~ = alog(si/E) +b, and RR =
(si/si)~. The data are not compatible with the following:
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RD = J[si - si] and RR = J*[si/si] , where J and J* are
any arbitrary monotonic functions. This follows because
RR = exp(RD) for these data. For these two integration
functions to apply with the same H function, the
responses must not be monotonically related (Krantz
et al, 1971: Krantz. 1972).

If tire scale convergence criterion is accepted, we must
face the indeterminacy that Ss integrate information in
the same way for "differences" and "ratios." One
approach to the problem would be to propose testable
theories of the J function. If we assume the validity of
the ratio model for both tasks, we must conclude that
the category ratings induce an exactly logarithmic J
function. However, no testable theory for this relation
seems evident.

On the other hand, to conclude that the subtractive
model applies to both tasks would imply that the J
function for magnitude estimation would have to be
exponential. The following speculation offers a testable
and potentially useful explanation of magnitude
estimation: Suppose Ss treat magnitude estimation
"ratios" as equal-interval categories. When given a scale
of "ratios," they consider the differences between
adjacent "ratios" to be equal, as though they were
categories. Hence, Ss treat the psychological difference
between "four times as heavy" and "twice as heavy" as
being equal to the difference between "one-half as
heavy" a0d "one-fourth as heavy." Magnitude
estimation instructions typically include several
examples, such as "if it seems twice as heavy, say ’200,’
if it seems four times as heavy, say ’400.’" If the
examples defined the scale for ratios of 1/4, 1/2, 1, 2,
and 4, then the transformation would be perfectly
exponential. Since these examples are frequently used, it
should be no surprise that magnitude estimation scales
are often related by an exponential transformation to
category scales. Hence. the particular J function for a
given magnitude estimation experiment may depend
upon the examples used to define the scale as well as a
variety of other factors (Poulton, 1968)

DISCUSSION

These data suggest that when Ss are instructed to rate
"differences," the ratings satisfy the parallelism dictated
by the subtractive model (Fig. 2). When instructions
specify "ratios," the data conform to the bilinear
prediction of the ratio model (Fig. 3). However, the
scale values derived from the two sets of data agree only
when both sets of data are fit to the same model. These
results are in startling agreement with Torgerson’s
(1961) conjecture that Ss do notdistinguish
"differences" from "ratios."

Functional Measurement

According to a simplistic view of functional
measurement, the fit of file model simultaneously

establishes the validity of the model and the response
scale. However, if only the difference task or only the
ratio task had been studied, the investigator using this
simplistic approach would have concluded that both the
model and response scale were validated. By studying
both tasks in the same experiment, by assuming that the
psychophysical function is task invariant, and by
limiting the discussion to the simple subtractive or ratio
models, we conclude that at least one model and one
response scale are not valid. The exponential relationship
between the two response procedures allows both
models to fit when only one integration function
appears to operate.

A more intricate view of measurement and model
testing is required. A further constraint is required to
specify all of the functions of functional measurement
(Fig. 1B) and remove the lingering indeterminacy. It is
not possible to simultaneously validate both the model
and the response scale in a single two-factor experiment.
These problems do not seem insurmountable, however.
and three lines of attack seem to offer great promise:
First, a coherent system of models and, response scales
over a wide variety of situations, together with the
concept of simplicity, may suffice (Anderson, 1972:
Birnbaum, 1972). Second, the scale-free approach as
applied in Birnbaum (1972, Experiment IV) may
provide additional insight into the integration process.
Third, theorization about the judgment function can
lead to testable consequences, which, if verified, would
predict and explain the actual responses obtained in a
given experiment. This more intricate view is very much
in the spirit of functional measurement, with its concern
for explaining overt responses rather than merely ordinal
relationships, but it requires more ordinal constraints.

Magnitude Estimation May Be Valid

Anderson (1972), based on a variety of lines of
evidence (cf. Weiss, 1972; Curtis, Attneave, &
Harrington, 1968; Curtis & Fox, 1969; Curtis, 1970;
Rule, Curtis, & Markley, 1970), has recently argued that
magnitude estimation "must be biased and invalid." It
must be emphasized that this conclusion follows only
from the assumption that the integration processes
studied in the above references were additive.

The arbitrariness of this conclusion is illustrated by
Weiss’s (1972) direct comparison of magnitude
estimation with graphic rating for an averaging task.
When graphic ratings were employed, the data fit the
constant-weight averaging model; however, the
magnitude estimations were quantitatively consistent
with the geometric averaging model,a Only the
assumption of one model or the other would lead to the
conclusion that one response procedure was "valid" and
the other "biased."

If we assume the validity of the constant-weight
averaging model for the Weiss (1972) study, we must
conclude that magnitude estimation induces an
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’ exponential transformation. Similarly, if the validity of
the subtractive model is assumed for the present ratio
task, then an exponential J function would be required
to explain the fit of the ratio model (Fig. 3).

However, if we assumed a geometric averaging model
for the Weiss (1972) study and a ratio model for the
present ratio task, we might conclude that magnitude
estimation is a valid procedure. Thus, it may be possible
to develop a coherent system based on multiplicative
models and magnitude estimation. To call one response
measure the "tree measure of sensation" seems
premature at present.

CONCLUDING COMMENTS

The simplest interpretation appears to be that the
subtractive model is the appropriate representation for
both the difference and ratio tasks, that magnitude
estimation induced an exponential judgment function,
and that the interaction for the averaging task should be
attributed to a nonadditive integration function rather
than to a bias in the judgment function. These
conclusions follow from the scale convergence criterion
and the assumption of the subtractive model for the
difference task. (1)The parallelism of the curves in
Fig. 2 supports the linearity of J for ratings of
differences. (2) That ratings of averages of equal weights
are linearly related to subtractive model scale values
(Fig. 5A) validates the rating scale for the averaging task.
(3) The f’mdings that scale values for the difference and
ratio tasks are exF, onentially related (Fig. 5B), and that
scale values for the two sets of data agree when both are
fit to the same model (Fig. 5C) suggest that Ss use the
same I function for "differences" and "ratios." (4)The
fit of the ratio model (Figs. 3 and 6), together with the
assumption that I is subtractive, implies an exponential J
function for the ratio task.

Scale convergence can thus prevent blaming the
response scale when a model fails (averaging task) and
can dictate rescaling even when the model fits
(difference and ratio tasks). It could also dictate
appropriate rescaling to rectify nonlinearity in the
response scale. Scale convergence seems a reasonable
requirement and a potentially useful concept for the
study of psychological laws. However, one must
continue to question even the most reasonable
assumptions. This invariance assumption can be
considered a provisional criterion that is also a
potentially testable empirical proposition.

Further research is needed to examine the generality
of these results for different stimulus continua. For
certain continua, such as visual length, it seems
intuitively plausible that Ss could judge both differences
and ratios. The study of a variety of tasks involving
different algebraic models seems a promising approach
to understanding information processing and judgment.
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NOTES

1. Two other analyses supported the fit of the ratio model.
(1) The f’Lrst test multiplied each ijth and jith entry of the
response matrix for each S. From Eqs. 2 and 4, these products
can be written

Xtj = [a(sils~) + b] ¯ [a(sj/si) + b]= a~ +’ab(si/s~) + ab(sj/si) + b~’

which depends upon si and sj. However, if b = 0. then Xij = a=,
indicating that the products should be constant for all cells in
the design. The mean of these products \vas 1.02, and they did
not appear to show any systematic pattern of deviations from
this value. (2) If the intercept (b) is zero, the product of each
row margina! mean. csi and corresponding column marginal
mean. d(1/si), should be equal to a constant, cd, providing the
scale value of each stimulus is independent of which hand it is

presented in. itowever, if b were nonzero, then these products
would be a monotonic function of the level of weight. These
products were taken for each S and level of weight, and they
were not significantly different from one another, F(6.210) =
1.54, nor were they a monotonic function of the level of weight;
hence, the linear trend was also nonsignificant, F < 1.

2. The range model (Birnbaum et al, 1971) was fit to the
averaging task data. The simple range model, ~ii = .5(st + s~) +
co I si - s~ I, can be rewritten as a configural-weight model, g,:fi =
(.5 + co)si + (.5 - co)h, when si > si. Estimating one additional
parameter (co), the range model provided a highly significant
improvement over the constant-weight averaging model. F(1,35)
= 29.27. An averaging model with differential weights fit nearly
as ~vell as the range model, although it used a ~eater number of
parameters.

3. It is possible that the change in instructions in the \Veiss
(1973) study may have induced the Ss to use a different
integration rule. However, a subsequent analysis of these data
based on the scale convergence criterion rules out this
possibility. The psychophysical scales derived from the two sets
of data were more nearly linearly related when both sets were
transformed to fit the same I function.
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