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MARTER: Markov True and Error model of drifting parameters
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Abstract

This paper describes a theory of the variability of risky choice that describes empirical properties of choice data, including

sequential effects and systematic violations of response independence. The Markov True and Error (MARTER) model

represents the formation and fluctuation of true preferences produced by stochastic variation of parameters over time, which

produces changing true preference patterns. This model includes a probabilistic association between true preferences and overt

responses due to random error. Computer programs have been developed to simulate data according to this model, to fit data to

the TE model, and to test and analyze violations of iid (independent and identical distributions) that are predicted by the model.

Data simulated from MARTER models show properties that are characteristic of real data, including violations of iid similar

to those observed in previous empirical research. This paper also illustrates how methods based on analysis of binary response

proportions do not and in many cases cannot correctly diagnose what model was used to generate the data. The MARTER

model is extremely general and neutral with respect to models of risky decision making. For example, the transitive transfer

of attention exchange (TAX) model and intransitive Lexicographic Semiorder (LS) models can both be represented as special

cases of MARTER, and they can be tested against each other, even when binary choice proportions cannot discriminate which

model was used to simulate the data. Software to simulate data according to this model, and to fit data to this model, to test

this model, and to compare special case theories are included or linked to this article.
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1 Introduction

When a person is presented on separate occasions with the

same decision problem, the same person does not always

choose the same alternative. This fact, that people are not

consistent in their expressed preferences, has led to at least

three related problems: First, we would like to understand

why a person has reversed preferences. Did the person ac-

tually change his or her mind, perhaps by changing the pro-

cesses or parameters of decision making, or did she or he

merely make a random "error", perhaps due to misreading or

forgetting the information, errors in aggregating, or errors in

remembering or executing the response? If both true changes

of preference and random errors are involved, can we sep-

arate these sources of variation and estimate their relative

contributions?

Second, if we want to construct theories of decision mak-

ing, it becomes difficult to do so when responses to the same

item are not consistent. If a person were perfectly consistent

in his or her choices, it would be easier to devise and test
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theories to describe those choices than if the responses to

choice problems contain a lot of variability.

Third, when attempting to test the accuracy of a theory

or when comparing rival theories in their descriptive accu-

racy to data, we perform statistical analyses. However, an

improper theory of stochastic variability can lead to system-

atically wrong inferences: wrong theories can appear to be

right and right theories can appear to be wrong, when the

wrong statistical model is assumed, so we wish to find a

stochastic theory that is descriptive, or at least neutral with

respect to the substantive theories that we wish to test and

compare.

These problems have been discussed in many previous

articles, but solutions are not yet agreed upon (Fechner,

1860; Thurstone, 1927; Luce, 1959, 1997; 2000; David-

son & Marshak, 1959; Becker, DeGroot & Marschak, 1963;

Morrison, 1963; Lichtenstein & Slovic, 1971; Loomes,

Starmer & Sugden, 1991; Sopher & Gigliotti, 1993; Car-

bone & Hey, 2000; Hey & Orme, 1994; Harless & Camerer,

1994; Loomes & Sugden, 1998; Butler & Loomes, 2007;

Rieskamp, Busemeyer & Mellers, 2006; Tsai & Böcken-

holt, 2006; Rieskamp, 2008; Wilcox, 2008; Blavatskyy &

Pogrebna, 2010; Butler, Isoni & Loomes, 2012; Bayrak &

Hey, 2017).

Recent articles on this topic have begun to argue that the

variation in choice responses cannot be fully explained by

a single process (Birnbaum, 2013; Bayrak, 2018; Bhatia &

Loomes, 2017; Cavagnaro & Davis-Stober, 2014; Regen-
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wetter & Davis-Stober, 2018; Regenwetter & Cavagnaro,

2019). The QTest approach (Zwilling, Cavagnaro, Regen-

wetter, Lim, Fields & Zhang, 2019) allows error to be at-

tributed either to arbitrary random error components or to

a mixture of true intentions, but it has not yet provided a

method for allowing both sources of variation to be esti-

mated separately from the data. Bhatia and Loomes (2017)

explore the effects of random variation in parameters of a

decision making model, but note that such variation cannot

explain all of the phenomena of choice data, so there must

be another source of error.

This article will expand upon an approach based on True

and Error (TE) theory (Birnbaum, 2011, 2013, 2019; Birn-

baum & Bahra, 2007a, 2012a, 2012b; Birnbaum & Diecidue,

2015; Birnbaum & Gutierrez, 2007; Birnbaum & Schmidt,

2008; Birnbaum, Schmidt & Schneider, 2017; Birnbaum &

Quispe-Torreblanca, 2018). This approach does allow sepa-

ration (and estimations) of the variability due to changes in

true preferences and due to random errors. The term True

and Error Theory (TET) refers to the general theory that at

any given time in a given person there is a coherent set of

true preferences, that these true preferences might change

over time, and that overt responses may be perturbed by ran-

dom errors; the term TE model refers to a special case of this

theory in which particular simplifying assumptions are im-

posed; the term TE approach refers to the use of appropriate

experimental designs with operational definitions that allow

one to test both the TE models and substantive theories via

analyses of nested TE models. The TE approach requires

analysis of data at a deeper, more detailed level than merely

analysis of binary response proportions.1

True changes in preference are said to occur when a person

changes the way in which information is evaluated, weighed,

and combined. Changes in the value of a parameter, as

theorized by Bhatia and Loomes (2017), or changes in the

decision making rule, for examples, would produce changes

in utility and can thus alter true preferences. Errors are said

to occur when a person misreads, misremembers, misaggre-

gates information, or accidentally pushes the wrong response

button. Such errors are assumed to be random, but it is not

assumed that every choice problem has the same rate of error.

These two categories of sources of variation can be disen-

tangled and their contributions separately estimated from the

data, if the experiment is properly designed to allow it and if

the TE model is empirically descriptive.

The TE approach requires improved experimental designs

to properly fit and test TE models. In particular, one must

replicate each choice problem within person in each experi-

mental session (block of trials). For example, experimental

choice problems can be presented twice in each session,

interspersed among many other, similar choice problems.

Presentations can be intermixed with filler trials, properly

1For additional discussion of TE theory, models, and approach, see

Appendix A.

counterbalanced, and presented in randomized orders. A

simplifying assumption used in TE models is that preference

reversals by the same person in the same brief session to

the same item are due to random error. The TE approach

requires analysis of detail in the data (including response

patterns) rather than analysis only of binary response pro-

portions. Whereas some approaches assume that responses

are independently and identically distributed (iid), TE mod-

els typically violate independence, and the patterns of vi-

olations of iid reveal useful information used in fitting TE

models.

TET can be applied in two situations: In group True and

Error Theory (gTET), each participant must respond at least

twice to each choice problem in at least one session, and

there are many participants. TET allows that participants

may differ from each other in their true preferences, and TE

models assume that preference reversals to the same item in

the two replications by the same person in the same session

are due to random error.

In individual True and Error Theory (iTET), a single in-

dividual is tested in many sessions (blocks of trials); for

example, a participant might be asked to participate in an

experimental session each day for a number of days, but

the key choice problems are presented at least twice in each

session (block of trials). The individual is allowed to have

different true preferences in different sessions. In models of

both iTET and gTET, reversals of preference within a brief

period of time by the same person to the same problem are

attributed to random errors.2

This article presents an additional component to iTET, in

which it is theorized that parameters of a risky decision mak-

ing process fluctuate within a person according to a Markov

process. This addition allows the theory to describe sequen-

tial effects that have been empirically observed in previous

research but not yet represented within TET. The idea of

a Markov process for stochastic parameters was mentioned

in Birnbaum (2011) and sketched in Birnbaum (2013, Ap-

pendix B). New software has been created for simulation of

data according to these models.

Using the simulated data, we will illustrate why it is im-

portant to analyze choice data in terms of response patterns

rather than merely via binary response proportions. We will

generate hypothetical data from either a transitive or intran-

sitive decision making model. We will show that the QTest

methods, or any methods that are based on binary choice

proportions, fail to correctly distinguish between data gen-

erated by a transitive as opposed to an intransitive choice

process. We will also show that analyses via TE models cor-

2In previous applications of TE models, it has been assumed that a per-

son does not change true preferences in the space of 5 minutes, and this

assumption has provided a good approximation to empirical data. How-

ever, it is an empirical question how often people might change their true

preference patterns. That empirical issue is considered in the Discussion

section.
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rectly diagnose the simulated data.3 We will also show that

TE models imply violations of the assumptions that choice

responses are independently and identically distributed (iid),

and that analysis of response patterns and violations of iid

can help identify the stochastic processes used to generate

the data.

1.1 Binary Choices and Response Patterns

It is important to distinguish between binary responses (in-

cluding binary choice proportions) from response patterns

(including proportions of response patterns). To illustrate

this distinction, consider a test of transitivity of preference

among three gambles: A, B, and C. There are three choice

problems, AB,BC, and CA. For example, A = ($100, 0.50;

$0) represents a risky gamble with a 50% chance to win $100

and otherwise nothing ($0); B = ($92, 0.58; $0); C = ($84,

0.66; $0).

The true preference binary relation is said to be transitive

if and only if, for all A, B, and C,

if A ≻ B and B ≻ C, then A ≻ C,

where A ≻ B denotes A is truly preferred to B, where ≻

indicates true preference. Because it is possible that true

preferences may change over time, it is helpful to clarify that

the statement that true preferences are transitive means that

at no time does a person have an intransitive true preference

pattern.4 We will describe a model as "transitive," if it

implies that true preferences are transitive for all gambles

(and all parameters) and a model is "intransitive" if it allows

violations of transitivity for any gambles and parameters.

True preferences may change over time and overt re-

sponses may contain errors that cause overt response to differ

from true preference at the time. So if a single set of ob-

served choice responses from a person violated transitivity,

one need not conclude that the person’s true preferences

violated transitivity. We distinguish a true preference, rep-

resented for example, A ≻ B, from an individual, observed

choice response.

3The QTest methods of Zwillig, et al. (2019; see also Regenwetter,

Davis-Stober, Lim, Cha, Guo, Messmer, Popova and Zwilling, 2014) fol-

lows the tradition of analyzing choice data in terms of response proportions.

Appendix A describes some of these now out-dated methods for testing tran-

sitivty of preference based on properties like Weak Stochastic Transitivity

(WST) and the Triangle Inequality (TI). These old-fashioned methods can-

not be relied upon to correctly diagnose whether a transitive or intransitive

process generated the data.

4This definition of transitivity retains the original definition as a prop-

erty of binary relations and does not follow previous researchers down the

"rabbit hole" of pursuit of stochastic re-definitions of transitivity in terms

of averaged behavior. Study of properties such as weak stochastic transi-

tivity (WST) and the triangle inequality(TI) distracted researchers for the

last 60 years without yielding a proper method for distinguishing transitive

from intransitive processes. For a brief discussion of that older approach to

testing transitivity, see Appendix B.

We can code responses to choice problems as follows: In

Choice Problem AB, let 1 = expressed preference for A over

B and 2 = expressed preference for B over A. We can do

the same for other choice problems. We could also use this

notation to refer to true preferences, but it is important to

be clear to distinguish whether the notation refers to true

preferences or to observed choice responses.

1.2 Patterns, Replications, and Sessions

The term true preference pattern refers to a combination

of true preferences in choice problems. For three choice

problems, AB, BC, and CA, for example, let 111 represent

the following true preferences: A ≻ B, B ≻ C, and C ≻ A

(an intransitive pattern), and let 112 = A ≻ B, B ≻ C,

and A ≻ C (a transitive pattern). With three binary choice

problems, there are eight possible true preference patterns,

including two intransitive patterns, 111 and 222, and six

transitive patterns, 112, 121, 122, 211, 212, and 221.

The term response pattern refers to a combination of ob-

served responses. We can use the same system of notation to

refer to response patterns as to true preference patterns, and

it is important to distinguish an observed response pattern

of 111 from a true preference pattern of 111. For example,

a person with the true preference pattern of 112 might show

the observed pattern of 111 by making an error on the CA

choice.

If there are multiple blocks of trials (sessions),

we can compute proportions of response patterns,

P111,P112,P121, ...,P222. Once we know the 8 proportions

of patterns, we can always compute the 3 binary response

proportions; for example, P(AB) = P111+P112+P121+P122.

But we cannot in general reconstruct the 8 pattern propor-

tions from the 3 binary choice proportions.

As noted above, the TE approach requires one to obtain

replications within each person and session (block of trials)

in order to properly estimate error rates in TE fitting mod-

els. For example, one might present each of the three choice

problems twice in each session, embedded randomly among

many other choice problems, with the positions of the gam-

bles counterbalanced. Note that sessions or blocks of trials

are treated as "repetitions" whereas multiple presentations

within a brief session are treated as "replications." The term

"repetition" is intended to remind us that learning may be

involved, so the second repetition of a question is conceptu-

ally distinct from the first. In contrast, the term "replication"

means that two replications are considered equivalent and

could be exchanged without consequence.

If each of three choice problems is presented twice within

each session (block of trials), we can define response patterns

on all six choice problems. For example, let 111221 indicate

that the person showed the intransitive pattern, 111, in one

replicate and the transitive pattern, 221, in the other replicate

of the same session. With three choice problems presented

http://journal.sjdm.org/vol15.1.html
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twice per session, there are 64 possible response patterns per

session.

1.3 Response Independence is Empirically Vi-

olated

It has sometimes been assumed that choice responses are

independently and identically distributed (iid). This as-

sumption simplifies analysis of certain choice models, per-

mits derivation of asymptotic statistical tests, and justifies

a focus of attention on binary choice proportions. The

assumptions of iid imply simpler properties that are spe-

cial cases of independence: the probability of a response

is stationary (does not change over time), that it is inde-

pendent of responses to other items, and that it is indepen-

dent of the sequence of previous responses to the item and

other items. With respect to the choice problems studied

here, these basic aspects of iid can be written: Stationar-

ity: p(ABt ) = p(AB) for all sessions (times), t, Sequential

independence: p(ABt |AB1, AB2, ..., ABt−1) = p(AB), and

Response independence: p(AB|BC,CA) = p(AB), which

should hold for all choice problems.

If choice responses satisfy response independence and sta-

tionarity, it means that the probabilities of the 64 possible

response patterns (of Section 1.2) contain no more informa-

tion than is contained in the three binary choice probabili-

ties. If iid holds, then the probability of any response pattern

(conjunction of responses) is simply the product of the prob-

abilities of the binary response probabilities. For example,

p(111111) = p(AB)2p(BC)2p(CA)2.

In this paper, we will test a special type of sequential

independence, which is violated by most MARTER models.

We call this property pattern sequence independence, which

is the assumption that the response pattern in Session t is

independent of the response pattern on Session t − 1. We

will illustrate how this test can be used to distinguish a special

class of MARTER models.

Empirical research shows that choice responses violate

iid (Birnbaum & Bahra, 2007b; 2012a; 2012b). Birnbaum

(2011, 2012) devised two statistical tests that can be applied

with small samples to test sequential independence and re-

sponse independence. Birnbaum and Bahra (2007b, 2012a,

2012b) found overwhelming evidence of violation of both

sequential and response independence by these tests. Birn-

baum (2012, 2013) reanalyzed the data of Regenwetter, et

al. (2011) and found that even data that had been analyzed

under the assumption of iid showed systematic violations of

iid.5

5A controversy developed following Birnbaum’s (2011, 2012) reanaly-

sis of Regenwetter, et al. (2011). Cha, et al. (2013) challenged Birnbaum’s

(2012) conclusions and tried to argue that iid might remain an accept-

able approximation for the Regenwetter, et al. data, if one were to include

additional data in the analysis. However, Birnbaum (2013) refuted their

arguments by showing that the additional data also violated iid. Regenwet-

ter and Davis-Stober (2018) have begun to consider the issue of sequential

TE models do not satisfy iid (they violate response inde-

pendence, except in special cases), and in fact, they imply

violations similar to those reported in several studies: People

are more consistent in replications than predicted by random

preference models or other models based on iid (Birnbaum,

2011, 2012, 2013; Birnbaum & Bahra, 2007b, 2012a, 2012b;

Birnbaum, et al., 2016).

Evidence of sequential dependencies is revealed by Birn-

baum’s (2011, 2012, 2013) correlation test; it has been found

that there are fewer preference reversals between two blocks

of trials that occur closer together in time than between two

blocks that occur farther apart in time. This finding suggests

that people are not randomly and independently adopting

true preferences on each trial or even on each block of trials

but instead that people are more consistent in their preference

patterns when tested closer together in time.

Birnbaum (2011, p. 680-681) theorized that such re-

sults might result from a process in which there are system-

atic changes of parameters of a descriptive model of risky

decision-making over time. Suppose the value of a param-

eter at time t is likely to persist at time t + 1, and when

it does change, the change is not as sudden as it would be

if chosen randomly and independently from a distribution.

Birnbaum (2013, Appendix B) proposed that this process

might be modelled by a Markov process, and that idea is

more fully specified here as the MARkov True and ERror

(MARTER) theory.

Computer software has been developed that simulates data

according to a general MARTER model, and this software

permits specification of special cases. This software can be

used to simulate data according to particular stochastic pro-

cess models. The software can even simulate data according

to models that do not satisfy assumptions used in previous

applications of TE models. Each MARTER model has three

parts, or modules.

1.4 Three Modules of Stochastic Choice Re-

sponse Models

A MARTER model includes three components (modules),

which can be specified separately in the simulation program:

First, there is the model of risky decision making (RDM

model) that dictates which of two gambles a person will

choose in any given choice problem. The RDM model per-

mits different response patterns with different parameters,

but the RDM model does not permit all true response pat-

terns. This article will illustrate (in Section 2) two specific

rival RDM models: a transitive model (TAX model), and an

intransitive model (Lexicographic Semiorders).

independence, and Regenwetter and Cavagnaro (2019) declared the paper

by Regenwetter and Davis-Stober (2018) to be a "full-fledged" tutorial on

independence. However, that tutorial does not consider response patterns or

theories of response patterns, so it does not address response independence,

an important component of iid.
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The second module is the stochastic representation of how

parameters of the RDM model (and therefore true response

patterns) can change from time to time. In Section 3, this

module will be represented by a Markov process on the pos-

sible true response patterns, which correspond to different

parameter values in the RDM model.

The third module (discussed in Section 4) is the error

model that specifies the stochastic relationships between true

preference patterns and observed response patterns. The

computer program associated with this paper allows an ex-

tremely general specification of errors. It also implements

a simple TE model as a special case, in which each choice

problem can have a different error rate, and errors are mutu-

ally independent.

A key purpose of this article is to show that one can dis-

tinguish between data generated by transitive or intransitive

processes using TE fitting models as an analytic approach,

and that this ability to correctly diagnose the RDM mod-

els operates properly even when true states fluctuate via a

Markov process. It will also be shown that methods based

on binary choice proportions, such as the QTest method

(Zwillig, et al., 2019), are unable to distinguish whether the

RDM model was transitive or intransitive.

2 Risky Decision Making Models

Consider two-branch gambles of the form G = (x, p; y), rep-

resenting a gamble with a probability of p to win $x and oth-

erwise win $y, where x > y ≥ 0, and 0 < p < 1. Suppose

there are three gambles as follows: A = (100, .50; 0),B =

(92, .58; 0) and C = (84, .66; 0). We will consider two mod-

els that imply preferences and preference patterns among

such gambles, once their parameters are specified. One is

transitive (it can only imply transitive patterns) and the other

intransitive (it can imply intransitive patterns).

2.1 TAX model (Transitive)

Suppose each gamble has a utility. Assume that G ≻ F (a

person truly prefers gamble G over gamble F) if and only if

U(G) > U(F), where U(G) is the utility of gamble G; all

models satisfying this assumption imply that preference is

transitive (because the utilities are numbers and > is transi-

tive).

The special TAX model (Birnbaum, 2008) will be used

to illustrate a specific transitive model. The special TAX

model can be written for two-branch gambles as follows:

U(G) =
au(x) + bu(y)

a + b
(1)

Where a = pγ(1 − δ/3) and b = (1 − p)γ + pγδ/3, u(x) and

u(y) are the utilities of the monetary consequences, x and

y, and U(G) is the utility of the gamble. The parameters,

γ and δ might differ between individuals, causing different

people to have different preferences, and they might change

from time to time within a person, producing different true

preferences within an individual.

For American undergraduates with modest cash prizes

ranging from $0 to $150, it has been found that one can

approximate modal choices (group data) with u(x) = xβ ,

where 0 < β ≤ 1, 0 < δ ≤ 1, and with 0 < γ ≤ 1. For

simplicity in this paper, we will fix β = 1 and δ = 1 and

explore the preference patterns produced by plausible values

of γ. There are four true preference patterns implied when γ

= 0.50, 0.55, 0.60, and 65, respectively: 112, 212, 211, and

221.

These same four “true” response patterns are also com-

patible with expected utility (EU) theory, which is a special

case of TAX in which γ = 1 and δ = 0, if u(x) = xβ , where

β = the exponent of the utility function. The EU model, like

cumulative prospect theory (CPT) of Tversky and Kahneman

(1992), of which EU is also a special case, however, can not

account for systematic violations of coalescing, stochastic

dominance, or restricted branch independence (Birnbaum,

2008), so those models have been rejected in favor of TAX

based on experiments using other choice problems testing

properties besides transitivity.

Thus, this TAX model plays no special role in this analysis

of transitivity, but we use TAX here to illustrate a transitive

model because it remains compatible with other data that

refute other models, and so it remains a viable descriptive

model, whereas EU and CPT do not remain viable descrip-

tively. An important point to keep in mind, however, is that

none of these transitive models (TAX, CPT, EU, or any other

transitive models) could imply true patterns of 111 or 222,

no matter what functions or parameters they take on.

If each person had a fixed set of parameters, and if there

were no errors, each person would have exactly one of these

four true preference patterns as their response pattern, and

the same pattern would be observed in every session by

the same person. But if the person changes parameters,

she or he might have different true preference patterns at

different times. In Sections 3 and 4, we will take up how

true preferences change from time to time, and how errors

can perturb the responses, respectively.

2.2 Lexicographic Semiorder Models

(Intransitive)

Lexicographic semiorder (LS) models can imply intransitive

true response patterns, 111 or 222. In the PH LS model, a

person compares two gambles of the form, G = (x,g; 0) and

F = (y, f ; 0) by first comparing their probabilities to win the

higher prize; if the absolute difference, |g − f | > ∆P , where

∆P is the threshold parameter of probability, then the gamble

with the higher probability to win is chosen; if the difference

http://journal.sjdm.org/vol15.1.html
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in probability does not exceed threshold, choose the gamble

with the higher prize.

This model can produce the intransitive cycle, 111; e.g., if

∆P = 0.10 then A = (100, .50; 0) ≻ B = (92, .58; 0) because

the difference in probability (.58 − .50 = 0.08 < .10 = ∆P) is

not big enough to be decisive and 100 > 92; similarly, B ≻

C = (84, .66; 0) because the probability difference is again

too small, but 92 > 84; but C ≻ A because the difference

in probability now exceeds threshold (0.66 − 0.50 > 0.10 =

∆P).

This PH lexicographic model can also produce transitive

preference patterns, A ≻ B ≻ C (112) or C ≻ B ≻ A (221),

when ∆P > 0.16 or ∆P < 0.08, respectively. [The priority

heuristic model of Brandstaetter, Gigerenzer, and Hertwig

(2006) is a variant of this model that implies only the 111

pattern for these stimuli].

Suppose instead a person compares the highest amounts

to win first and then probabilities (in the HP LS): that person

might have the 222 pattern of intransitive preferences. In

HP LS, the difference between the highest prizes, |x – y|,

is compared to a cash difference threshold, ∆$, and if this

difference does not exceed threshold, the gamble with the

higher probability to win is chosen. If $8 < ∆$ < $16, the

person would prefer B over A, C over B, and A over C (222).

This model can also imply transitive true preference patterns,

112 and 221, for different values of ∆$.

Thus, a person whose behavior can be described by a

mixture of PH LS and HP LS might have any of these four

true response patterns: 111, 112, 221, or 222.6

3 Markov Models of Sequential Ef-

fects

Suppose a person’s behavior can be described by the TAX

model with different values of γt in different sessions (blocks

of trials), where γt is the parameter value in Session t. It

seems plausible that a person is likely to keep the same pa-

rameters in successive blocks of trials, but when a person

changes parameter value, the value drifts to a similar value,

rather than jumping randomly to a some different value. Sim-

ilarly, a person governed by LS models might change param-

eters from session to session in a similar, gradual fashion.

The idea that people remain fairly consistent in their pref-

erences seems plausible, and it agrees with the finding that

6Because these LS models can produce either transitive or intransitive

response patterns, one might think that they are not testable. However,

Birnbaum (2010) devised other diagnostic properties, such as interactive

independence, that can be tested in empirical studies to test LS models.

Birnbaum’s results strongly refuted LS models as descriptive of the data

reported; however, we use the LS models here merely to illustrate the idea

of testing between particular transitive and intransitive models, even though

LS do not appear to be viable descriptive models, based on empirical results

such as reported in Birnbaum and Gutierrez (2007) Birnbaum and Bahra

(2012b) and Birnbaum (2010).

1-q

1-p-q 1-p-q

1-p

q

p

q
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112 221212 211

γ = .50 γ = .65γ = .55 γ = .60

Figure 1: A Markov model representing transitions in a tran-

sitive (TAX) model between true preference states produced

by changing the parameter γ. The dataset, Trans 1, was gen-

erated with p = q = 0.1

responses patterns are more similar between sessions closely

spaced in time than between sessions farther apart in time

(e.g., Birnbaum & Bahra, 2012a, 2012b). We will use the

term "gradual" for the theory that parameters may change

but tend to remain stable or at least similar from one session

to the next.

This theory (1) of gradually drifting parameters can be

contrasted with three others: (2) independent change: A

person might adopt a different parameters randomly and in-

dependently in each session. (3) random preference: A

person might randomly and independently adopt a different

value of the parameter on each trial. This case combined with

other assumptions is sometimes called a "random utility" or

"random preference" model. These three stochastic specifi-

cations can be contrasted with a fourth possibility, (4) fixed:

It is possible that parameters remain constant from session

to session, and all of the variability in choice responses to

the same item is due to random errors.

In this article, we will develop a fairly general Markov

model to describe changing of parameters over time. This

general model will be simulated by software that can produce

data in each of the categories of parameter variations in the

previous paragraph.

Because parameter values correspond to different true

preference patterns, we can identify the states of the Markov

process either in terms of the parameter values or in terms

of the true preference patterns. The general Markov model

allows any transition matrix among the true states.

Because there are 8 possible response patterns in this case,

the full transition matrix can be represented by an 8 X 8 ma-

trix containing probabilities, pi j = the probability of transi-

tion from True State i on Session t to True State j on Session

t + 1. The Markov model assumes that this transition matrix

is the same for all t, and that it is independent of the path, or

history of the states, in previous trials.

Figure 1 illustrates a transitive stochastic process model

in which there are just four true preference patterns that

are compatible with the special TAX model (with different

values for γ). In this particular stochastic model, a person’s

parameter drifts gradually; that is, the person might transition

http://journal.sjdm.org/vol15.1.html


Judgment and Decision Making, Vol. 15, No. 1, January, 2020 MARKOV TE Model 53

1-p-q

1-p-q 1-p-q

1-p-q

p

p

q

q

q

q

p

p

111 222112 221
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Figure 2: A Markov model representing transitions among

preference patterns produced by changing parameters in

Lexicographic Semiorders. The dataset, Intrans 1, was gen-

erated with p = 0.2 and q = 0.1.

from γ = 0.50 (response pattern 112) to γ = 0.55 (pattern

212) between two successive sessions (blocks of trials), but

could not change in successive sessions from γ = 0.50 to

γ = 0.65. Many other stochastic models among these four

preference patterns are possible. With four states, there are

16 possible transition probabilities with 12 df (because the

row sums must add to 1). The model in Figure 1 assumes

the stochastic process is summarized by just two parameters,

p and q.

Figure 2 illustrates an intransitive stochastic process model

in which the four possible states correspond to those implied

by different parameters in lexicographic semiorders. Like the

model in Figure 1, there are exactly four possible true states,

and transitions among them are described by two transition

probabilities, but unlike Figure 1, the model in Figure 2 has

intransitive patterns, 111 and 222.

The stochastic models in Figures 1 and 2 are both examples

of gradual changing parameters, but they differ with respect

to the issue of transitivity.

4 Error Models

Like the Markov transition matrix, the error matrix is also 8

X 8. It contains entries, ei j = the probability given a person

is in True State i that the overt response is Pattern j.

The MARTER_sim.htm program is designed so that a user

can enter up to 64 error probabilities, representing the condi-

tional probabilities of responding with each response pattern,

given each possible true pattern.

The program also allows the option of entering just three

error rates, one for each choice problem. One can then push

a button to generate all 64 error rates from a TE Model in

which each item can have a different rate of error and errors

are mutually independent. Thus, the 64 errors (which have

64 − 8 = 56 df, because the entries in each row sum to 1) are

reduced by this model to just three parameters (with 3 df)

when this version of TE model is implemented.

In this TE model implemented by MARTER_sim.htm, in

which the error probabilities are mutually independent, the

probability of any conjunction of errors is given by the prod-

uct of the component errors. For example, if the error rates

are e1, e2, and e3 for Choice Problems AB,BC, and CA,

then the probability that a person who is in the True State

of 112 would show the 112 response pattern is given by:

(1− e1)(1− e2)(1− e3) and the probability that the person in

the True State of 112 would show the 111 response pattern

is given by (1 − e1)(1 − e2)e3.

The theoretical probability in this TE model that a person

would show a particular response pattern on two replications

within a block, given a True State, is the product of six error

terms, similarly constructed. For example, the probability

that a person would show the observed pattern 211 and 211

given the true pattern was 111 is e2
1
(1 − e2)

2(1 − e3)
2. For

more information on TE models, see Birnbaum (2013), and

for TE models with more complex error assumptions, see

Birnbaum and Quispe-Torreblanca (2018).

Although errors in a TE model may be mutually indepen-

dent, it does not follow that responses will be independent;

instead, responses will not satisfy iid, except in special cases,

such as when a person has only one true preference pattern

(Birnbaum, 2013).

5 Computer Simulations

The JavaScript computer program, MARTER_sim.htm, is in-

cluded in the journal’s supplement to this article. This pro-

gram is also freely available online at http://psych.fullerton.

edu/mbirnbaum/calculators/MARTER_sim.htm

This program simulates data via the specified MARTER

model by starting with a random state, which is set up to

transition in one step to one of the permissible states, and then

to (stochastically) follow the Markov model among those

states according to the transition probabilities specified by

the user. (The default values are currently set up to generate

data according to a special case of the intransitive model of

Figure 4, used to generate the Intrans 2 dataset, described in

the next subsection.)

To use the program for the first time (with the default val-

ues), simply press the button labeled "prepare", then scroll

down to the error matrix and press the button labeled "calcu-

late errors by TE"; next, press the button, "row sums errors".

Finally, push the button labeled, "many trials with error,"

which will generate 10,000 true states (stored in the first

textarea box), and 20,000 "observed" (simulated) responses

containing error (in the second box). The error-filled re-

sponses will be selected and focused, so the user can simply

copy them (via CTRL & C) and paste them into a program

like Excel (CTRL & V), which might require use of the text

to columns feature of Excel (they are comma delimited).

http://journal.sjdm.org/vol15.1.html
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Table 1: Crosstabulation. Frequencies of response patterns in Intrans 2 dataset, simulated from the model in Figure 4.

111 112 121 122 211 212 221 222

111 1706 226 198 24 200 19 37 8

112 177 19 31 9 25 5 9 15

121 169 23 39 8 41 11 206 36

122 18 2 9 27 6 22 38 175

211 203 16 40 7 53 10 202 45

212 19 9 6 20 8 28 59 216

221 57 8 192 37 190 41 1865 433

222 12 17 47 210 49 199 373 1791

Total n = 10,000.

The generated data have two replications in each line (ses-

sion), which are based on the same true state and differ

only due to error. This is the standard TE model assump-

tion. There is a button that can be clicked labeled "violation

model" that allows the true state to change within a block

(within a line), according to the same Markov transition

probabilities. This feature allows a user to explore the con-

sequences of this type of violation of the model.

By pasting the data into Excel and using the PivotTable

feature, or via other suitable software, one can find the

crosstabulation frequencies of each response combination.

Table 1 shows the response frequencies for 10,000 simulated

sessions, based on the generating model of Figure 4 and

parameters used to simulate the Intrans 2 dataset.

A second JavaScript program, iid_sim.htm, available in

the online supplement to this article, can be found at the

following URL:

http://psych.fullerton.edu/mbirnbaum/calculators/iid_sim.

htm

This program generates data in the same format as that of

MARTER_sim.htm, but does so according to the assumption

of iid. The data generated by iid_sim.htm can be considered a

"control" for comparison with data generated via MARTER

models that violate independence.7

Additional instructions for using these programs are in-

cluded in the Web pages that contain the programs.

5.1 Data generating models

The datasets described here were simulated according to

seven different generating models; five are based on Markov

models of gradual sequential effects, the sixth used a model

with pattern sequence independence, and the seventh has bi-

7Theoretical statements about independence in computer simulations

should be qualified by "assuming the random number generators perform

as intended." In this sense, the iid_sim.htm program allows a check on the

computer generated randomization, as well as a conceptual control with

more complex MARTER models.

nary choice responses satisfying independence and identical

distribution (iid).

The dataset, Trans 1, was simulated from the Markov

model in Figure 1 with p = q = 0.1, and e1 = e2 = e3 =

0.1. The four possible true states correspond to the four

possible transitive response patterns: 112, 122, 211, and

221, corresponding to predictions of TAX with the parameter

values indicated in Figure 1.

To calculate the steady state (long run) probabilities of

being in these states, one can apply basic calculations of a

finite Markov chain. A useful on-line Markov calculator for

this purpose is available from Fukuda (2004). According to

this Markov model, the steady state probabilities of being

in these four states are equal; that is, p112 = p212 = p211 =

p221 = 0.25. If we had used p = 0.1 and q = 0.2 instead,

the steady state probabilities would instead have been 0.07,

0.13, 0.27, and 0.53, respectively.

The dataset, Trans 2, was generated from the Markov

model depicted in Figure 3; note that the two possible states

(112 and 221) are both transitive and are a subset of the

possible patterns of Figure 1. The transition probabilities

are given in Figure 3, and e1 = e2 = e3 = 0.1. These

parameters imply that a person is more likely to remain in

the 221 pattern from one block to the next than to remain the

112 pattern between successive blocks.

The steady state probabilities of being in these states (p221

and p112) calculated from the Markov model (Fukuda, 2004)

are p221 = 0.67 and p112 = 0.33.

The dataset, Trans 3, was generated from a transitive

model (only transitive response patterns), but it includes

patterns not allowed by the model in Figure 1. In partic-

ular, the five possible states are 121, 122, 211, 212, and

221. Furthermore, one-step transitions were permitted only

between adjacent states in this ordered list (For example, it

is not possible to transition from 121 to 221 in one step,

but one can reach 221 via the other states). Each transition

between adjacent items, in either direction, had a probabil-

ity of 0.1, except the probability of transition from 221 to

http://journal.sjdm.org/vol15.1.html
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.8 .9

.2

.1

112 221

Figure 3: A Markov model that is a special case of the tran-

sitive model of Figure 1. This generating model was used to

simulate the Trans 2 dataset, but it is also a special case of

the intransitive model of Figure 2 in which only the transitive

patterns appear.

212 was fixed to 0.04, so the probability to stay in state

221 between successive blocks is 0.96. The error rates were

e1 = e2 = e3 = 0.1. These values were chosen so that

the steady state probabilities in the Markov model would be

p121 = p122 = p211 = p212 = 0.15 and p221 = 0.40, and

therefore, the binary choice proportions would be approxi-

mately the same in Trans 3 as in Trans 2. (This generating

model is not illustrated in a figure).

The dataset, Intrans 1, was generated from the model in

Figure 2 in which p = 0.2, q = 0.1, and e1 = e2 = e3 = 0.1. In

this model, a person is more likely to transition to a state with

only one of the three choices differing than to a state with

two differing choice responses; it is not possible to transition

from 111 to 222, except via one of the intermediate states.

The four states possible in this model (111, 112, 221, 222) are

compatible with the lexicographic semiorders, with differing

parameters. According to the Markov model, the steady state

probabilities of being in each of these four states are equal

(i.e., all 0.25).

The dataset, Intrans 2, was generated from the model in

Figure 4, in which the possible true patterns are a subset

of those in Figure 2: 111, 221, and 222. The probabilities

of transitions are shown in Figure 4; e1 = e2 = e3 = 0.1.

These values were chosen so that the Markov model implies

that the three possible states would be equally likely in the

long run, and thus, the binary choice proportions would be

approximately the same as those of Trans 2 and Trans 3.

The dataset, Intrans 3, was devised to have the same steady

state probabilities as Intrans 2 and same error rates, but it

differs with respect to the Markov transition matrix. In par-

ticular, each row of the transition matrix contained the steady

state probabilities as transitions (0.33, 0.33, 0.33); this model

thus satisfies pattern sequence independence, as if a person

adopts a new set of parameters randomly and independently

in each session. (The reader should not assume such a tran-

sition model only applies to intransitive cases, as this type of

stochastic process could be combined with any of the RDM

models.)

The dataset, iid 1, was generated by the program,

iid_sim.htm, which simply calls the random number gen-

erator for each response according to its probability, so (if

the program’s random number generator works) responses

.9 .9

.1

.8

.1

.1

.1

111 221 222

Figure 4: A Markov model, used to simulate Intrans 2

dataset; it is a special case of the intransitive model of Figure

2.

will be independent and identically distributed within and

across blocks. To match (approximately) the binary choice

proportions of Trans 2, Trans 3, Intrans 2 and Intrans 3, the

values 0.65, 0.65, and 0.35 were used for p(AB), p(BC), and

p(CA) to simulate the data.

5.2 Data Fitting Models

The crosstabulation tables (as in Tables 1 or 2) were analyzed

using TE8x8_fit.xlsx, an Excel workbook adapted from Birn-

baum (2013) and included in the online supplement to this

article. This program uses the solver in Excel to find best-fit

solutions to the TE fitting model. The program can be used

to minimize either the standard χ2 index of fit or the G index

(sometimes called G2), which is equivalent to a maximum

likelihood solution. In this paper, we minimized G, defined

as

G = 2
∑∑

Oi j ln (Oi j/Ei j) (2)

where the summation is over the 64 cells (8 rows by 8

columns), Oi j is the observed frequency (count) in the cell,

Ei j is the "expected", or "predicted" frequency in the cell

according to the particular model. The indices, i and j, rep-

resent the 8 response patterns for the rows and columns of

tables (as in Table 1), respectively; i.e., i = 1, 2, 3, . . . , 8

correspond to 111, 112, 121, . . . , 222, respectively.

The 64 "expected" ("predicted") frequencies might better

be called "fitted" frequencies because their values are based

on the "best-fit" parameter values chosen from the data. Each

value is equal to the number of blocks of data, n, multiplied

by the model’s calculated probability of showing the given

preference pattern.

Ei j = npi j (3)

where pi j is the calculated probability of showing this re-

sponse pattern, given the model and its best-fit parameters.

The index G is asymptotically Chi-Square distributed.

5.3 True and Error Fitting Model

The TE models have two components: the probabilities that

a person is in each of the possible true states, and the error

probabilities relating observed response patterns to under-

lying true states. The probabilities of the true states are

denoted, p111, p112, p121, p122, p211, p212, p221, and p222.

http://journal.sjdm.org/vol15.1.html
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Table 2: Crosstabulation. Frequencies of response patterns in iid 1 dataset, simulated from response independence, and

assuming p(AB) = 0.65, p(BC) = 0.65, p(CA) = 0.35.

111 112 121 122 211 212 221 222

111 81 32 118 68 114 69 218 100

112 42 22 73 35 78 31 134 56

121 112 70 219 102 223 114 417 212

122 65 35 94 54 114 59 199 134

211 126 62 225 126 241 125 384 204

212 69 34 102 64 127 69 240 128

221 194 125 389 208 415 229 790 416

222 121 64 189 98 211 117 406 208

Total n = 10,000.

Because these 8 terms sum to 1, they have 7 df. In addition,

each choice problem is allowed to have a different rate of

error, using 3 df. Therefore, the 11 free parameters use 10

df. Because the 64 cell frequencies sum to the number of

blocks, there are 63 df in the data. When fitting this TE

model with all 11 parameters free, there are 63 − 10 = 53 df

remaining to test the model.

Each of the 64 "predicted" or "fitted" frequencies is the

sum of 8 terms, representing the probabilities of having each

true preference pattern multiplied by the probability of the er-

ror pattern that would be required to produce that observed

response pattern. For example, the theoretical probability

that a person would repeat the 111 pattern on both replica-

tions within a block (i.e., 111111) is as follows:

E11 = n[p111(1 − e1)
2(1 − e2)

2(1 − e3)
2

+p112(1 − e1)
2(1 − e2)

2(e3)
2

+p121(1 − e1)
2(e2)

2(1 − e3)
2

+p122(1 − e1)
2(e2)

2(e3)
2

+p211(e1)
2(1 − e2)

2(1 − e3)
2

+p212(e1)
2(1 − e2)

2(e3)
2

+p221(e1)
2(e2)

2(1 − e3)
2

+p222(e1)
2(e2)

2(e3)
2]

where E11 is the calculated, "expected" or ’fitted" frequency

of showing this response pattern, 111111. If the person were

in the true state of 111, then she could have an observed

response pattern of 111111 only if she made no error on all

six binary choice problems; however, if she were in the true

state of 222, then she would have had to make six errors.

There are 64 equations like this one, corresponding to the

theoretical frequencies of the 64 observed response patterns,

as in Tables 1 and 2.

5.4 Transitive and Intransitive Special Case

TE Models

The specification that preferences are transitive leads to

a special case of the TE fitting model in which we fix

p111 = p222 = 0, and the probabilities of the other six

patterns are free. This stipulation corresponds to the def-

inition of transitivity that at no time is there ever a set of true

preferences that are intransitive.

In this paper, we will fit a further special case of the

transitive TE model, called transitive4 model, with only 4

transitive patterns, to match the possible true states of the

TAX model with varying γ, as in Section 2.1. In this fitting

model, p111 = p222 = p121 = p122 = 0, and probabilities of

the other four patterns are free, as are the three error rates.

In addition, we fit an intransitive model, intransitive4,

which allows the 4 possible patterns under lexicographic

semiorders, as in Section 2.2; in this model, p121 = p122 =

p211 = p212 = 0, and the probabilities of the other four

patterns are free, as are the three error rates.

Each of these special case models, transitive4 and intran-

sitive4, has 4 fewer free parameters than the TE model, so the

difference in the indices of the fit between the more general

TE model and each special case model is also, in theory,

Chi-Square distributed with 4 df. The strategy is to first test

the TE fitting model, and then test each of these special case

models against the TE model.

In order to keep clear distinctions among a generating

model with fixed parameters (used to generate, or simulate

a set of data), a particular instance of simulated data pro-

duced by that model with fixed parameters, and the fitting

model (a model fit to data with certain parameters freely

estimated from the data and others fixed), the terms "gener-

ated", "dataset", or "fitting" will be appended where needed

for clarity. Thus, the Trans 3 dataset, simulated by a tran-

sitive generating model with specific parameters might or

might not be compatible with the transitive4 fitting model

http://journal.sjdm.org/vol15.1.html
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with parameters freely estimated from those data. Fitting

models will also be written in Italics, to further remind the

reader that certain parameters are fixed and other parameters

are estimated from the data.

6 Results

Table 3 shows the binary choice proportions found in the

seven sets of simulated data. Note that although Trans 2,

Trans 3, Intrans 2, Intrans 3, and iid 1 were generated from

very different models, the resulting binary choice propor-

tions are very nearly the same in these five cases.

6.1 Binary Choice Proportions do Not Distin-

guish Models

Because the binary choice proportions are virtually the same

for very different processes, it should be clear that any

method of data analysis that relied strictly on binary choice

proportions would not be able to correctly diagnose what

models were used to generate the data.

The binary choice proportions for five datasets (Trans 2,

Trans 3, Intrans 2, Intrans 3, and iid) are nearly identical

and they all satisfy both Weak Stochastic Transitivity and

the Triangle Inequality. When observed response propor-

tions satisfy these properties, no statistical test is performed

in the Regenwetter, et al. (2011) or QTest approach; the fit

is considered perfect. In that approach, when binary choice

proportions satisfy predictions of a mixture of transitive lin-

ear orders, for example, it is argued there is no reason to

reject transitivity. An investigator using the that approach

in this case, therefore, would incorrectly conclude that data

generated from intransitive models (Intrans 2 and Intrans 3)

might have arisen from a transitive process. However, by

proper analysis of response patterns, we can correctly diag-

nose the generating models and reject transitivity in these

cases, as shown in the next section.

6.2 TE Analyses Correctly Diagnose Datasets

In order to fit the simulated data to TE fitting models, we

used a slightly modified version of Birnbaum’s (2013) Excel

workbook, which uses the solver in Excel to estimate TE

parameters to minimize G. This workbook, TE8x8_fit.xlsx,

is included as a supplement to this article in the journal’s

Website. The program takes as input for each dataset the 8 X

8 crosstabulation frequency matrix, as in Tables 1 or 2, and

it finds the best-fit estimates of the error rates for the choice

problems and of the probabilities of the 8 true preference

patterns.8

8We also applied the program, TE8x2_analysis.R, adapted from Birn-

baum, et al. (2016). In that program, intended for use with small samples,

the 8 X 8 data are partitioned into an 8 X 2 matrix of 8 repeated pattern

Table 3: Binary choice proportions.

Datasets P(AB) P(BC) P(CA)

Trans 1 0.69 0.29 0.51

Trans 2 0.62 0.62 0.39

Trans 3 0.66 0.66 0.34

Intrans 1 0.49 0.49 0.49

Intrans 2 0.64 0.64 0.37

Intrans 3 0.63 0.64 0.37

iid 1 0.65 0.64 0.35

From the crosstabulation frequencies (e.g., as in

Tables 1 and 2), one can find the (marginal) binary

choice proportions. For example, P(AB) = the sum

of row sums for 111, 112, 121, 122, divided by

10,000; one can do the same for columns, and then

average the two results.

Table 4 presents the estimated parameters and fit of the

TE model (with all 11 parameters free), applied separately to

each of the seven sets of simulated data. In all six sets of data

generated by MARTER models, estimated error rates were

all 0.10, rounded to the nearest 0.01, closely matching the

values used to generate the data. Furthermore, the estimated

probabilities of true preference patterns were all within 0.02

of the calculated stable state probabilities of the generating

Markov models in all cases.9

The indices of fit of the TE models are all not significant

(the critical value of χ2(53) at the 0.05 level of significance is

71.0). Thus, the TE models fit the simulated data acceptably

in all seven cases (including iid 1).

Table 5 shows fit indices for the special case fitting mod-

els, transitive4 and intransitive4. These fitting models corre-

spond to the particular TAX and LS models stated in Sections

2.1 and 2.2, respectively. They are thus the models that an

investigator would naturally want to evaluate for an empirical

test between these particular models. For comparison, the

first column presents (again) the fit index of TE model with

all parameters free (rounded to the nearest integer). It should

be no surprise that the Trans 1 data satisfy the transitive4 fit-

ting model, and the Intrans 1 data satisfy the intransitive4

fitting model. It is more noteworthy that Trans 1 data do

not satisfy the intransitive4 fitting model, and the Intrans 1

data do not satisfy the transitive4 fitting model. These results

frequencies (diagonal entries) and row sums. Given the large frequencies in

the 8 X 8 tables (n = 10,000), the 8 X 2 partition is not optimal (Schramm,

2019). Nevertheless, TE8x2_analysis.R, which minimizes χ2 instead of G,

gave virtually identical solutions and conclusions for the cases studied here

as did TE8x8_fit.xlsx.

9Bayesian methods can also be used to fit TE models (Lee, 2018;

Schramm, 2019); with suitable priors, Bayesian methods should also accu-

rately recover the parameters used to generate the data.
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Table 4: Estimated parameters of the TE model and index of fit (G) to seven sets of simulated data.

Dataset p111 p112 p121 p122 p211 p212 p221 p222 Fit (G)

Trans 1 0.00 0.27 0.00 0.00 0.25 0.25 0.24 0.00 59.49

Trans 2 0.00 0.35 0.00 0.00 0.00 0.00 0.64 0.00 62.00

Trans 3 0.00 0.00 0.15 0.15 0.15 0.15 0.40 0.00 65.70

Intrans 1 0.26 0.25 0.00 0.00 0.00 0.00 0.25 0.24 57.84

Intrans 2 0.32 0.00 0.00 0.00 0.00 0.00 0.34 0.33 60.98

Intrans 3 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.33 69.47

iid 1 0.02 0.00 0.01 0.00 0.01 0.00 0.96 0.00 45.05

Estimated error parameters were all 0.10, rounded to nearest 0,01, except in iid 1, where e1 = 0.34,

e2 = 0.35, and e3 = 0.35. Critical χ2(53) for α = 0.05 = 71.0, so TE model fits acceptably in all cases.

show that the TE method of analysis correctly diagnoses data

simulated from these two models.

For example, the difference in the G indices for the Intrans

1 data fit to transitive4 compared to the TE fitting model is

4620 − 58 = 4562. This index is theoretically Chi-Squared

distributed with 4 df, for which the critical value at the .05

level of significance is 9.5. Of course, with 10,000 blocks of

data, it is easy to reach statistical significance; nevertheless,

if the same relative frequencies were observed with only 50

blocks of data, the difference would still be more than double

that required for significance. (The index of fit is directly

proportional to the number of blocks; consequently one can

simply divide each G value by 200 and take the difference to

make this calculation, 4620/200 − 58/200 = 22.8).

Table 5 also shows indices of fit for transitive4 and intran-

sitive4 fitting models applied to datasets Trans 2, Trans 3,

Intrans 2, and Intrans 3. The Trans 2 data, generated from

the transitive model in Figure 3, can be fit with acceptable

accuracy to both the transitive4 and intransitive4 models.

The reason should be clear: the two transitive response pat-

terns (112 and 221) in the data generating model are subsets

of the permissible response patterns of both the transitive

and intransitive models in Figures 1 and 2, and they are thus

common to both fitting models. Thus, the analysis correctly

leads to the conclusion that the data in this case provide no

reason to reject either the transitive or intransitive models:

Both models can be retained.

The Trans 3 data, generated from a transitive model can-

not be fit accurately to either the transitive4 or intransitive4

models, and the reason should again be clear: although the

response patterns generated are all transitive, they include

patterns not allowed by the transitive4 fitting model or the

intransitive4 fitting model. This case illustrates that by fit-

ting TE models, the approach has the capability of rejecting

one transitive model in favor of another transitive model. In

this case, the investigator would correctly reject both of the

particular RDM models, in favor of another transitive model.

Table 5 shows that the Intrans 2 and Intrans 3 data vi-

olate the transitive4 fitting model, G = 7705 and 7816.

Even the transitive model that allows all six transitive re-

sponse patterns (all patterns except 111 and 222), does not

fit appreciably better, G = 7705 and 7815, so we can con-

fidently reject transitivity. But the intransitive4 model fits

these datasets, G = 68 and 70, so we can retain the Lexi-

cographic Semiorders model of Section 2.2. This analysis

via TE fitting models allows us to correctly recognize data

that are compatible with an intransitive process and which

systematically violate any transitive model.

It is important to note that the binary response propor-

tions of Intrans 2 and Intrans 3 (0.64, 0.64, and 0.37) satisfy

both weak stochastic transitivity and the triangle inequality,

which some researchers would have taken as evidence "for"

or "supporting" transitivity (Appendix B). These examples

illustrate how easily one might reach wrong conclusions re-

garding transitivity from analysis of WST, TI, or other prop-

erties of binary response proportions.

The iid 1 data also have approximately the same binary

choice proportions as Trans 2, Trans 3, Intrans 2, and Intrans

3. The data of iid 1, generated by iid, satisfy the TE fitting

model, G = 47.99. The iid 1 data can be fit acceptably by a

TE model in which there is only one true pattern, p221 = 1,

and e1 = 0.35, e2 = 0.36, and e3 = 0.35; G = 52.28. When

such data are created by an iid random preference model,

which is the simplest special case of MARTER model, many

interpretations are possible. These data are also compatible

with a random utility model consisting of a mixture of linear

orders, but it is not possible to identify the probabilities of

the true preference patterns in the mixture.

The five examples with similar binary choice proportions

were devised to illustrate four possible cases that are all in-

distinguishable in QTest or any other method that is based on

binary choice proportions, but which can be distinguished

with proper analysis of response patterns via TE fitting mod-

els: the data might be compatible with both of the (substan-
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Table 5: Indices of fit of TE models to the simulated data

(G). Rows represent the generating models used to simulate

the data; Columns represent the models fit to the data with

free parameters.

Dataset TE transitive4 intransitive4

Trans 1 59 62 9,211

Trans 2 62 62 62

Trans 3 66 10,399 11,202

Intrans 1 58 4,620 60

Intrans 2 61 7,705 68

Intrans 3 69 7,816 70

iid 1 45 49 45

All solutions fit to 64 frequencies. TE, transitive4, and

intransitive4 models have 53, 57, and 57 df, respec-

tively; critical value of χ2(57) and χ2(4) at α = 0.05

level of significance = 75.7 and 9.5, respectively.

tive) RDM models (Trans 2), data might refute both RDM

models (Trans 3), the data might agree with one model and

reject the other (Intrans 2 and Intrans 3), or the data might

be non-diagnostic (iid 1).

As we see in the next section, different MARTER models

can be diagnosed by different, special-case independence

tests that are implied by iid.

6.3 Tests of Independence

Four specific tests of independence are employed here. These

can be usefully separated into two categories: response inde-

pendence and sequential independence. Another distinction

is between tests that are appropriate with large samples and

those that can be evaluated with small samples.

6.3.1 Response Independence

According to response independence, the probability of any

combination (pattern) of responses (as in Table 1) is the

product of the constituent binary probabilities. In our tests,

the predicted frequency of the response pattern 111111, for

example, is calculated from independence as follows:

E11 = nP(AB)P(BC)P(CA)P′(AB)P′(BC)P′(CA) (4)

where P(AB), P(BC), and P(CA) are the observed binary

response proportions for the AB,BC, and CA choices in the

first replicate, respectively, and P′(AB),P′(BC), and P′(CA)

are the corresponding binary choice proportions in the sec-

ond replicate. Each of the other 63 entries in the predicted

8 by 8 table is calculated similarly, as the product of the

marginal, binary proportions. One can then calculate G (as

in Equation 2) or calculate a standard Chi-Square index of

fit. This test of response independence is calculated in the

Excel Workbook, TE8x8_fit.xlsx, which can thus be used to

compare the fit of response independence to the fit of TE

models for the same data.

6.3.2 Sequential Independence

A test of Sequence response Independence could be per-

formed on a different, 8 by 8, crosstabulation matrix, similar

to Table 1, but constructed with rows representing the 8 re-

sponse patterns on one replicate of Session t and the columns

representing the 8 response patterns on one replicate of Ses-

sion t + 1. Tables 6 and 7 show this crosstabulation for the

first replicate of Intrans 2 and Intrans 3, respectively. If there

are n = 10,000 sessions (blocks), then there are n−1 = 9,999

pairs of successive sessions. These frequencies become the

Oi j for a test of fit as in Equation 2.

Predicted values (based on independence), Ei j , are similar

to Equation 4, except E11, for example, now represents the

fitted (or "predicted") frequency of the 111 pattern on Session

t and 111 on Session t+1, P(AB), P(BC), and P(CA) are the

observed binary response proportions for the AB,BC, and

CA choices for Session t, and P′(AB),P′(BC), and P′(CA)

are the corresponding choice proportions in Session t + 1,

and n is replaced by n − 1, respectively.

A test of Pattern Sequence Independence can also applied

to this latter crosstabulation matrix (as in Tables 6 and 7), as

follows:

Ei j = (n − 1)P(i, t)P′( j, t + 1) (5)

where Ei j is the predicted (fitted) frequency of pattern i on

Session t and pattern j on Session t + 1, i = 111, 112, 121,

. . . , 222; P(i, t) and P′( j, t + 1) are the marginal proportions

of response pattern i on Session t and response pattern j on

Session t+1 for a given replicate. Given n sessions there are

n − 1 successive pairs of sessions. Note that if sequence re-

sponse independence holds, pattern sequence independence

follows, but pattern sequence independence does not imply

sequence response independence; e.g., P(i, t) may or may

not equal P(AB)P(BC)P(CA).

6.3.3 Small-sample tests of iid

Birnbaum (2012) devised two tests of iid that can be used

with small samples, such as one might obtain from individual

participants in a small study, as in Regenwetter, et al.’s (2011)

replication of Tversky (1969). A slightly revised version

of Birnbaum’s (2012) computer program, iid_test.R, which

computes these tests (and bootstraps the p-values) is included

in this journal’s Website as a supplement to this article.

Both of Birnbaum’s (2012) tests are based on counts of

the number of preference reversals (by the same person to

the same items) between all possible pairs of repetitions. For

example, with 3 choice problems and 2 replications of each
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Table 6: Crosstabulation of Session t (rows) and Session t + 1 (columns) for Dataset Intrans 2

Session t 111 112 121 122 211 212 221 222

111 1582 159 177 21 194 24 224 37

112 167 25 26 2 23 4 20 23

121 179 14 35 9 42 13 184 57

122 17 6 7 10 9 18 52 178

211 210 23 34 11 37 9 189 62

212 25 4 11 17 11 17 75 205

221 207 37 197 68 192 77 1544 501

222 31 22 46 159 68 203 535 1634

With n = 10,000 sessions, the total is n − 1 = 9,999.

Table 7: Crosstabulation of Session t (rows) and Session t + 1 (columns) for dataset Intrans 3.

Session t 111 112 121 122 211 212 221 222

111 594 71 162 74 146 66 660 676

112 80 16 25 8 21 4 76 85

121 139 11 38 18 40 23 179 155

122 76 12 18 6 13 11 93 67

211 135 17 39 19 29 23 149 150

212 72 12 15 4 16 10 98 87

221 685 86 160 79 156 91 746 747

222 669 90 146 87 140 86 749 744

With n = 10,000 sessions, the total is n − 1 = 9,999.

problem within each block, there are 6 choice responses per

block, so the number of reversals between two blocks can

range from 0 (perfect agreement on all six responses) to 6 (six

reversals of preferences). If there are 20 blocks of trials, one

can choose two blocks 190 different ways, and compute the

number of preference reversals between each pair of blocks.

Birnbaum’s (2011, 2012) correlation test computes the

correlation coefficient between the mean number of prefer-

ence reversals between two sessions and the number of inter-

vening sessions (related to the difference in time) between

the sessions. According to iid, the number of preference

reversals between sessions should be independent of how

far apart in time the two sessions are (how many sessions

intervene between), but if people can be described by an

RDM model with parameters that tend to persist or change

gradually, then a positive correlation can occur; i.e., more

preference reversals (less similarity) between sessions far-

ther apart than between sessions that occur closer together

in time. Birnbaum (2013, Table 11) found that 17 of the

18 participants in Regenwetter, et al. (2011) had positive

correlations, 9 of which were significant (p < 0.05).

Birnbaum’s (2012) variance test computes the variance

of the number of preference reversals between all pairs of

sessions. If responses to related items are governed by an

underlying system of true preferences, and if that system dif-

fers between sessions, then we expect some pairs of sessions

with very few reversals and others with a large number of

reversals, so the variance will exceed what is expected by iid.

Put another way, the variance of a total will be greater than

the sum of the variances when the components of the sum

are positively correlated; but if choice problems are indepen-

dent, then preference reversal on one item will not predict

reversal of preference on other items. Birnbaum (2013, Ta-

ble 11) reported 10 of the 18 participants in Regenwetter, et

al. (2011) significantly violated iid by this variance test.

For both test statistics, a bootstrapping procedure is used

that randomly permutes each column of data independently.

Then the test statistic (variance or correlation) for the orig-

inal data can be compared to the bootstrapped distribution

of the test statistic in randomly permuted data. Birnbaum

(2012) showed that the variance test, as bootstrapped by this

procedure, gives very similar results to that of the Fischer

exact test of response independence for the example cases
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Table 8: Tests of response independence and sequence

independence.

Dataset Resp

Ind

Pattern

Seq Ind

No. sig

var

No. sig

pos r

No. sig

neg r

Trans 1 34,706 8,168 7 5 0

Trans 2 134,795 4,030 17 4 1

Trans 3 29,791 9,130 13 6 0

Intrans 1 41,585 5,818 17 8 0

Intrans 2 59,230 6,974 12 7 1

Intrans 3 60,306 44.4 20 2 0

iid 1 51 58.7 0 0 0

Critical values of χ2(57) and χ2(49) at α = 0.05 sig-

nificance = 75.6 and 66.3, respectively. "Resp Ind" =

response independence, "Seq Ind" = sequence indepen-

dence. Small sample tests of iid were fit to 20 subsamples

of 20 sessions each. "No. sig var" = number of simulated

subjects with significant variances, p < 0.05. "No. sig

pos" and "No. sig neg" = number of significant positive

and negative correlations, respectively.

analyzed.10

6.3.4 Results of iid tests

Table 8 presents a summary of tests of iid by four procedures.

The first column of numbers shows the tests of response

independence (Equation 4), applied to the crosstabulation

matrices (as in Table 1). All six cases generated by MARTER

models with more than one true state systematically violate

response independence. Only the dataset of iid 1 (Table 2)

satisfies response independence by this test. Even Intrans 3,

which has new parameters chosen randomly in each session,

violates response independence.

The second column of Table 8 shows the tests of pattern

sequence independence (Equation 5), applied to the crosstab-

ulations between response patterns on Block t and on Block

t + 1, as in Tables 6 and 7. Note that the first five datasets

generated by MARTER models have significant violations

of this property, whereas Intrans 3 and iid 1 satisfy this

property.

To compare Intrans 2 and 3, examine Tables 6 and 7: In

Table 6 responses are highly consistent between successive

sessions (note the large frequencies on the diagonal for Pat-

terns 111, 221, and 222), but in Table 7 (Intrans 3), response

patterns are as likely to change from one session to the next

10Birnbaum and Bahra (2007b, 2012a, 2012b) showed extremely strong

evidence of violation of iid by the these two small-sample tests and by other

tests. For example, Birnbaum and Bahra (2012b, Appendix B) reported that

of 42 participants in their third experiment, 27 had significant correlations

and 40 had significant variance tests.

as to stay the same (e.g., in the first row of Table 7, note

the large frequencies of transitions to 221 and 222 following

111).

In order to understand what MARTER models imply for

experiments in which each participant only serves in a small

number of repetitions, we simulated data of hypothetical in-

dividuals, as if they had performed only 20 sessions (blocks).

We extracted 20 successive blocks of data to generate a "sub-

ject," and then did this 20 times in each dataset. Keep in mind

that these "subjects" are clones, simulated from of the same

MARTER model with the same parameters. Each "subject"

(with 20 blocks) was analyzed separately by the program

iid_test.R.

The last three columns in Table 8 show results for 20 sim-

ulated "subjects" with 20 blocks each in each dataset. The

numbers in the last 3 columns represent the number of sim-

ulated "subjects" who had "significant" variances, positive,

and negative correlation coefficients. Because there were 20

significance tests at the 0.05 level, one would expect a (mean)

tally of 1 in each cell of the variance test, if iid held in the

data. Also assuming iid, one would expect an equal number

of significant positive and negative correlations, and the sum

of both positive and negative significant correlations would

also be expected to equal (on average) 1 in each dataset.

Instead, Table 8 shows that every dataset generated by a

gradual MARTER model with a mixture of true preference

patterns has an excessive number of "significant" variance

tests (from 7 to 17 out of 20), that there are more significant

positive correlations than negative ones (30 versus 2), and

that the total number of significant correlations is excessive

(32 out of 100). These results indicate that MARTER mod-

els generate the kinds of violations reported by Birnbaum

(2012, 2013) in his reanalyses of the small-sample data of

Regenwetter, et al. (2011).

In contrast, the "control" condition of iid 1 showed no

significant deviations by any of the tests of iid. Intrans 3

had significant violations in all 20 cases of the variance test

(response independence), but only two "significant" correla-

tions by the correlation test. Because the Intrans 3 dataset

was generated by a process that creates independence be-

tween sessions, it should not produce violations of the cor-

relation test. But it is also a TE model with a mixture of

true states, so it violates response independence, which are

revealed via the variance test.

The distinction between the generating models of Intrans 2

and Intrans 3 illustrates the distinction between Birnbaum’s

(2012) correlation and variance tests. To illustrate further,

we selected an additional 100 simulated "subjects" with 20

sessions (20 blocks) from each of Intrans 2 and Intrans 3. In

Intrans 2, there were 69 and 40 significant violations of iid by

the variance and correlation tests, (39 of 40 significant corre-

lations were positive). In Intrans 3, there were 99 significant

variance tests and only only 5 significant correlations (as

expected when p < 0.05). Intrans 2 has fewer violations by
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the variance test because of the sequential effects in which

a person is likely to remain in the same true state in a short

study, leading to lower variance of true states compared to

Intrans 3, in which a person jumps states randomly. But

Intrans 3 has only a chance level of significant correlations

because it has no sequential dependence from block to block,

so it should theoretically not produce significant correlations

except by chance.

Even though the first six MARTER datasets were con-

structed by a process that violates iid, not all individual

"subjects" (subsamples of 20 blocks) showed significant de-

viations by these small-sample tests of Birnbaum (2012).

For example, in the Trans 1 condition, only 7 and 5 of the

20 simulated subjects with 20 blocks of data showed sig-

nificant violations of iid by variance and correlation tests,

respectively.11

In sum, the MARTER models generate data that violate

iid, and the tests proposed to test iid correctly detect those vi-

olations, but when we use only small subsamples of the data,

as in the small samples obtained in studies with individuals,

not all tests are significant.12

11The same type of analysis was also done using 20 simulated "subjects"

drawn as samples from each dataset, as if they had participated in only 10

blocks of trials, and 20 who participated in 100 blocks. With 10 blocks of

trials, there were fewer "significant" violations, but there were still 5, 12,

10, 11, and 6, significant violations out of 20 for the variance test, and 8, 5,

6, 9, and 4 significant positive correlations in the first five datasets; with a

total of only 2 significant negative correlations summed over the five cases.

In the control, iid 1, dataset, exactly 1 per 20 were significant for variance

and correlation tests.

For the simulated data with 100 blocks per subject, all 20 out of 20

variance tests were significant in each of the first five MARTER datasets,

and only 1 of 20 was significant in the iid 1 dataset. With 100 blocks per

subject, there were 38 and 5 significant positive and negative correlations

in the five MARTER datasets combined. No correlations were significant

in the iid 1 data. For Intrans 3, 18 and 20 variance tests were significant

with 10 and 100 reps, but only 2 correlations were significant in these two

conditions combined. Python software used to select "subjects" and setup

in test_iid.R for these analyses is available along with instructions in the

Journal’s Website supplement.

12Cha, et al. (2013) disputed Birnbaum’s (2012) conclusions and argued

that the tests of iid "did not replicate within subjects." Birnbaum (2013)

showed that all three sets of data also showed an excessive number of

significant violations of iid by both tests, but not all subjects were significant.

Presumably, Cha, et al. had contended that if a subject shows significant

violations of iid in one study, that same subject should also show significant

violations in another study with similar stimuli. The analyses in Table 8

address that contention, since all "participants" were actually clones with

the same stimuli; they are simply small samples from the same MARTER

process that violates iid. We see that not all significance levels are the same

in different subsets of data taken from the same "subject". Thus, one should

not be surprised if not all tests by the same subject are significant, even

when the null hypothesis is false.

Birnbaum (2013) disputed the Cha, et al. argument. If we send 20

soldiers into a minefield and 5 die, we can conclude that a minefield is

dangerous, but we should not conclude that those who survived have been

shown invincible to mines. Indeed, if we send the survivors into another

minefield, we should not expect them all to survive. The fact that soldiers

who survived one minefield do not survive another should not be considered

a "failure of replication within subjects," as argued by Cha, et al. (2013).

Table 9: Estimated Markov Transition Matrix from Session t

(rows) to Session t + 1 (columns) for dataset Trans 1

Pattern 112 212 211 221

112 0.91 0.09 0.00 0.00

212 0.09 0.81 0.09 0.00

211 0.01 0.09 0.81 0.09

221 0.00 0.01 0.09 0.90

Fit to 20,000 response patterns via msm. Probabilities

of transitions to other patterns were estimated to be 0,

rounded to the nearest 0.0001.

6.4 Fitting Markov Models to Data

The violations of response independence, evident in Table

1 (but not in Table 2 for iid 1) and measured by the index

in the first column of Table 8, can be described by the TE

model. But the violations of pattern sequence independence,

evident in Table 6 for Intrans 2 (but not in Table 7 for Intrans

3) and tested in the second column of Table 8, require the-

ory beyond the basic TE model for their description. That

is, the TE model is compatible with such violations, but it

does not predict them without additional theory. That addi-

tional theory in MARTER is the Markov model of changing

parameters.

The msm package in R by Jackson (2011, 2019) can be

used to fit Markov models to empirical data. To fit our sim-

ulated data, we applied msm using a latent Markov model

with "misclassification" ("error" in MARTER). In msm each

datum must be linked to a time (because the probability of a

transition is a function of time interval). We assigned suc-

cessive integers for the times of successive sessions (blocks),

but we added 0.001 to the second replicate in each block. The

response patterns, 111, 112, 121, ..., 222, were re-coded with

successive integers from 1 to 8, respectively, representing the

8 states. We treated each dataset as if from a different, single

participant, so there were 20,000 lines of data for each case.

There are 64 transition intensities and 64 error rates to

estimate from the data. However, because the sum of entries

in each row must sum to 1 in each of these matrices, there

are 128 − 16 = 112 degrees of freedom in the parameters to

be estimated by msm from the data. For initial estimates of

the transition intensity matrix, we set all off-diagonal entries

to 0.125 and all off-diagonal entries of the error matrix to

0.05. These are not optimal starting values, but the program

did a good job of recovering the generating models.13

The msm program yields estimates of the 8 by 8, one-step

transition matrix and of the 8 by 8 error matrix. For Trans

13Because we knew the actual parameters in the generating model, we

were content that the program performed well with uniform starting values.

However, in empirical research, one would be advised use better starting

values and to check with multiple starting values to avoid local solutions.
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1, all 32 transition probabilities to states other than 112,

212, 211, and 221 were estimated to be zero, rounded to the

nearest 0.0001. That is, the msm program correctly identified

the set of true states. The estimated transition probabilities

among these four states are shown in Table 9. In all cases,

the estimated values, rounded to the nearest 0.01, are within

0.01 of the values used in the generating model to simulate

the data (Figure 1).

The estimated error matrix is also 8 by 8; however, error

probabilities from states that cannot be reached are moot

(they play no role in fitting the data), so the relevant numbers

in Trans 1 are the 4 True States by 8 Observed States matrix.

All of these 32 estimated error rates were also within 0.01 of

the values used in the generating model.

Results for the other four datasets generated from

MARTER models were similar. All estimated transition

probabilities to states that could not reached in the gener-

ating model were correctly estimated to be near zero. The

largest deviation in these five datasets was 0.03. All esti-

mated transition probabilities among states possible in the

generating model were close to the values used in the gen-

erating models, with a largest deviation of 0.01. Finally, all

estimated error rates for states possible in the model were

close to the values used in the generating model, with the

largest deviation being 0.01. In sum, msm was able to come

quite close in estimating the parameters used to simulate the

data.

When fitting the iid 1 data by msm in the same way, the

estimated transition probabilities were all 1.00 from any state

to 221, except for the transition from 111 to 221, estimated

to be 0.99. The estimated error rates for responding 111,

112, 121, 122, 211, 212, 221, and 222, given the true state of

221 were 0.08, 0.05, 0.14, 0.08, 0.15, 0.08, 0.28, and 0.14,

respectively. Thus, msm correctly diagnosed the iid data as a

case with no systematic sequential transitions among states,

since there was just one true state.

The program msm also correctly detected the distinction

between Intrans 2 and Intrans 3, which are not distinguished

by the TE fitting models (Table 4). The transition probabil-

ities estimated by msm in Intrans 3 were all approximately

1/3 for any transition among the three possible states (largest

deviation = 0.02); thus, msm correctly indicated that the data

of Intrans 3 fit a process in which the true preference pattern

on one session is independent of that on the previous session.

7 Discussion

In this paper, we have addressed five related topics: (1) We

have developed the MARTER theory of stochastic effects in

choice tasks and have presented new software that simulates

data according to this theory. (2) We have shown that the

MARTER models can create systematic violations of iid,

that these violations resemble those previously reported in

the literature, and we have proposed specific tests of iid

that distinguish different stochastic processes. (3) We have

shown that software previously developed to fit TE models

and Markov models can be used to correctly diagnose data

simulated by MARTER models. (4) Our examples illustrate

how the MARTER approach can be used to test a critical

property like transitivity. TE and Markov analyses correctly

diagnosed the simulated data, whereas (5) Methods based

on binary choice proportions (Appendix B) are not able to

distinguish whether a transitive or intransitive model had

been used to generate the data.

In the next five sub-sections we discuss these themes and

in the sixth sub-section, we describe wider applications and

extensions of MARTER models and appropriate methods of

data analysis.

7.1 MARTER Theory

MARTER models are special cases of a general theory in

which one specifies three modules: (1) a "substantive" model

of the underlying task. In the cases illustrated here, the

substantive models are rival models of risky decision making

that allow different true preference patterns under variation

of their parameters. (2) A Markov process is used to describe

how parameters change from time to time. We think that

people tend to be consistent in the short run, and may change

over time gradually, as in the first five MARTER models

illustrated here; such models can be contrasted with random

preference models in which responses are represented as an

independent random sample from the set of possible true

preferences on each trial (iid 1) or in each session (Intrans

3). (3) An error model is used to represent the relationship

between true preference patterns and overt response patterns.

In the TE model we used to represent errors, errors are

mutually independent.

As we have shown here, MARTER models are testable

descriptive models that can reproduce phenomena observed

in empirical studies. They allow one to describe variability of

response, violations of iid, and sequential effects observed

in previous research, such as those reported in Birnbaum

and Bahra (2007b, 2012a, 2012b), Birnbaum, et al. (2016,

Appendix A), and other studies.

Aside from its role as a descriptive theory, MARTER

serves as a framework for statistical analysis of empirical

data, in which the investigator wants to evaluate rival sub-

stantive theories that can be stated as special cases. We

consider the data-analytic framework (of fitting and testing

nested MARTER models) to be more appropriate than the

use of "off the shelf" statistical methods derived from as-

sumptions of iid.

Birnbaum and Quispe-Torreblanca (2018) showed that the

classic test of correlated proportions, which had been the

standard statistical test of the Allais paradox for five decades,

can easily reach wrong conclusions if the error rates for
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different choice problems in TE models are not equal. A

reanalysis of empirical data using TE models found that the

paradoxical behavior is indeed real and not merely an artifact

of an inappropriate assumption concerning the error rates.

In the simulations analyzed here, transitive and intran-

sitive models were specified and tested as special cases of

MARTER. Many other rival theories of choice and judgment

could be evaluated and compared as special cases. It is pre-

cisely because this approach does not force properties such

as transitivity that it can be used as a relatively neutral sta-

tistical judge for the comparison of rival models. MARTER

can thus be viewed as analogous to Analysis of Variance.

7.2 Violations of iid

Our simulations show that MARTER models produce vi-

olations of iid that resemble results observed in empirical

data.

The clearest evidence that iid is not empirically descrip-

tive was reported by Birnbaum and Bahra (2007b, 2012b).

In tests of transitivity of preferences among gambles, they

found a number of participants who had perfect reversals

of preference (on 20 out of 20 choice problems) between

sessions, similar to the reversals implied by the MARTER

models specified here. Many others had 18 or 19 rever-

sals between sessions. But the same people had very few

reversals between replications within the same session.

In this paper, we defined and tested specific independence

properties including response independence and pattern se-

quence independence. The TE model, by itself, implies

violations of response independence when there are multi-

ple true patterns in a mixture. By adding the Markov model

to the TE model, the MARTER model can fit both types of

violations of iid reported. Pattern sequence independence is

violated by MARTER models in which people change pa-

rameters gradually, and it is satisfied only in special (and

we think, unrealistic) cases such as Intrans 3, where param-

eters are randomly and independently selected in each new

session.

To simulate violations of iid that resemble previous find-

ings, we used MARTER models in which parameters change

gradually. We found that the MARTER models can produce

positive correlations between the number of preference re-

versals and the gap between sessions, as found in Birnbaum’s

(2012) reanalysis of Regenwetter, et al. (2011) data and in

other datasets. But even though the small subsamples of

simulated data were all drawn from the same process (all

clones), not all small sample tests were significant.

7.3 Data Analysis via TE and Markov Models

Our analyses of simulated data via TE fitting models illustrate

that the Markov model of sequential effects for changing

parameters combines seamlessly with the TE fitting model

for data analysis. In every case we have examined so far,

estimated probabilities of the response patterns in the TE

fitting model solution matched very closely the stable state

probabilities of the Markov generating model used to create

the data.

In every case we have examined so far, states not possible

in the MARTER generating model were correctly estimated

in both the TE fitting model (via TE8x8_fit.xlsx) and in the

Markov fitting model (via msm) to have near-zero probabil-

ity; therefore, these methods of analysis appropriately dis-

tinguished RDM models that allow different true response

patterns.

Data generated by the transitive TAX model were correctly

diagnosed as transitive and consistent with that model, data

generated by intransitive LS models were correctly identified

as intransitive and consistent with LS, data generated by

a process that might have been governed by either model

were correctly diagnosed as compatible with either model,

and data generated by a model violating both models under

consideration were also correctly identified as such. Thus,

the use of TE fitting models correctly identified the RDM

models used to generate the data. The success of the TE

fitting models in diagnosing the simulated data is noteworthy

because other approaches fail to correctly diagnose these

data.

7.4 Testing Transitivity: Luce’s Challenge

Luce (1997) reviewed several unsolved problems of math-

ematical psychology, including an issue that Regenwetter,

et al. (2010) called "Luce’s challenge". In particular, Luce

noted the tensions among deterministic, axiomatic algebraic

theories (of the structure of such problems as risky decision

making), stochastic models of choice, and statistical analysis

of numerical data. Algebraic models are stated in the form

of deterministic qualitative axioms; it was not clear how to

test such axioms empirically in the presence of error. We

think Luce sought a fundamental, qualitative, axiomatic the-

ory that would include these separate systems in a single

coherent structure.

Regenwetter, et al. (2010, 2011) reformulated these un-

solved problems as a program to recast deterministic axioms

as probabilistic models and to develop appropriate statisti-

cal methodology to test these probabilistic restatements of

deterministic axioms. They called this program "Luce’s

challenge". Their method advocates testing the triangle in-

equalities or more generally, testing whether a set of binary

response proportions are compatible with implications of a

mixture of (transitive) linear orders using binary response

proportions. But as shown here (and see Appendix B), this

approach cannot be relied upon to correctly identify whether

data were generated from a transitive or intransitive model.

Regenwetter, et al. asserted that their approach was "the

currently most complete solution to the [Luce’s] challenge
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in the case of transitivity of binary preference." But that

approach cannot distinguish whether the generating model

was transitive or intransitive in the cases we simulated.

We analysed five cases with virtually identical binary re-

sponse proportions that perfectly satisfied both weak stochas-

tic transitivity and the triangle inequality. The mixture of

(transitive) linear orders fits "perfectly" in all five of these

cases. Although the Regenwetter, et al. (2011) approach

would declare all five cases to be perfect fits to a mixture

of transitive orders, we know that Intrans 2 and Intrans 3

were generated from an intransitive model and we found

that the TE fitting model correctly identifies these cases as

intransitive.

Therefore, we do not agree that that the Regenwetter, et

al. approach is the "currently most complete" solution to

Luce’s challenge in the case of transitivity, because it cannot

be trusted to correctly identify whether data were generated

from transitive or intransitive models. The conclusions of

Regenwetter, et al. (2011) that transitivity of preference was

acceptable for their 18 participants should therefore be taken

with a grain of salt, even though this conclusion is compati-

ble with other recent findings that employed better methods

of data analysis. A brief review of recent research in which

incidence of transitive and intransitive behavior can be esti-

mated is included in Appendix C.

7.5 QTest versus TE

A major factor limiting the QTest approach is that binary

choice proportions do not contain enough information in

the data to reliably distinguish cases where transitivity is or

is not satisfied. Although there are extreme cases where

binary choice proportions might lead to correct rejections of

transitivity (e.g., as in Appendix B, when TI can be rejected),

there are many cases, as illustrated here, where binary choice

proportions simply cannot correctly assess transitivity. And

even when the method leads to rejection of transitivity, it

is not capable of estimating the incidence of intransitive

patterns.

The assumption of iid in the QTest method is used in the

statistical tests of properties such as the TI, so one would

certainly prefer that such tests ought to be based on more re-

alistic statistical assumptions. But we consider the statistical

assumption of iid for significance testing to be a less seri-

ous problem than the conceptual assumption of iid to justify

analysis of binary response proportions without checking

response patterns.

It is the violations of iid (e.g., via response patterns as

in Table 1) that inform us that binary choice proportions

are not the whole story, and it is the information in those

violations of iid that allow the TE fitting model to correctly

reject transitivity, even in cases where the TI fits perfectly

and significance testing is moot.

It is the response patterns corresponding to violations of

iid that not only permit TE analysis to distinguish data con-

structed from transitive or intransitive models but also to

estimate the proportion of participants who have true in-

transitive patterns or the proportion of sessions where an

individual has true intransitive preferences. So, rather than

ignore violations of iid, to hope they don’t matter, or to

try to "avoid" them by experimental procedures, we should

welcome and analyze them because of the information they

provide.

It is a major problem that methods based on binary propor-

tions can achieve perfect fit for the wrong theory and could

thus lead to wrong conclusions even with population data.

One might argue that if a mixture model of (transitive) linear

orders can "mimic" a truly intransitive process with respect

to binary response proportions, we might as well adopt such

a model for its ability to "mimic" data. However, we dis-

agree. Rather than blame (or praise) the models, as if they

intended to (succeeded) fool us, we should simply admit that

binary choice proportions simply don’t distinguish the mod-

els. We need to look deeper in the data, such as the response

patterns.

Regenwetter, et al. (2010, 2011) disparaged what they

called "pattern counting," apparently because certain early

attempts to analyze the frequencies of response patterns

lacked theoretical rigor to separate errors from true pref-

erences. However, once we can model them, frequencies of

response patterns contain information about binary choice

proportions. From the perspective of response patterns, one

can view models of binary proportions as under-identified

and over-simplified special cases. Any model of response

patterns makes predictions for the binary choice proportions.

The TE models provide for at least two statistical tests:

First, one can test a TE model. Second, within that model,

one can test a substantive property as a special case of that

model. So, rather than assume that iid holds, that errors are

of a certain arbitrary magnitude, or that all choice problems

have the same error rate, one can test these assumptions in the

MARTER framework. An example comparing six models

(with three nested TE models that impose various assump-

tions concerning errors and in each of which EU is a spe-

cial case)is presented in Birnbaum and Quispe-Torreblanca

(2018) and discussed further from a Bayesian perspective in

Lee (2019) and Birnbaum (2019).

7.6 Applications and Extensions of MARTER

In the TE fitting model used here, it is assumed that the two

replications within each session are governed by the same

underlying true preferences. Suppose, however, that within

sessions, people might change true preferences. Would we

be able to detect this violation of the modelling assumption?

The M ARTE R_sim.htm program allows one to explore this

issue: By clicking a button marked "Violation model" in
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the program, one can generate data by a model in which

the second, so-called "replication" is actually based on true

states that reflect one step in the Markov process (the same

Markov transitions that apply between sessions is applied

within the session between two "replications").

We simulated data according to the six MARTER models

used here, except with this "Violation model" button clicked.

In all six cases, the TE fitting program correctly detected that

the TE model does not fit. Instead of G values less than the

critical value of 71 (α = 0.05 significance level), as found in

Table 4, the six G values for the violation model ranged from

277 to 8681, all significant. Interestingly, even though the

TE model did not fit, it gave estimates near zero for response

patterns that were zero in the generating model; therefore, the

TE fitting model still correctly distinguished transitive from

intransitive generating models. We are currently exploring

the ability of the TE fitting model to detect violations, and the

robustness of parameter estimation. Our initial simulations

show that for the six cases studied here, one would have

detected the violations and yet the conclusions regarding

transitivity would nevertheless have been correct.

A reviewer asked how MARTER models might be applied

in a multi-day experimental design, such as in Birnbaum and

Bahra (2007b, 2012b). In those studies, participants served

in many sessions, with two replications per session; they then

returned one week later to serve again in a number of sessions

with replications. Sessions were separated by intervening

judgment tasks. There were three, 5 by 5 interlocked tests

of transitivity, each with all 10 pairwise comparisons among

the five stimuli. That study found extreme violations of iid,

which were observed in several studies despite changes in

experimental procedures.

The nature of violations of iid observed was clearest for

a subject whose data are presented in Birnbaum and Bahra

(2012b, Table 2). By the seventh session of the first day,

all 60 pairwise judgments (3 designs by 10 pairwise choices

among the 5 stimuli by 2 replications) were perfectly con-

sistent with transitive preference orders, ABCDE,FGHI J,

and KLMNO. That same subject had similar preferences in

the first session of second week, but by the 8th session of

that week, all 60 responses were exactly opposite those of

the 7th session of the first week. Such complete reversals

of preference are possible (and predicted) under MARTER

models. The reviwer’s question of how to model such data

can be rephrased as a question of how to measure the effect

of time between sessions that might occur on the same day

or different days.

In a continuous time Markov model as implemented in

Jackson’s (2019) msm, the probability of a transition between

states is assumed to be the same in any equal interval of

time. One can ask if the probability of a transition between

two successive sessions would be the same if they occur on

the same day or on different days. This issue seems to be

an empirical question that could be analyzed via MARTER

models. One could fit the data using multiple scales of

the time variable, and then choose that scaling of time that

provides the best fit. In principle, the Birnbaum and Bahra

(2007b, 2012b) design could be fit by a MARTER model, but

in practice one would need a greater number of sessions and

days to be able to properly estimate and test such MARTER

models.

What would one need to do to properly investigate this

family of data-hungry models? Such an experiment would

be a long one, but not impossible to do. The requirements

exceed what has been done as of yet to our knowledge, but are

not excessive compared to certain studies in cognitive psy-

chology. Such a study might be designed to test the hypoth-

esis that specific educational interventions might produce

systematic violations of the Markov assumption. Imagine

a study in which participants are randomly assigned to one

of two groups in a five month experiment. In both groups,

students return to the lab for one hour once every week and

serve each time in 10 sessions with 2 replications in each

session. In one hour per week for 20 weeks, each individual

in each group could generate sufficient data to fit and test

MARTER models.

In the treatment group, participants would be enrolled in

a course on Decision Making, in which students learn about

normative and descriptive decision making models, whereas

the control group would receive no such specialized edu-

cation (beyond the regular curriculum). It seems plausible

that in the treatment group, there might occur learning– in-

sight, "ah ha" moments, when a person suddenly changes

to a different (and perhaps more normative) way of making

decisions. One could search for such evidence by fitting

MARTER models in order to show that the estimated tran-

sition matrices before and after the intervention event are

different. The null hypothesis, which might be more plausi-

ble in the control group, is that the transition matrix remains

the same throughout.

Because MARTER models allow one to estimate error

rates (as well as the probabilities of the true preference pat-

terns), they seem well suited as fitting models for the inves-

tigation of such questions as follows: Are error rates higher

when participants have less experience, when there is time

pressure, when stimuli are closer in value, when alcohol

has been consumed, when there is more information to pro-

cess, or when visual or auditory displays are more complex?

Rates of error appear to vary strongly among individuals

(e.g., Birnbaum & Gutierrez, 2007); can one predict a per-

son’s error rate from tests of personality, IQ, or other indi-

vidual differences measures? TET and MARTER allow one

to measure and evaluate such questions but these theories do

not constrain the answers to such empirical questions. Rival

models, such as those considered in Rieskamp, et al. (2006),

Marley and Regenwetter (2016), Busemeyer and Townsend

(1993) or Birnbaum and Jou (1990) might be evaluated by

testing them as special cases of MARTER.
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As a simple example, Case V of Thurstone (1927) can

be written as a special case of MARTER in which there is

only one true, transitive preference ordering, and error rates

are inversely related to the separation of the stimuli via the

cumulative standard normal distribution. One could first

apply the TE fitting model and ask if one true preference

pattern has estimated probability of 1 and if the estimated

error rates in the full model satisfy the implications of Case

V; second, one can also build in the Case V constraints as a

special case of MARTER.

Do any of the datasets analyzed here fit Thurstone Case V?

The answer is that only the iid 1 data are compatible with one

true preference order, so Thurstone Case V would be rejected

for the other datasets, based on Table 4. In Table 4, we see

that the estimated errors of iid 1, which are approximately

equal to each other, do not satisfy Thurstone Case V because

if e1 = 0.34 and e2 = 0.35, then Case V implies e3 should

have been 0.21, contrary to the solution in Table 4. When we

fit the special case of TE (fixing p221 = 1 and constraining

e3 to Case V and the others freely estimated)14), the best-fit

TE solution of iid 1 to Thurstone Case V yields G = 586.9,

so these particular data (Table 2) are not compatible with

Thurstone’s Case V, even though they satisfy a TE fitting

model with p221 = 1.15

How can one combine MARTER models across individ-

uals? Given extensive data for each of a number of indi-

viduals, one might fit a MARTER model to each participant

separately. However, one might also specify a hierarchi-

cal set of models to represent individual differences. We

think it a reasonable starting hypothesis that all participants

might have the same underlying RDM model (the same set

of possible true states) but participants differ in the Markov

processes by which their parameters change from time to

time and in their error rates. It would be interesting if data

require rejection of this model in favor of a more general one

in which different people are governed by different RDM

models as well as in the parameters and transitions among

parameters in the model.

8 Summary of Software Available

The main software used in this project is listed in Table 10.

The simulation programs are open source, free software that

14To fit Case V of Thurstone, we modified TE8x8_ f it .xlsx to include

the constraint, 1 − e3 = N [N−1(1 − e1) + N−1(1 − e2)], where N is the

cumulative standard normal distribution function, and N−1 is the inverse of

this function.

15It should be clear that one could easily construct an example using

iid_sim.htm that would fit Thurstone Case V. Furthermore, one could use

MARTER_sim.htm to construct a variation of Intrans 3 that would satisfy

sequential independence, and the binary choice proportions would fit Thur-

stone Case V, but the dataset would actually contain a majority of intransitive

preference patterns. These two cases could be correctly diagnosed by means

of the TE fitting model or analysis via msm but not by any analysis of binary

choice proportions.

Table 10: Available software used in this study

Filename Purpose

MARTER_sim.htm Simulates data via MARTER

models: Markov model for

transitions among states with

option of TE errors or full error

matrix.

iid_sim.htm Simulates data satisfying iid for

comparison with MARTER

models.

iid_test.R Improved version of Birnbaum’s

(2012) tests of iid in small

samples.

TE8x8_fit.xlsx Excel spreadsheet uses the

Solver to fit TE models. Can

minimize either G or χ2. Fits

either full 8 X 8 matrix or 8 X 2

partition of that matrix

(Birnbaum, 2013).

TE8x2_analysis.R R-program for analysis in small

samples. 8 X 2 partition

analyzed via Monte Carlo and

bootstrapping. From Birnbaum,

et al. (2016).

All software listed here, together with example data

files, are available from the supplement to this article

in the journal’s website.

should be useful to help researchers understand these models.

The software for analysis under the TE fitting model and for

testing iid is also free and open source. Two items not listed in

Table 10 are the msm software by Jackson (2019), for fitting

Markov models, and a Python program used to automate

the selection of subsamples of data (to simulate individual

"subjects") and set up the files for testing iid. The Python

software, along with a guide to using it, is also included in

the journal’s online supplement to this article.

Appendix A: Theories, Models, and Ap-

proaches

A reviewer requested clarification of terms used here, "the-

ory", "model", and "approach." A theory is a set of state-

ments proposed to explain certain observable phenomena,

that satisfies five philosophical criteria for scientific expla-

nation: (1) deductive: One can deduce the phenomena to be

explained from the theory, (2) meaningful: one can specify

operations of measurement and empirical tests that could in
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principle falsify the theory, (3) predictive: In principle, one

could have predicted the phenomena, given the explanation,

(4) causal: In principle, one could manipulate the phenom-

ena to be explained, given the explanation, and (5) general:

The premises can be used to explain other phenomena.

A model is a special case of a theory in which additional

assumptions are made that make the theory easier to work

with in practice; the simplifying assumptions are made to

facilitate estimation of parameters, for example. It is often

believed that these additional modelling assumptions are not

actually true but reasonable approximations, so it is some-

times said, "all models are wrong".

For example, consider two theories: that the Earth is round

(convex) or flat, to explain observable phenomena such as

apparent positions of the stars viewed at different times and

places on Earth. In order to estimate the size of the Earth

within the "round earth" theory, Eratosthenes adopted sim-

plifying assumptions: He assumed the earth is a perfect

sphere and that the sun is so far from the earth that light rays

from the sun are essentially parallel as seen from anywhere

on Earth. The existence of mountains, valleys, and tides were

already known to contradict the perfect sphere, and the idea

of parallel light rays was understood to be an approximation.

But by using these modelling assumptions, he was able to

compute a reasonable estimate of the Earth’s diameter based

on only two observations of the angles of sunlight relative to

plumb lines at two points on Earth, separated by a measured

distance.

In sum, a model is a special case of a theory that adds

additional assumptions, which are often recognized as only

approximations. Any model therefore also qualifies as a

theory, but rejection of a model does not require rejection of

the core theory. For example, rejection of the spherical earth

model would not necessarily reject the theory that the earth

is round.

With respect to TE (True and Error) theory, the core theory

is that at any time, the individual has a set of true preferences.

When asked to express preferences, a person may make er-

rors, so observed responses may not match true preferences.

If a person could (nonreactively) be asked the same question

repeatedly (and time could be held still), any variation in

response would be due to errors. However, when a person

is asked the same question on two occasions that differ in

time, two possible factors may produce different responses:

changes of true preference or random errors.

By imposing approximations on TE theory, one can con-

struct TE models, which facilitate estimations of the true and

error components and also allow tests whether the models

provide acceptable descriptions of actual data. In the TE

fitting models used here, it is assumed that replications ob-

served within the same session are governed by the same true

preferences. That is, it is assumed that people do not change

their true preference structure in the short period of time

required for a session. We view this modelling assumption

as analogous to the approximation that light rays from the

sun to the Earth are parallel.

A modelling approach involves conducting experiments

in which the parameters of the models under investigation

can not only be estimated but in which there are multiple

constraints that allow the models to be tested. In the TE ap-

proach, one collects replications from each individual in each

session, which can be used via the modelling assumptions

and appropriate software to estimate error rates. As noted

by Birnbaum (2013) replication and the error assumptions

lead to statistical tests of the model, including the testable

property of error independence (which should be satisfied)

and response independence (which will be violated, except

in special cases).

A reviewer asked if TE theory and TE fitting models can

be applied to represent substandard experiments, and the

answer is "yes," but one might need to make less plausible

modelling assumptions to fit such data. For example, in a

study with many sessions but without replications, one might

take pairs of successive sessions and treat each pair as a single

session with two replications. We are currently studying the

robustness of conclusions regarding transitivity with respect

to violations of the assumption that two successive sessions

can be treated as replications.

Appendix B: Weak Stochastic Transi-

tivity and the Triangle Inequality

In this paper, we used a test of transitivity to illustrate how

one can use the MARTER model and associated data analytic

methods, along with proper experimental designs to assess

formal properties such as transitivity. Although transitivity is

not the main focus of this paper, there has been a long history

of failed attempts to study this property, so we address some

of this history in this appendix, in order to explain why those

old-fashioned approaches can easily fail to diagnose whether

the underlying RDM model is transitive or not transitive.

The old method attempted to look at average behavior

and ask if average behavior was "transitive" according to

"stochastic" re-definitions of "transitivity" based on binary

choice probabilities.

Transitivity is defined on binary relations: if A ≻ B and

B ≻ C, then A ≻ C, for all A, B, and C. But because

occasional violations might be produced by random error,

it had been proposed to re-define transitivity as a property

of binary choice proportions, rather than on binary relations

(Davidson & Marshak, 1959).

For example, the property of weak stochastic transitivity

(WST) was once regarded as a property to test with error-

filled data that would be relevant to determining if people

were transitive, aside from random error.

http://journal.sjdm.org/vol15.1.html


Judgment and Decision Making, Vol. 15, No. 1, January, 2020 MARKOV TE Model 69

Weak Stochastic Transitivity

WST is defined as follows:

if p(AB) > 1/2 and p(BC) > 1/2 then p(CA) < 1/2,

where p(AB) is the probability that A is chosen over

B, which is estimated from the observed choice proportion,

denoted P(AB).

In a now out-dated research paradigm (e.g., Tversky,

1969), choice problems were presented repeatedly and bi-

nary choice proportions calculated.16

This old-fashioned approach summarized results with bi-

nary choice proportions, P(AB), P(BC), and P(CA); for

example, the proportions (0.7, 0.7, 0.3) would be consid-

ered consistent with WST and the proportions (0.7, 0.7, 0.7)

would be suspected of violating WST. If the observed pro-

portions do not satisfy the property, they still might be sta-

tistically compatible with the null hypothesis that underlying

probabilities might satisfy the property. Regenwetter, et al.

(2010) proposed a statistical test, based on the assumption of

iid, that binary choice proportions are compatible with the

null hypothesis that WST holds.

If the data allow one to reject the null hypothesis of WST,

some were ready to conclude that transitivity is violated

(Tversky, 1969). However, violation of WST does not mean

that anyone was ever actually intransitive in the sense that

at some time t, they had individual binary preferences that

violated transitivity; that is, violation of WST does not mean

that a person ever had an intransitive pattern of true prefer-

ences. Instead, systematic violation of WST might simply

mean that a person at different times may have had different

transitive preferences; that is, maybe the person has a mix-

ture of purely transitive preference patterns. Thus, testing

WST is not an appropriate test between transitive and in-

transitive RDM models if we allow that people can change

preferences over time.17

Response Patterns, Mixtures, and WST

In Choice Problem AB, let 1 = expressed preference for A

over B and 2 = preference for B over A. For three choice

problems, AB, BC, and CA, let pattern 111 = expressed

preference for A over B, B over C and C over A. This pattern

16Unfortunately, Tversky (1969) did not include replications, which

would have allowed a modern reanalysis of his data, nor were his origi-

nal data saved in a form that would have allowed tests of iid.

17It is well-known that if a person has a fixed set of preferences that are

intransitive, that person can be made into a "money pump". However, if a

person fluctuates true preferences over time, that person can also become

a money pump. For example, if a person sometimes prefers A to B and

at other times prefers B over A, and if she would pay a small premium to

exchange for the favored item, that person would pay the premium each time

her preferences switched, becoming a money pump. Thus, even a person

who satisfies WST can still function as a money pump, simply by having

variable true preferences.

(111) is an intransitive cycle. The pattern, 112 = preference

for A over B, B over C and A over C, is transitive. There

are a total of 8 possible patterns, 2 of which are intransitive

(111, and 222) and the other 6 are transitive.

Suppose a person changes his or her preferences from ses-

sion to session among three transitive preference patterns:

112, 121, and 211. Let p112 represent the probability that

the person has the transitive preference pattern, 112. If

p112 = p121 = p211 = 1/3, then WST is violated, because

p(AB) = 2/3, p(BC) = 2/3, and yet p(CA) = 2/3, even

though the person only has transitive preference patterns.

So, if a person can have a mixture of preference patterns, the

test of WST is not really diagnostic for testing transitivity.

WST can be violated when the person is at all times perfectly

transitive, and it can be satisfied when the person has intran-

sitive patterns in the mixture. Thus, the average behavior

can appear intransitive by WST even though the individual

behavior is always transitive. As shown in example Intrans 2

of this paper, average behavior can satisfy WST even though

the individual preference patterns are intransitive more than

half the time.

Triangle Inequality and Mixtures

Because a mixture of transitive response patterns can

produce violations of WST, it was suggested (e.g., by

Morrison, 1963) that experimenters should test not only

WST but that they should also test the triangle inequality

(TI). The TI can be written as follows:

1 6 p(AB) + p(BC) + p(CA) 6 2

If p(AB) = 2/3 and p(BC) = 2/3, WST requires that

p(CA) < 1/2, but TI requires only that p(CA) 6 2/3.

The TI has the advantage over WST that if a person had a

mixture of purely transitive response patterns, she or he will

satisfy TI.

Because of this advantage of the TI (over WST), Regen-

wetter, et al. (2011) crticized Tversky’s (1969) test of WST

and argued that one should test the TI, and when there are

a greater number of stimuli, one should test the linear order

polytope.18

When the binary proportions do not perfectly satisfy the

constraints implied by a mixture of linear orders, the sta-

tistical test of Regenwetter, et al. (2011) evaluates whether

observed binary proportions should require us to reject this

mixture model. If the evidence permits rejection of TI, one

could conclude that transitivity has been violated (Müller-

Trede, Sher & McKenzie, 2015). Regenwetter, et al. (2011)

18The linear order polytope refers to the region in the space of binary

choice probabilities in which a mixture of (transitive) linear orders can be fit

perfectly; it is defined by a conjunction of inequalities like the TI involving

binary choice probabilities.
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concluded that transitivity could not be rejected based on

their tests applied to their data.

However, it is possible that a mixture can include intran-

sitive patterns and still perfectly satisfy the TI and the linear

order polytope. In fact, data that perfectly satisfy both WST

and the TI can contain true violations of transitivity, as illus-

trated in Intrans 2 and Intrans 3 of this paper.

Furthermore, merely accepting or rejecting WST or TI

does not provide a quantitative measure of the incidence of

intransitive preference patterns estimated from the data.

Therefore, tests based on binary proportions cannot be

relied upon to be unambiguous, definitive tests of transitivity

of the RDM model. We can do better.19

An anonymous reviewer suggested the term "rabbit hole"

in reference to the literature on transitivity of preference,

presumably because of the long history of failed attempts to

provide a proper test of transitivity with fallible data. We

think this term is appropriate to describe the distractions

in the scientific literature created by attempts to redefine

transitivity with stochastic, averaged behavior, as in tests of

WST and TI. Although averaged behavior might be of interest

in itself, it does not necessarily reveal what is happening

at the level of individual choice patterns–where preference

relations are defined.

Instead of testing properties defined on binary choice

probabilities, like WST, TI, or the linear order polytope,

we contend one should directly test properties defined on

response patterns. The question is, do people at any time

actually have a truly intransitive pattern of binary prefer-

ences? That question can be better addressed in TE models

including MARTER, and cannot be answered properly and

definitively by analysis of binary response proportions.

Appendix C: Incidence of Intransitive

Preferences

Using gTET, one can estimate the percentage of participants

who show intransitive behavior, and with iTET, one can esti-

19A reviewer asked if the problems documented here for the use of bi-

nary choice proportions in three choices become less problematic when

there are more stimuli. Tversky (1969), Birnbaum and Gutierrez (2007)

and Regenwetter, et al. (2011) used five stimuli instead of three. With three

stimuli, there are 8 possible response patterns, 6 of which are transitive.

With 5 stimuli, there are ten possible binary choice problems, so there are

210
= 1024 possible response patterns, 5! = 120 of which are transitive.

Because the number of transitive patterns grows less rapidly than the num-

ber of intransitive patterns, one might hope that satisfaction of the TI is

less likely to occur as the result of intransitive process as the number of

stimuli increases. However, as Birnbaum (2012, Appendix C, p. 105-107)

demonstrated, this argument is not valid; binary choice proportions cannot

properly discriminate between transitive and intransitive RDM models even

with 5 or more stimuli. The method used by Birnbaum to construct contrary

examples can be extended. Thus, although it is advisable to increase the

number of choice problems, that expansion does not solve the problem that

binary choice proportions cannot be relied upon to correctly distinguish

transitive from intransitive behavior.

mate the percentage of time that an individual has intransitive

true preference patterns. Birnbaum and Gutierrez (2007)

used gTET analysis in a series of studies involving about

1400 participants and reported estimates of 1% to 6% who

showed intransitive preference patterns consistent with a lex-

icographic semiorder. The highest rates of intransitivity were

observed when probability was represented to undergradu-

ates by pie charts without text, and lower rates were observed

among college graduates who received both pie charts and

numerical text specifying numerical probabilities. But even

among those few who were the best candidates for intransi-

tive preferences, the majority violated a property known as

interactive independence, which is implied by lexicographic

semiorders. Birnbaum (2010) also found these violations as

well as violations of two other critical properties he deduced

from the family of lexicographic semiorders. Consequently,

one may conclude that the few cases of intransitive behavior

were likely the result of assimilation in the subjective values

of probabilities rather than the result of systematic use of

lexicographic semiorders.

Birnbaum and Bahra (2012b) used iTET analysis of 136

individuals in three studies who served in many sessions.

Few individuals had evidence of having intransitive true pref-

erence patterns even for occasional periods. Again, most of

those few also showed systematic violations of implications

of lexicographic semiorders.20

Birnbaum and Schmidt (2008) and Birnbaum and

Diecidue (2015) found little evidence of intransitive prefer-

ence patterns consistent with a family of integrative contrast

models that includes majority rule and regret theory. Few

people showed intransitive patterns and recycling patterns

implied by the models. Recycling refers to the implication

that one can reverse the direction of an intransitive cycle

by permuting the consequences over events (Birnbaum &

Diecidue, 2015). Birnbaum and Diecidue also found direct

evidence against this family of models, revealed by system-

atic violations of restricted branch independence, which is

implied by this class of models. In a tailored test, Baillon,

Bleichrodt, and Cillo (2015) could not confirm the intransi-

tive predictions of regret theory.

Birnbaum, et al. (2016) tested the implications of an edit-

ing theory, that people would detect and conform to stochas-

tic dominance in simpler choice problems and violate it in

more complex ones; this theory would imply a predictable

pattern of intransitive preferences. However, despite large

incidence of violation of stochastic dominance in the "com-

20Tests of interactive independence are summarized for individuals in

Appendix G of Birnbaum and Bahra (2012b, p. 561-563). An example test

compares R = ($95, p; $5) and S = ($55, p; $20), where p = 0.95, 0.9 ,0.5,

0.1, or 0.05. According to lexicographic semiorder models, any attribute

that is the same in both alternatives of a choice problem (in this case, p)

should have no effect. According to interactive models like TAX, CPT,

or EU, however, the probability to choose R over S should increase as p

increases. Of 85 individuals in two experiments, 72 showed this predicted

violation of interactive independence.
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plex" choices problems, there was little evidence of intran-

sitive preference patterns predicted by the editing theory.

Two recent studies, reanalyzed via TE fitting models,

yielded small, but significant evidence of intransitivity.

Müller-Trede (personal communication, Jan. 3, 2020) re-

analyzed the data of Müller-Trede, et al. (2015, Experiment

1) and found that 5 of 22 participants had estimates of prob-

ability of the predicted intransitive pattern significantly ex-

ceeding 0; for these same 5, the authors had rejected the

triangle inequality. Birnbaum (2020) reanalyzed data from

Butler and Pogrebna (2018) and found that 3 of the 11 triples

they tested showed significant probabilities of the intransi-

tive preference pattern predicted by the most probable winner

model, with rates of this violation ranging from 34% to 51%

in the three cases that were significant.21

In sum, when TE models have been applied, they provided

estimates of the incidence of intransitive true preference pat-

terns, and empirical data have revealed small, but significant

incidence of violation of transitivity of preference. At the

moment, we think that it is less likely that these small effects

observed to date represent a tip of the iceberg of potential

evidence that intransitive processes are generally descrip-

tive of human decision making than that they represent true,

but small "side-story" phenomena, analogous to friction in

physics demonstrations.
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