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a b s t r a c t

Judges assigned values to gambles from viewpoints of buyers (willingness to pay) and sellers (willingness
to accept). Consistent with previous results, selling prices exceed buying prices, and these two judgments
are notmonotonically related to each other. There are systematic violations of consequencemonotonicity
when the consequence of zero is increased to a small positive value. Models based on loss aversion
combined with cumulative prospect theory (CPT) do not give accurate accounts of the data. In particular,
judgments violate complementary symmetry, which is implied by third-generation prospect theory. In
addition, there are violations of first order stochastic dominance in judgments of three-branch gambles.
Models based on the theory of joint receipts by R. D. Luce fit better than third-generation prospect theory,
but the best-fitting of six suchmodels does not give an adequate account of judgments involving a lowest
consequence that might be zero or positive. Two configural weight models give better fits to the data
using the same number or fewer parameters estimated from the data.
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When people are asked to judge the highest price they would
pay to buy something, they report a much lower value than when
they are asked to judge the least they would accept to sell the
same thing. This finding has been observed for both goods of
uncertain or ambiguous value, such as used cars, and for gambles
with defined probabilities and consequences (Birnbaum& Stegner,
1979; Coombs, Bezembinder, & Goode, 1967). The discrepancy
between judged willingness to pay (WTP) and willingness to
accept (WTA) is surprisingly large from the perspective of classical
expected utility theory in economics (Horowitz & McConnell,
2002; Knetsch & Sinden, 1984).

The same phenomenon has been discussed in different isolated
segments of the scientific literature and attributed to different
sources. Birnbaum and Stegner (1979) referred to it as an effect
of the judge’s point of view and tested rank-affected configural
weight models. Thaler (1980) used the term ‘‘endowment effect’’
and theorized that it might be due to loss aversion. It is also known
as a contingent valuation effect (Irwin, Slovic, Lichtenstein, &
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McClelland, 1993). Luce (1991, 2000) theorized that the difference
could be described by a joint receipt model in which buying
involved the joint receipt of a positive gain of the item purchased
and the loss of the price paid and selling involved a loss of the item
sold and a gain of the purchase price.

This article brings together and compares models that have
arisen in different branches of the scientific literature. We report
an experiment that evaluates them as empirical representations.
Before presenting the models, it is useful to cite briefly three
approaches to this topic, because recent reviews have focused
on only part of the literature. For example, Erickson, Marzilli,
and Fuster (2014), in the Annual Review of Economics, do not cite
research on configural weighting and the point of view effect, and
althoughMorewedge andGiblin (2015) take a broader perspective,
like Erickson et al., they do not cite Duncan Luce, despite the
relevance of his work.

The three groups of models considered here are (1) prospect
theory loss aversion models (Birnbaum & Zimmermann, 1998;
Kahneman, Knetsch, & Thaler, 1990; Schmidt, Starmer, & Sugden,
2008; Tversky&Kahneman, 1991, 1992)which assume that buyers
and sellers experience different patterns of losses and gains, even
when buying or selling objects or lotteries that are strictly positive;
(2) joint receipt models (Luce, 1991, 2000), which assume that
the price paid to buy a lottery or to sell one are integrated into
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the consequences by means of a joint receipt operation; and
(3) configural weight models (Birnbaum, 1982; Birnbaum, Coffey,
Mellers, &Weiss, 1992; Birnbaum & Stegner, 1979), which assume
that buyers assign higher weight to lower-valued consequences,
estimates, or attributes of an entity than do sellers.

1. Theoretical approaches

1.1. Cumulative prospect theory and loss aversion

Let g = (x, p; y) represent a binary gamble (lottery) with
probability p to receive x and otherwise receive y, where x > y.
The CPT model represents the utility of g as follows:

U(x, p; y) =U(x)W+(p) + U(y)[1 − W+(p)] if (x ≥ y ≥ 0)
U(x)W+(p) + U(y)W−(1 − p) if (x ≥ 0 ≥ y)
U(x)[1 − W−(1 − p)] + U(y)W−(1 − p) if (0 ≥ x ≥ y).

(1)

In these expressions,U(x) is the utility (value) function;we assume
U(0) = 0; W+(p) and W−(p) are the weighting functions for a
gain or loss received with probability p, respectively; W+(0) =

W−(0) = 0 andW+(1) = W−(1) = 1.
Loss aversion has most commonly been modeled as follows:

U(−x) = −λU(x), x > 0, (2)

where U(−x) is the utility of a loss of x (x > 0), and λ is the factor
by which losses are said to ‘‘loom larger’’ than gains, when λ > 1.

The term, loss aversion, unfortunately, has been used in two
different ways that may have created confusion in the literature:
first, it has been used to refer to the behavioral phenomenon of
risk aversion for certain mixed gambles; second, it has been used
to refer to the theory that empirical findings of risk aversion for
such mixed gambles are due to the shape of the utility function.
A rival explanation for the behavioral phenomena is that negative
consequences receive greater weight (e.g., Birnbaum & Bahra,
2007), rather than more extreme utility.

It has been reported that choices satisfy reflection, which is the
behavioral property that if gamble g = (x, p; y), where x > y > 0,
is preferred to gamble f , then gamble −f is preferred to gamble
−g , where −g = (−x, p; −y). If Eq. (2) holds and if W+(p) =

W−(p), then reflection would be satisfied (Tversky & Kahneman,
1992). A more general form of ‘‘loss aversion’’ that need not satisfy
reflection is considered in the discussion.

1.1.1. Models refuted by two types of preference reversals
Within the framework of prospect theory, various models for

buying and selling prices of gambles can be constructed. However,
two of these have already been rejected by considerable evidence,
and it is worth noting why these theories do not work and have
been rejected.

Let b(g) and s(g) represent the highest buying price and lowest
selling price for gamble g , respectively (when gamble, g , is fixed,
we use b and s, for simplicity).

First, one might theorize that people are willing to buy a
gamble whenever U(g) ≥ U(b) and to sell whenever U(s) ≥ U(g).
However, this model implies that if a person sets a higher price
on gamble g than f then U(g) > U(f ), so the person should prefer
g to f . However, there are gambles for which many individuals
systematically set a higher selling or buying price on g than f and
then prefer f over g in direct choice (Johnson & Busemeyer, 2005;
Lichtenstein & Slovic, 1971; Mellers, Chang, Birnbaum, & Ordóñez,
1992; Mellers, Ordóñez, & Birnbaum, 1992; Tversky, Sattath, &
Slovic, 1988).

Such results are called preference reversals because one way
of comparing the utility of the gambles (direct choice) yields
one preference relation, and another method (selling or buying
price) yields an apparent contradiction. Furthermore, if buying and
selling prices are each equal to the gamble’s utility, then they
should be equal to each other. Therefore, this first model can be
rejected.

A second theory was proposed by Tversky and Kahneman
(1991) for goods. Extended to gambles, the buying price is assumed
to reflect an implicit comparison between the positive utility of
receiving the gamble against the negative utility of (losing) the
buying price, U(−b). Similarly, selling price reflects an implicit
comparison between the positive utility of receiving the sales price
versus the loss of the gamble, U(−g), where U(−g) represents the
utility of −g = (−x, p; −y). In contrast to the first approach, this
model involves comparisons between gains and losses, whereas
the first approach involved only positive values. According to this
theory,

U(g) + U(−b) = U(0); (3)
U(s) + U(−g) = U(0). (4)

Birnbaum and Zimmermann (1998, p. 176–178) proved that if
we were to assume Eqs. (3) and (4), CPT (Eq. (1)) and loss aver-
sion (Eq. (2)), and if W+(p) = W−(p) (as assumed by Kahneman
& Tversky, 1979 and reported as a good approximation by Tversky
& Kahneman, 1992), it would follow that U(s) = λ2U(b) ; there-
fore, s = U−1

[U(b)λ2
] ; where U−1 is the inverse of U(x). Thus,

this model implies that selling and buying prices should be mono-
tonically related to each other. Johnson and Busemeyer (2005)
presented a similar proof, and concur that preference reversals
between buying and selling prices in Birnbaum and Beeghley
(1997) refute this (extended) model of Tversky and Kahneman
(1991).

If in addition to Eqs. (1), (2), (3), and (4) we also assumed
that U(x) = xβ , as in Tversky and Kahneman (1992); it would
follow that s = λ2/βb, so the ratio of selling price to buying
price (WTA/WTP) should be a constant. Kahneman et al. (1990)
listed empirical values of the ratio of WTA/WTP = s/b from
different studies, with a median slightly exceeding 4. If β = 0.88
(Tversky & Kahneman, 1992), then s/b = 4 implies λ = 1.84.
Tversky and Kahneman (1991) realized that their theory implied
that WTA/WTP of a $5 bill must also be 4, so they postulated
exceptions for cash or goods held for exchange.

More damaging than the need for such exceptions, data from
several studies reported that selling prices and buying prices are
not even monotonically related to each other, which contradicts
this model (Birnbaum, 1982, p. 470–472; Birnbaum & Stegner,
1979). For example, Birnbaum and Sutton (1992) found that from
the viewpoint of the seller, g = ($96, 0.5; $0) is judged by the
majority of individuals higher than f = ($48; 0.5; $36); whereas,
from the viewpoint of the buyer, g is judged lower than f by the
majority of the same individuals. Such reversals between buying
and selling prices represent a second type of preference reversal
that has been found in several other studies (Birnbaum&Beeghley,
1997; Birnbaum et al., 1992; Birnbaum & Zimmermann, 1998).
These preference reversals between WTA and WTP rule out this
model of loss aversion and any other model in which the ratio,
WTA/WTP, is constant.

Having ruled out these two models, we next take up another
approach that is not rejected by these two types of preference
reversals.

1.1.2. Third-generation prospect theory
This third approach, formulated by Birnbaumand Zimmermann

(1998, p. 178–180) and independently by Schmidt et al. (2008),
treats decisions to buy or sell as the result of an adjustment of the
consequences of the gambles to reflect buying or selling prices. In
the case of buying prices, the buyer is presumed to evaluate a new
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gamble, which we denote g − b = (x − b, p; y − b), where x − b
is the profit if the gamble wins and y − b is the loss if the gamble
yields only y. Similarly, the seller considers it a ‘‘loss’’ of x − s if
the gamble might win x, since the seller gave up the opportunity
to win; and if the gamble pays only y, the seller considers that a
‘‘win’’ of s−y. In decisions to sell, the integrated gamble is denoted
as s − g = (s − x, p; s − y); therefore,

U(g − b) = U(0); (5)
U(s − g) = U(0). (6)

Definition. Third-generation prospect theory (TGPT) consists of
the following assumptions: Eqs. (5) and (6), CPT (Eq. (1)), Eq. (2)
(loss aversion), and U(x) = xβ .

Theorem 1. For gambles g = (x, p; y) and g ′
= (x, 1 − p; y), TGPT

implies

b(g) + s(g ′) = x + y, (7)

where b(g) and s(g ′) represent the buying and selling prices for
gamble g and g ′.

Expression (7) is called complementary symmetry, even though
the complementary gambles, g and g′ might be played indepen-
dently on different trials. Intuitively, this property follows from the
symmetry between buyers and sellers: a loss to one is a gain to the
other.

Proof. From (5) and (2),and because U(0) = 0, highest buying
prices of gamble, g = (x, p; y), x > y > 0, are given by the
following:

0 = W+(p)U(x − b) + W−(1 − p)U(y − b)
= W+(p)U(x − b) − W−(1 − p)λU(b − y).

Define

T (p) =


W+(p)

W−(1 − p)λ

 1
β

,

then

b =
T (p)x + y
T (p) + 1

. (8)

Similarly, for selling price of g ,

s =
x + T (1 − p)y
T (1 − p) + 1

. (9)

For g = (x, p; y) and g ′
= (x, 1 − p; y), it follows from Eqs. (8)

and (9) that b(g) + s(g ′) = x + y, which proves Theorem 1. �

Note that the derivations of Eqs. (8), (9), and (7) did not assume
anything about W+ and W−, except that T (p) is a number. Note
that complementary symmetry (Eq. (7)) holds for all x, y, and p. The
present study tests it by manipulating p, holding x + y and |x − y|
fixed in each of several tests. The horizontal line in Fig. 1 depicts
this prediction of TGPT. The other curves in Fig. 1 show that other
theories (described in the next sections) violate this property, so
we can compare theories by testing this property.1

TGPT does not imply that WTA/WTP is a constant. For example,
supposeW+

= W−,U(x) = x, and λ = 2. For g = ($100, 0.5; 0),

1 Michal Lewandowski (personal communication, April 23, 2016) reported that
he has proved that complementary symmetry (7) holds for any monotonic utility
function under (5) and (6); in which case tests of that property would not depend
on the particular form of loss aversion assumed in (2).
Fig. 1. Predictions of four models for test of complementary symmetry. Predicted
sum of judgments of buying price of g = ($100, p; $0) plus selling price of
g′ = ($100, 1 − p; $0). Third-generation prospect theory (labeled TGPT) predicts
a horizontal line equal to x + y, shown as the horizontal line at $100. Duplex
Decomposition C\V model (labeled DD C\V) predicts U-shape, as shown by the
lowest curve. RAM model also predicts a U-shape with a minimum between 0.5
and 1. TAX model predicts a decrease to the right.

it follows that b = $33 and s = $67, so s/b = 2. However, for
g = (x, p; y), when x = y it follows that s/b = 1. Thus, this
theory avoids the disproved implication of the theory of Tversky
and Kahneman (1991), while retaining loss aversion.

Definition (Consequence Monotonicity (CM) for Binary Gambles).
∀ g = (x, p; y), ∀ x+ > x, and ∀ y+ > y, b(x+, p; y) > b(g),
b(x, p; y+) > b(g), s(x+, p; y) > s(g), and s(x, p; y+) > s(g).

Theorem 2. TGPT implies CM in binary gambles.

Proof. Eqs. (8) and (9) are both strictly increasing monotonic
functions of x and of y. �

Definition. We say that g+ dominates g− by first order stochastic
dominance (FOSD) if the probability to win prize v or more in
gamble g+ is always at least a high and sometimes higher than the
probability to win v or more in gamble g−, ∀ v.

Definition (Recipe of Birnbaum (1997, 2004)). Let g = (x, p; y),
g−

= (x, p− r; x−, r; y, 1−p), and g+
= (x, p; y+, t; y, 1−p− t),

where x > x− > y+ > y > 0 and all of the probabilities are
between 0 and 1.

For example, g+
= ($96, 0.9; $14, 0.05; $12, 0.05) dominates

g−
= ($96, 0.85, $90, 0.05; $12, 0.1), because the probability to

win $96 or more is higher in g+ than in g−, the probability to
win $90 or more is the same; the probability to win $14 or more
is higher in g+ than in g− and the probability to win any other
outcome or more is the same.2

2 Birnbaum (1997) developed this recipe to illustrate that configural weight
models (Birnbaum & Stegner, 1979) can predict violations of FOSD in such specially
constructed choice problems. Birnbaum and Navarrete (1998) later reported that
about 70% of undergraduates tested violated FOSD by choosing g− over g+ in direct
choices, and such violations have been replicated in a number of subsequent studies
(e.g., Birnbaum, 2004). Because rank-dependent utilitymodels (including CPT)must
satisfy FOSD, such violations are strong evidence against the descriptive adequacy of
thosemodels. Birnbaum (2004) showed that the region of such predicted violations
of FOSD by TAX is very small in the space of choices between three-branch gambles.
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Definition. Coalescing is the assumption that if two branches of
a gamble have identical consequences, they can be combined
by adding their probabilities without affecting utility; e.g.,
U(x, p; x, q; y, 1 − p − q) = U(x, p + q; z, 1 − p − q) and
U(x, p; y, q; y, 1 − p − q) = U(x, p; y, 1 − p).

Theorem 3. TGPT implies that buying and selling prices satisfy FOSD
in recipe of Birnbaum (1997, 2004).

Proof. Birnbaum and Navarrete (1998, p. 57–58) proved that CPT
implies coalescing for any decumulative probability weighting
functions. They also proved (p. 53) that any theory satisfying tran-
sitivity, CM, and coalescingmust satisfy FOSD in Birnbaum’s recipe.
Therefore, according to CPT, U(g+) > U(g) > U(g−). By CM,
U(x−b, p−r; x−

−b, r; y−b) < U(x−b, p−r; x−b, r; y−b). From
coalescing,U(x−b, p−r; x−

−b, r; y−b) < U(x−b, p; y−b). Using
coalescing (splitting) on the right side, we haveU(x−b, p−r; x−

−

b, r; y−b) < U(x−b, p; y−b) = U(x−b; p; y−b, t; y−b); By CM,
U(x−b; p; y−b, t; y−b) < U(x−b; p; y+

−b, t; y−b); by transi-
tivity,U(x−b, p−r; x−

−b, r; y−b) < U(x−b; p; y+
−b, t; y−b);

therefore (by Eq. (5)), b(g−) < b(g+). The proof for selling prices
works the same way, except U(s − x, p − r; s − x−, r; s − y) >

U(s − x, p; s − y+, t; s − y), so s(g−) < s(g+) in Eq. (6). �

1.2. Joint receipts: rank- and sign-dependent utility

Luce (2000) deduced implications for buying and selling prices
from his theory based on joint receipts of gains, losses, and
gambles defined on those consequences. Joint receipt refers to
psychological combination of two or more goods or gambles. One
can view the act of buying as the joint receipt of a loss of money
and of the gain of a gamble, and the act of selling as the joint
receipt of cash and the loss of a gamble. Different combinations of
assumptions in Luce’s theoretical framework give rise to different
models as special cases. Some of these models imply that buying
and selling prices are identical, contrary to evidence, but others
imply s > b. In contrast with loss aversion theories, however, the
utility function for losses does not appear in the equations derived
from this approach for gambles of positive consequences; instead,
thesemodels attribute the discrepancy between buying and selling
prices to the pattern of weighting in mixed gambles.

This class of models, detailed in Luce (2000, Chapters 6–7),
rests on two primitives in addition to a weakly-ordered (reflexive,
transitive, and complete) preference relation, %, over gambles. In
the usual way, define indifference, ∼, strict preference, ≻, and the
converse ordering, -.

The first additional concept is a distinguished consequence,
denoted e, that is identified as no change from the status quo. If f
is a gamble (including, as a special case, pure consequences) and
f % e, then f is called a gain and if f - e, then f is a loss.

The second additional concept is a binary operation, denoted
⊕ and called joint receipt. If f and g are two gambles (again,
including pure consequences as special cases), then f ⊕ g means
that the decision maker holds or receives them at the same time.
We assume that ⊕ is commutative in the sense that f ⊕ g ∼ g ⊕ f
and that e is its identity in the sense that f ⊕ e ∼ f . It is useful
below to define a ‘‘subtraction’’ operation, ⊖, in terms of ⊕ by

f ⊖ g ∼ h ⇐⇒ f ∼ g ⊕ h. (10)

We assume that such differences exist, but we do not assume that
formoney amounts x, y that x⊕y = x+y. The reasons are discussed
on pp. 144 and 154–155 of Luce (2000).
1.2.1. Buying and selling prices
The following models have some similarities to TGPT, in the

sense that they replace actual subtraction with the generalized
subtraction operator ⊖ of Expression (10), but the utility structure
is quite different. Luce (1991; see also Hazen & Lee, 1991)
postulated (maximum) buying and (minimum) selling prices, b and
s, of a binary gamble (x, p; y), with x % y, as solutions to the
following indifferences

(x ⊖ b, p; y ⊖ b) ∼ e and (s ⊖ x, p; s ⊖ y) ∼ e. (11)

Note that if⊖ ≡ −, then this theory agreeswith (5) and (6) of TGPT
(Section 1.1.2).

The rationale is that if one buys the gamble for the amount b,
then the net result is a gamble with the consequences reduced by
the amount b. Similarly, if one sells a gamble for s, then one still
‘‘has’’ the gamble butwith, in effect, the consequence of s less either
x or y depending upon the outcome of the chance phenomena
underlying the gamble. Note: from the assumptions that % is a
weak order that satisfies consequencemonotonicity over gambles,
it follows that:

• x ⊖ b % e % y ⊖ b and s ⊖ x - e - s ⊖ y.
• Thus, no matter whether the gamble is all gains, as it is in

the present study, or all losses, or mixed gains and losses, the
gambles defining the buying and selling prices necessarily have
mixed consequences.

• For b′
≺ b, (x⊖ b′, p; y⊖ b′) ≻ e and for b′

≻ b, (x⊖ b′, p; y⊖

b′) ≺ e.
• For s′ ≻ s, (s′⊖x, p; s′⊖y) ≻ e and for s′ ≺ s, (s′⊖x, p; s′⊖y) ≺

e.

It is clear from the definitions we need to understand the form
of the utility of gambles of amixed gain and a loss. To do this entails
two steps. The first is to decompose a mixed gamble into the joint
receipt of two gambles that are not mixed ones. The second is to
see the form of the utility of joint receipts. We take them up in that
order.

1.2.2. Decomposing mixed gambles
For gambles of mixed gains and losses, two major hypotheses

have been explored that are designed to reduce the calculation
of U(x, p; y), where x % e % y, to the joint receipt of gambles
in which one of the consequences is e. Such simple gambles may
be called unitary. The advantage of such decompositions is that if
one can figure out how to calculate utility of a joint receipt, then
the calculation is reduced to determining the form of U for unitary
gambles. And for most models that have been proposed, they have
the separable form

U(x, p; e) = U(x)W (i)(p),
where i = + if x % e, i = − if x ≺ e.

Qualitative conditions for separability to hold are well understood
(Luce, 2000, Section 3.5.2).

One decomposition assumption is general segregation (Luce,
1997), for x % y, x % e,

(x, p; y) ∼


(x ⊖ y, p; e) ⊕ y, if (x, p; y) % e
(e, p; y ⊖ x) ⊕ x, if (x, p; y) - e.

Note the normative quality of this condition in the sense that what
one receives in the decomposed gamble is exactly the same as in
the original gamble. This generalizes the property of segregation
defined by Luce (1991) and Luce and Fishburn (1991) for gambles
of all gains (or all losses).

The other proposed rule is duplex decomposition (Luce &
Fishburn, 1991; Slovic & Lichtenstein, 1968)

(x, p; y) = (x, p; e) ⊕ (e, p; y),
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where the two unitary gambles on the right are run independently.
Note that this is not normatively equivalent because the possible
outcomes on the right are x, y, x ⊕ y, and e ⊕ e = e, whereas on
the left they are just x or y. Nevertheless there are empirical data
indicating that it may hold empirically (Luce, 2000, Section 6.2.3).3

1.2.3. Utility of joint receipt
So the task is reduced to determining the utility of joint receipt.

Luce (2000, Section 4.4.6) developed the following formula on
the assumption that ⊕ is a commutative operation and that
segregation holds and f and g are gambles (or pure consequences)
of both gains or both losses

U(f ⊕ g) = U(f ) + U(g) − δiU(f )U(g),

where i distinguishes gains and losses. When δi = 0, utility U , is
additive. For δi ≠ 0, it is not difficult to show that, for gains and for
losses separately, there exists an additive representation V , i.e.,

V (f ⊕ g) = V (f ) + V (g),

forwhichU is a negative exponential function of V (concave)when
δi > 0 and an exponential function (convex) when δi < 0. This
means that ⊕ is also associative over gains and losses separately.

Moreover, for money, invariance arguments imply that V for
money is a power function (Luce, 2000, Section 4.5.3),

V (x) = αxβ , x > 0.

In the present context of buying and selling prices, negative
consequences will play no direct role in the calculation, although
they definitely affect the weights used and the forms of the
equations derived. The cases where U itself is additive will be
ignored since they result in equal buying and selling prices, which
we knowempirically iswrong. So there are four combinationswith
the gains first and losses second: concave\concave (denoted C\C),
convex\convex (V\V), concave\convex (C\V), convex\concave
(V\C).

1.2.4. Calculating the prices
Formulas for buying and selling prices were derived in Chapter

7 of Luce (2000, Section 7.4).4 One arrives at equations for U(b) =

B,U(s) = S that are stated in terms of U(f ) = F ,U(g) = G, and
variousweighting functions over p or 1−p that differ depending on
whether p applies to a gain or loss. The (normed) utility expressions
for the concave cases are for the money amount x > 0

U(x) = 1 − exp(−κxβ), (12)

and in the convex cases

U(x) = exp(κxβ) − 1. (13)

For the weighting functions, we used the form derived by Prelec
(1998) and deduced from a behavioral property by Luce (2001; see
Luce, 2000, Section 3.4.3)

W (i)(p) = exp

−γ (i) (− ln p)η(i) , (14)

where i is + when the consequence associated with p is a gain and
− when it is a loss.

Thus, there are a total of 6 parameters for each of these models,
two from the utility function of gains and 4 from the weights. And

3 However, Cho, Luce, and Truong (2002) empirically tested duplex decomposi-
tion and general segregation, and, depending upon the exact criterion used to say
that a rule can be rejected, they found that from one third to one half the partici-
pants did not satisfy either.
4 Note that one of the relevant propositions in Luce (2000, 7.4.6(ii)), is in error.

This was corrected in Birnbaum, Yeary, Luce, and Zhao (2002), and in an errata cited
here for Luce (2000).
there are sixmodels that do not lead to b ∼ s, four based on duplex
decomposition and two based on general segregation. Note that
all of these require finding the ‘‘best’’ overall solution by varying
the 6 parameters. We used minimization of sum of squares as the
criterion of the fit.

In the duplex decomposition case the equations for B and
S are quadratics, with exactly one real solution in the interval
(G, F). For example, the equations for the duplex decomposition
concave\convex (DD C\V) case are as follows:

0 = B2W−(1 − p) − B

W+(p) + W−(1 − p)

−G[W+(p) − W−(1 − p)]


+ FW+(p) + GW−(1 − p) − FGW+(p), (15)

0 = S2W+(1 − p) − S

W+(1 − p) + W−(p)

+G[W+(1 − p) − W−(p)]


+ FW−(p) + GW+(1 − p) − FGW−(p). (16)

1.3. Configural weighting and point of view

Birnbaum and Stegner (1979) theorized that buyers would
place greater weight on the lower ranked estimates of value than
do sellers. These rank-affected configural weight models correctly
predicted that buyer’s and seller’s judgments of value are not
monotonically related to each other (Birnbaum, 1982).

It has also been found that judgments are not always
a monotonic function of the consequences (Birnbaum, 1997;
Birnbaum et al., 1992; Birnbaum & Sutton, 1992). As the lowest
consequence of a gamble is changed from zero to a small positive
consequence, judgments can decrease. Such violations of CM can
be described by the assumption that the zero consequence receives
less weight than nonzero consequences.

For binary gambles of the form, g = (x, p; y), where x > y ≥ 0,
RAM and TAXmodels are both relative weight averagingmodels of
the form,

U[(x, p; y), j] =


U(x)W (p, j) + U(y)[1 − W (p, j)] y > 0
U(x)W0(p, j) + U(y)[1 − W0(p, j)] y = 0

(j = B, S).

Assuming U(0) = 0, the second equation can be simplified to
U[(x, p; 0), j] = U(x)W0(p, j) for y = 0. The relative weights of
the more preferred consequence, W (p, j) and W0(p, j), depend on
two things: the probability, p, of that consequence x and the judge’s
viewpoint, j = B or S (buyer or seller). In this approach, losses
play no role in buying and selling prices of positive consequence
gambles.

Utility is approximated as a power function of monetary prizes,
U(x) = xβ .

In previous research, it has been found that the mapping from
gambles’ inverse utilities to overt responses can be approximated
by a constant of proportionality, which is assumed to be the same
for both viewpoints:

s = νU−1
[U(g, S)];

b = νU−1
[U(g, B)];

where s(g) and b(g) represent the selling and buying prices of
gamble g; and ν is a constant (Birnbaum & Beeghley, 1997).

1.3.1. RAM model
In the Rank and Augmented sign-affected Multiplicative

weights (RAM) model (Birnbaum, 1997), configural weights are
represented as products of terms involving the effects of viewpoint,
rank, augmented sign, and probability. Augmented sign has three
levels, +, 0, and −.
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In the RAMmodel the weight of the higher valued, probability-
consequence branch (to win xwith probability p) is given by:

W (p, j) =
αjpγ

αjpγ + (1 − p)γ
, j = B, S. (17)

When γ < 1, this expression implies that the relativeweight of
the higher consequence will be an inverse-S function of p, even
though the absolute weight of the higher consequence follows
a power function of p. The inverse-S relationship between the
estimated value of a binary gamble and probability has been
reported by Gonzalez and Wu (1999), Tversky and Kahneman
(1992), and others. The RAM model can be deduced from the
assumption that the judge is estimating value so as to minimize
an asymmetric loss function (Birnbaum et al., 1992; Weber, 1994).

The relationship between relative weightsW (p, j) andW0(p, j)
can be fit with the following approximation:
W0(p, j) = α0W (p, j),
where α0 is a constant reflecting greater relative weights for
positive consequences when y = 0 relative to y > 0 (α0 > 1).

The three configural weight parameters are αB, αS , and α0.
The first two represent the relative weights of the branch with
the higher valued consequence (relative to the branch with the
lower-valued consequence) in buyer’s and seller’s viewpoints,
respectively, and α0, reflects the relative weight of the higher
valued branch in the case of a lowest consequence of zero (relative
to a positive lowest consequence in both viewpoints). The RAM
model therefore has 6 parameters, ν, β, γ , αB, αS , and α0.

1.3.2. TAX model
In the Transfer of Attention Exchange (TAX) model weights

are transferred among probability-consequence branches and the
sum of absolute weights is preserved. If there were no configural
effects, the absolute weight of a branch would be a function
of its probability, and its relative weight would be the ratio of
this weight to total weight. However, in the buyer’s viewpoint,
weight is transferred from the branch with the higher-valued
consequence and given to the lower consequence, whereas in the
seller’s viewpoint, weight is transferred in the opposite direction.

The relative weights of the branch to win xwith probability p in
the buyer’s and seller’s viewpoints are as follows:

W (p, B) =
pγ (1 − ωB − ω0)

pγ + (1 − p)γ
, (18)

W (p, S) =
pγ (1 − ω0) + ωS(1 − p)γ

pγ + (1 − p)γ
. (19)

The parameters, ωB and ωS , represent transfers of weight. In
the buyer’s viewpoint, ωB, represents the proportion of weight of
x (which would otherwise have been pγ ) that is taken from the
higher ranked branch and given to the lower-ranked branch in the
buyer’s point of view. For sellers, ωS , represents the proportion of
the lower-ranked branch’s weight [which would otherwise have
been (1 − p)γ ] transferred from the lower to the higher-valued
branch. The parameter, ω0 reflects weight transferred from the
highest to lowest consequence in both viewpoints when y > 0;
when y = 0, ω0 = 0. (In previous papers, TAX was written
so that configural weights could be positive or negative, and
the signs indicated whether weight was transferred from lower
to higher consequences or vice versa. In this presentation, the
directions of weight transfers are assumed to be known and the
model is rewritten such that ωB, and ωS are both positive. The
sign of ωB must be reflected to compare it with values in previous
publications.)

The TAX model thus has 6 free parameters, ν, β, γ , ωB, ωS , and
ω0. Previous research found that β in RAM and TAX can be set to
1 with little loss of predictive accuracy for 0 ≤ x < $150; RAM(5)
and TAX(5) refer to RAM and TAX with β fixed to 1.
Table 1
Testable properties that distinguish the models. TGPT = Third generation
prospect theory; DD C\V = Duplex Decomposition, Concave\Convex (joint receipt
model); RAM = rank and augmented sign affected configural weight model
with multiplicative weights; TAX = transfer of attention exchange model. The
testable properties include CS = complementary symmetry; CM = consequence
monotonicity; FOSD = first order stochastic dominance. TGPT implies satisfaction
of CS, CM, FOSD; Viol=model does not satisfy the property for selected parameters.
From parameters estimated in previous research, RAM and TAX predict violations
for the stimuli in this study.

Model Testable properties

TGPT CS, CM, FOSD
DD C\V Viol CS, Viol CM, Viol FOSD
RAM Viol CS, Viol CM, Viol FOSD
TAX Viol CS, Viol CM, Viol FOSD

1.4. Summary of testable properties

Besides comparing models based on an index of fit, models are
evaluated by testing the properties of complementary symmetry,
CM, and FOSD. Fig. 1 plots predictions for a test of complementary
symmetry for four models: third-generation prospect theory
(labeled TGPT), RAM, TAX, and the best-fitting of the joint receipt
models (duplex decomposition with concave and convex utility
for losses and gains, denoted DD C\V). Although TGPT implies
complementary symmetry (horizontal line), the other models can
violate it, as shown in Fig. 1.

TGPT implies that for any choice of probability weighting
functions and any utility (value) functions, CM and FOSD must
be satisfied. Luce (2000, p. 222–227) noted that violations of CM
summarized by Birnbaum (1997) refute the models of buying and
selling prices in Luce (2000, Chapter 6). However, Luce (2000, p.
259) stated that the DD C\V model might in principle violate CM
(which would also violate first order stochastic dominance). Based
on parameters estimated in previous studies, the configuralweight
models (RAMand TAX) predict violations of CM, violations of FOSD,
and violations of complementary symmetry for the stimuli used in
our design. These testable implications of the models are listed in
Table 1.

2. Method

2.1. Instructions and stimuli

The judgeswere instructed to evaluate two- and three-outcome
gambles from the viewpoints of buyer and seller. Gambles were
displayed as in the following example

0.25 0.75
$40 $108

.

This display represents a binary gamble with a 0.25 probability
to win $40 and 0.75 probability to win $108. Probability was
described in terms of relative frequency by analogy to a can
containing 100 otherwise identical slips that have the monetary
consequences printed on them. Slips would be mixed, and one
would be chosen blindly, at random, to determine the prize won.
In this gamble, 25 slips say $40 and 75 say $108.

In the buyer’s point of view, judges were asked to imagine that
they were ‘‘deciding the most that a cautious buyer should pay to
buy the chance to play the gamble’’. They were told that the buyer
exchanges money for the chance to play the lottery. The sellers
were asked to decide ‘‘the least that a seller should accept to sell
the lottery’’. They were told the seller receives money and gives
up the chance to play the lottery. Additional instructions were as
in Birnbaumand Sutton (1992); these instructions produce smaller
ratios ofWTA/WTP, compared to studies reviewed inHorowitz and
McConnell (2002) or Kahneman et al. (1990).
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Fig. 2. Mean buying prices (WTP, squares) and selling prices (WTA, circles) of
gambles of the form, ($100, p; y), are plotted as a function of p, with separate curves
for y = 0 and y = $6, averaged over participants. Filled symbols connected by solid
curves (y = $6) cross below the curves of open symbols connected by dashed curves
(y = $0) indicating violations of outcome monotonicity for large values of p.

2.2. Designs

Therewere 166 gambles, ofwhich a subset of 63 binary gambles
of the form (y, p; x) are termed the main design of this article.
These formed a 9 by 7 factorial design of p by (x, y) in which
the 9 levels of p were 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,
and 0.99, and the 7 levels of (x, y) were ($100, $0), ($72, $0),
($48, $0), ($24, $0), ($100, $6), ($100, $24) and ($100, $48). The
stochastic dominance design consisted of 4 pairs of three-branch
gambles. In Test 1, g+

= ($96, 0.90; $14, 0.05; $12, 0.05) and g−

= ($96, 0.85; $90, 0.05; $12, 0.10); in Test 2, g+
= ($97, 0.88;

$5, 0.06; $3, 0.06), g−
= ($97, 0.84; $92, 0.04; $3, 0.12); in Test

3, g+
= ($99, 0.95; $8, 0.03; $6, 0.02), g−

= ($99, 0.92;
$91, 0.03; $6, 0.05); in Test 4, g+

= ($97, 0.98; $7, 0.01;
$4, 0.01), and g−

= ($97, 0.96; $89, 0.02; $4, 0.02); in each
pair, g+ dominates g− by FOSD. These trials were interspersed
randomly among the other trials.

2.3. Procedure

The 166 gambles were printed in restricted random orders
in booklets, restricted so related gambles were not presented on
consecutive trials. Each participant judged all 166 gambles from
viewpoints of both buyer and seller. Buyers’ and sellers’ booklets
were identical, with instructions for both points of view, except for
the final paragraph in each booklet that reiterated the task at hand.
Each booklet included 5 practice trials for the task and 6 additional
unlabeled warm-up trials, preceding the 166 experimental trials.
Half received the buyer’s booklet first, followed by the seller’s, and
half received the other task order. Judges worked at their own
paces and completed both tasks in two hours.

2.4. Judges

Judges (participants) were 66 undergraduates at California
State University, Fullerton, who participated as one option toward
an assignment in lower division psychology courses.

3. Results

3.1. Violations of Consequence Monotonicity (CM)

Violations of CM are shown in Fig. 2. The curves showing mean
judgments of ($100, p; $0), averaged over participants, shown
Fig. 3. Tests of complementary symmetry. According to third-generation prospect
theory, sum of WTP + WTA of complementary gambles should be constant,
independent of p. Filled circles show mean judgments of ($100, p; 0) plus its
complement, averaged over participants; unfilled circles show judgments of
($72, p; 0) plus its complement (right ordinate). Compare to Fig. 1.

as open squares and circles connected by dashed lines cross
the curves for ($100, p; $6), shown as filled circles and squares
connected by solid lines. As reported previously (e.g., Birnbaum,
1992, 1997; Birnbaum et al., 1992 and Birnbaum & Sutton, 1992),
increasing the lowest consequence from y = 0 to a small positive
consequence increases judgments when the probability (p) of the
highest consequence is small. However, when p is large, replacing
y = 0 with a small positive value actually makes the judgment
lower.

To test the significance of the crossover representing violations
of CM, contrasts were constructed for each individual by comput-
ing the sum of six differences between judgments of ($100, p; $6)
less those of ($100, p; $0). Summed over the three smallest values
of p and over 2 viewpoints, 57 of 66 individuals had positive con-
trasts, indicating satisfaction of CM for small p. The mean contrast
was $30.28, which is significantly greater than $0, t(65) = 7.00.
However, at the highest three levels of p, the mean contrast was
negative, −$19, which is significant, t(65) = −3.33 in the op-
posite direction. Of the 66 individuals, 40 showed negative con-
trasts compared to only 24 who had positive contrasts. Only 4
judges showed a crossover opposite to that shown in the means
against 38 who showed both contrasts consistent with crossover
in the means. Similarly, contrasts at y = $24 (i.e., sum of differ-
ences in judgment between ($100, p; $24) and ($100, p; $0)) also
showed the same crossover with a significant violation of conse-
quence monotonicity for the three highest levels of p [t(65) =

−2.67] and significant satisfaction for the three lowest levels of
p, t(65) = 16.11. These violations of CM contradict the models of
loss aversion and TGPT.

3.2. Violations of complementary symmetry

Eq. (7) (complementary symmetry) follows fromTGPT. The sum
of b(x, p; y) + s(x, 1 − p; y) should be x + y, independent of p.
In all 63 cells in the main design, the sum was less than x + y.
In addition, the sum was not independent of p. Fig. 3 plots these
sums for g = ($100, p; $0) and g = ($72, p; $0) as a function
of p, averaged over participants, as in Fig. 1. Instead of being
horizontal lines, the empirical curves have four features. First, the
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Fig. 4. Fit of TAXmodel with 5 free parameters tomean judgments of selling prices
in the main design (WTA). Filled symbols show judgments of ($100, p; y), with
squares, circles, and diamonds for y = $48, $24, and $6, respectively. Solid curves
show corresponding predictions (pb= predicted seller’s price; ob= observedmean
judgment, averaged over participants), as a function of probability to win $100.
Unfilled symbols show judgments of gambles, (x, p; $0), with circles, triangles,
diamonds, and squares for x = $100, $72, $48, and $24, respectively, as a function
of probability to win x. Dashed curves show corresponding predictions when y = 0.
Caseswhere unfilled symbols exceed filled symbols prepresent empirical violations
of consequence monotonicity. Cases where a dashed curve crosses solid curves
show predicted violations of monotonicity.

Table 2
Comparison of fit of models to binary gambles.

Model (No. of parameters) Sum of squared deviations

TGPT (9) 20,242
DD C\V(6) 8,822
DD C\V(12) 4,935
RAM (6) 1,129
RAM (5) 1,186
TAX(5) 1,051

sum of the judgments falls below x + y ($100 or $72) for all p.
Second, judgments decline as a function of p. Third, judgments
show evidence of a U-shape, consistent with RAM and DD C\V
models. Fourth, there is a ‘‘kink’’ at p = 0.5, not predicted by any
of themodels but similar to one reported by Birnbaum et al. (1992,
p. 338–339).

A graph like Fig. 3 was drawn separately for each individual,
and it was found that for each of the 66 participants, the
sum b($100, p; $0) + s($100, 1 − p; $0) was always less than
$100; 47 individuals showed the decline, b($100, 0.01; $0) +

s($100, 0.99; $0) < b($100, 0.99; $0) + s($100, 0.01; $0); in 44
individuals theminimum of this sum fell in the interval, 0.5 < p <
0.99. Thus, themain trends observed in the aggregate data of Fig. 3
are also characteristic of the majority of individual participants. In
sum, these violations of complementary symmetry refute TGPT.

3.3. Fit of models to binary gambles

Four models were fit to the 126 mean judgments of the main
design (63 binary gambles in 2 viewpoints) The sum of squared
deviations for each model (and number of estimated parameters)
is listed in Table 2.

Recall that the derivations of Eqs. (8) and (9) in TGPT did not
assume anything about the forms ofW+ andW− or their relation-
ship. Because there are 9 levels of p in the data to be fit, there are
9 values of T (p) to estimate. The least-squares estimates of T (0.01),
T (0.05), T (0.10), T (0.25), T (0.50), T (0.75), T (0.9), T (0.95),
T (0.99) are 0.1373, 0.1865, 0.2277, 0.3523, 0.5556, 1.0422, 1.5099,
1.8304, and 2.4614. The sum of squared deviations for this model
was 20,242.41, or a Root Mean Squared Deviation (RMS) = 12.67.
TGPT fails badly to fit the data, despite using 9 free parameters.
Forcing further restrictions on thismodel (e.g., adding assumptions
Fig. 5. Fit of the TAX model with 5 free parameters to mean judgments of buying
prices (WTP), plotted as in Fig. 4 (pb = predicted buyer’s price; ob = observed
buyer’s mean judgment).

concerningW+ andW−) would reduce the number of parameters,
but make the fit even worse.

The best-fitting of the six joint-receipts models fit to the same
aggregate data is the Duplex Decomposition model C\V (concave
utility for gains and convex utility for losses). The least-squares
parameter estimates are κ = 0.2365, β = 0.5721, γ (+) =

0.6374, η(+) = 0.4498, γ (−) = 0.3161, and η(−) = 0.3665;
the sum of squared deviations is 8822.41, for a RMS = 8.37.

The parameter estimates for RAM(6) are ν = 0.844, γ = 0.505,
β = 1.250, αB = 0.207, and αS = 0.890, and α0 = 1.100. These
six parameters yield a sum of squared deviations of 1128.65 or
RMS = 2.99. When β is fixed to 1, RAM(5) model fits almost as
well (1185.76), with best-fit parameter estimates of 0.823, 0.478,
1 (fixed), 0.306, 1.207, and 1.113, respectively.

TAX(5) fit the same data with smallest sum of squared errors:
1051, (RMS = 2.89). Parameter estimates, with β = 1 (fixed) are
ν = 0.833, γ = 0.827, ωB = 0.336, ωS = 0.161, and ω0 = 0.092.
Allowing β to be free gave virtually the same parameter estimates
and fit.

Clearly the two configural models fit best, the duplex decompo-
sition one next, and TGPT fits least well.

The Duplex Decomposition models systematically failed to fit
the relationship between judgments of gambles in which the
lowest valued consequence is zero or positive. The best-fit solution
did not reproduce the violations of CM (Fig. 2), as theorized it
might do by Luce (2000, p. 259). To explore the source of deviations
for the duplex decomposition models, the DD C\V model was
fit to the mean judgments for these two subsets of the main
design separately (y = 0 and y > 0), using 12 parameters. It was
found that the sum of squared deviations for this version was
4934.48 (RMS = 6.26), which is still four times worse than the fit
of either RAM or TAX with only 5 free parameters. The parameters
for the utility function changed markedly between the two cases,
which seems a complicated way to describe the data. Because
models with 5 parameters fit better than models with 9 or 12
parameters, there is no need to do AIC analysis.

To check these conclusions for individuals, models were fit
to every tenth participant, who were numbered from 1 to 66 in
random order. Models were fit by function minimizing routines
and the parameter space was also explored in a fine grid search
to check for local minima. It was found that the order of the three
categories of models was always the same for all seven individuals
analyzed as it was for the averaged data. That is, configural weight
models fit better than the best-fitting joint receipt model fit to
individuals (which was for all individuals DD C\V), but there was
no clear winner between the two configural models. And TGPT fits
worst, despite having the largest number of free parameters.

If twomodelswere equally accurate for fitting data of individual
participants, the probability that one would beat the other for all
seven individuals tested is ( 1

2 )
7

= 0.008.
Predictions for TAX(5) are shown as curves in Figs. 4 and

5, and mean judgments are shown as symbols. The TAX model
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Table 3
Mean buying prices (WTP) in tests of stochastic dominance.

Test g+ g−

1 $35 $54
2 $33 $47
3 $46 $53
4 $52 $58

Table 4
Mean selling prices (WTA) in tests of stochastic dominance.

Test g+ g−

1 $65 $71
2 $64 $71
3 $74 $75
4 $73 $78

predicts violations of consequence monotonicity when lowest
consequences change from y = 0 to y > 0 as p approaches 1.
(Note the crossovers of the highest dashed curve and lowest solid
curve and the corresponding crossover of open and filled symbols.)
Themodel also does a fairly good job in describing the relationship
between buying and selling prices.

Consistent with previous studies, the data in Figs. 4 and 5 show
that the ratio of WTA/WTP is not a constant. The WTA/WTP ratio
for binary gambles, (x, p; y), varies inverselywith p. TheWTA/WTP
ratios are 2.77, 2.07, 1.98, 1.89, 1.86, 1.59, 1.47, 1.44, 1.31, and
1.26, for the 9 levels of p = .01 to .99, respectively, averaged
over (x, y) = ($100, $0), ($100, $6), ($100, $24), and ($100, $48).
Similarly, WTA/WTP varies inversely with |x − y|, averaged over
the 9 levels of p; the mean ratios are 2.50, 1.93, 1.42, and 1.21 for
|x − y| = $0, $94, $76, and $52, respectively. The overall mean
ratio was 1.91, smaller than the average values reported in reviews
by Kahneman et al. (1990) andHorowitz andMcConnell (2002). All
four of the models compared here do not require that this ratio is
constant; these variations in the ratio are best fit by the TAX and
RAMmodels.

3.4. Violations of stochastic dominance (FOSD)

Tables 3 and 4 show that FOSD was violated in all 8 compar-
isons of mean judgments (4 tests and 2 viewpoints). The over-
all mean judgment was $63.31 for dominated gambles, compared
to $55.11 for dominant gambles. This difference was significant,
F(1, 65) = 20.56. The difference was greater for buyers (WTP),
where the means were $53.02 and $41.18, than it was for sell-
ers (WTA), where the means were $73.61 and $69.05, respec-
tively. This interaction between viewpoint and dominance was
significant, F(1, 65) = 11.62. Different gamble pairs (Tests, shown
as Rows of Tables 3 and 4) showed significantly different mag-
nitudes of violation, F(3, 195) = 5.73; but the three-way inter-
action of Tests by Dominance by Viewpoint was not significant,
F(3, 195) = 2.31.

In separate analyses of each individual, it was found that 51 of
66 persons tested (77%) assigned higher mean judgments to domi-
nated gambles than to corresponding dominant gambles, averaged
over the four tests. Only 15 judges assigned higher mean judg-
ments to the dominant gambles. Significantly more individuals vi-
olated than satisfied stochastic dominance in this recipe.

These results (Tables 3 and 4) agreewith direct choices between
the same pairs of gambles; Birnbaum and Navarrete (1998) found
that 73, 61, 73, and 73 judges (out of 100) chose the dominated
gamble g− over the dominant, g+, in direct choices in Tests 1
though 4, respectively. These violations are not consistent with
TGPT or CPT, both of which imply satisfaction of FOSD in choice.

The data of Tables 3 and 4 were not used in the model-fitting,
so they can be considered a type of hold-out sample to check
the predictions of TAX(5). From the fit of two-branch gambles for
buyers, ωB + ω0 = 0.336 + 0.092 = 0.428; in the TAX model of
Birnbaum (2004), this means that δ/(n + 1) = −0.428, where
n is the number of branches (2 in this case), so δB = −1.28.
Similarly, for sellers, ωS = 0.161 and ω0 = 0.092 imply, δS =

0.207. With parameters, ν = 0.833, γ = 0.827, TAX predicts
mean judgments of $32 and $50 for g+ and g− in WTP and $71
and $72 in WTA for the first test in Tables 3 and 4. Thus, TAX(5)
with parameters estimated from themain design correctly predicts
violations of FOSD. Parameters fromprevious studies also correctly
predicted violations in this study (Birnbaum, 2004, p. 93; Birnbaum
& Beeghley, 1997 and Birnbaum et al., 1992).

Violations of FOSD rule out TGPT and CPT, because there exist
no parameters or monotonic value and weighting functions that
allow those models to predict violations of FOSD.

4. Discussion

There are fourmajor findings of the present experiment that are
consistent with both of the configural weight models (RAM and
TAX) but which are not consistent with at least one of the other
models:

First, there are significant violations of complementary symme-
try, which refute TGPT; these violations are apparent at both the
aggregate level in the mean judgments of Fig. 3 and in analyses of
individuals. RAM, TAX, and DD C\V can predict violations of com-
plementary symmetry (Fig. 1).

Second, there are significant violations of consequence mono-
tonicity at both aggregate and individual level, which refute TGPT.
Both configural weight models can describe violations of conse-
quence monotonicity where increasing a consequence from 0 to a
small positive value can decrease the lottery’s judged value (Fig. 2).
The best-fitting of the joint receipt models failed to reproduce this
aspect of the data.

Third, violations of first order stochastic dominance in both
buying and selling prices refute TGPT, but were correctly predicted
by TAX model using parameters estimated either from previous
studies or from other data in this study. The fact that violations of
first order stochastic dominance are found at both aggregate and
individual level, for buying prices (Table 3), selling prices (Table 4),
and choices (Birnbaum & Navarrete, 1998) indicates that these
violations are not due to something unique to either the choice
task or to judgment, but instead likely due to a common evaluation
mechanism.

Fourth, both configural weight models fit the data for binary
gambles better than the othermodels, despite using fewer parame-
ters. No clearwinner between TAX and RAMwas determined; RAM
appears to better approximate the violations of complementary
symmetry, but TAX fit slightly better overall. The sum of squared
deviations for TGPT with 9 parameters was more than 19 times
larger than that for TAX with 5 parameters. The best-fitting joint
receipt model (DD C\V) even when allowed 12 parameters had 4
times the sum of squares of TAX with 5 parameters.

From the fit of themodels derived from joint receipts, it appears
that violations of consequence monotonicity reported in previous
judgment studies as well as in this study are not well-described by
the properties of general segregation or duplex decomposition in
additive joint receipt models. Recall that Cho et al. (2002) found
that from one third to one half the participants did not satisfy
either general segregation or duplex decomposition. This means
that the joint receipt models discussed in this paper may very
well be founded on wrong premises. For the present data, the
model failed to adequately describe the fact that people treat the
case with $0 as a consequence differently from cases with strictly
positive consequences, even when different sets of parameters
were allowed in these two cases. This finding causes trouble for
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the previously published models derived in Luce’s (2000, Chapter
7) approach because they are based on decomposing a general
gamble to unitary ones (i.e., with one consequence $0), as in
general segregation and duplex decomposition. Some progress has
been made on this issue in Luce (2003, 2010).

These results are compatible with other research testing
implications of configural weight models for buying and selling
prices (Birnbaum, 1982; Birnbaum & Beeghley, 1997; Birnbaum
et al., 1992; Birnbaum & Stegner, 1979; Birnbaum & Sutton,
1992; Birnbaum & Veira, 1998; Birnbaum & Zimmermann, 1998;
Johnson & Busemeyer, 2005). Ashby, Dickert, and Glöckner (2012)
found that buyers spend more time looking at the lower valued
consequences than do sellers at all levels of probability, as if time
spent looking at a component is an indicator of its configural
weight.

Is there some other way to salvage CPT and ‘‘loss aversion’’? It
might seem that if we were to allow the parameters of CPT to be
contingent on the judge’s point of view, then we might be able to
salvage that model, as follows:

b = Jb[Ub(x, p; y)],
s = Js[Us(−x, p; −y)],

where Jb and Js represent monotonic functions that might reflect
different ‘‘biases’’ produced by the request to produce numerical
judgments in the buying and selling tasks, respectively; Ub and
Us represent utilities (values) for the gambles, allowing functions,
W+

b , W+
s , W−

b , W−
s , Ub, and Us that differ for buyer or seller. This

model would allow any relationship between U(x) and U(−x),
generalizing loss aversion. Although this model uses many param-
eters and can bemade equivalent to RAM or TAX for certain binary
gambles (with suitable choices of functions and parameters), this
model still must satisfy consequence monotonicity and FOSD, so it
is refuted by violations of those critical properties, despite the large
number of free parameters and functions.

At one time it was thought that CPT might be an accurate
description of choices among risky prospects. However, CPT
implies properties such as first order stochastic dominance that are
systematically violated by empirical data, whether analyzed at the
aggregate or individual participant level (Birnbaum& Bahra, 2012;
Birnbaum & Navarrete, 1998).

Marley and Luce (2005) re-summarized data that had been
summarized in previous publications by Birnbaum and his
colleagues, who had devised a number of critical tests of CPT such
as upper and lower cumulative independence and had shown that
these critical properties were systematically violated by aggregate
data. Luce and Marley (2005) axiomatized a rank weighted utility
representation that has some of the features of the configural
weight models and generalizes CPT; see correction in Marley
and Regenwetter (in press). The strength of the case against CPT
continues to grow, as shown in reviews by Birnbaum (2008) and
Birnbaum and Bahra (2012), who analyzed each individual’s data
using a model in which each choice problem can have a different
error rate.

As found in previous studies, the ‘‘gap’’ betweenWTA andWTP
is not a constant. A good deal of research has been based on the
theory that the ratio, WTA/WTP, is a constant, and many studies
estimated this ratio with a single item, such as amug.With a single
item, it is not possible to test the theory that a ratio is constant.
Within this branch of the literature, rival theories arose:

According to the loss aversion theory of Tversky and Kahneman
(1991, 1992), the ‘‘correct’’ ratio of WTA/WTP is about 4, and it can
be calculated from the loss aversion parameter (λ). Variations of
this theory were proposed, for example, in which buying prices
were free of loss aversion, in which case the predicted ratio would
be about 2. According to classical EU theory, the gap should be
quite small for persons who are not poor, so the ‘‘correct’’ ratio
of WTA/WTP should be close to 1. According to these theories the
ratio is a constant, and many studies were devoted to estimating
the ratio and comparing ratios between articles (Erickson et al.,
2014; Horowitz &McConnell, 2002; Kahneman et al., 1990; Plott &
Zeiler, 2005).

Some who argued for one value or the other also argued that
the ‘‘right’’ way to do the study is the way that leads to the value
consistent with one theory or the other. However, when theory is
in doubt, it becomes circular to choose procedures based on how
the results conformwith one theory or the other. Instead, we think
that proper theory of WTA and WTP will recognize that the gap
is not a constant. In addition, we think the best theory should be
able to predict the size of the gap based on details of the stimuli,
experimental instructions, incentives, and procedures.

According to Birnbaum and Stegner’s (1979) theory, configural
weights can be manipulated by factors that affect a person’s costs
of over- as opposed to under-estimation (see also Birnbaum et al.,
1992). In these models, it is the configural weights that produce
risk aversion or risk seeking. The risk averse person transfers
weight to the worst outcomes, features, or estimates of value of
a gamble or object, whereas the risk-seeking person puts greater
configural weight on higher outcomes, aspects or estimates.

According to the concept of endowment, there are just two
levels of endowment for a given item: one either owns something
or not. Thus, there are only two possible viewpoints one can use
in a study: buyer and seller. However, as noted in Birnbaum and
Stegner (1979), there are many possible viewpoints; for example,
participants can be asked to judge the ‘‘true’’ or ‘‘fair’’ price of an
object. For example, person A destroys person B’s property, and
a neutral judge is asked to judge the ‘‘fair’’ value of the object
such that it would be ‘‘just and fair’’ for person A to pay B in
compensation. Participants have no difficulty understanding this
task, which is performed every day by judges and juries.

To observe the so-called ‘‘endowment’’ effect, one need not
endow anyone with anything. Simply ask participants to identify
with buyer, seller, or neutral. From the perspective of viewpoint
theory, it should be possible to study further differentiation by
asking people to advise a ‘‘conservative’’ or ‘‘cautious’’ buyer, a
‘‘moderate’’ buyer, or a ‘‘venturesome’’ buyer. Indeed, financial
analysts devise portfolios for such buyers of different viewpoints
with different proportions of stocks, bonds, and other investments.

Some economists might say that transfers of money in the
courts and advice given to investors are outside the realm of
economic theory; but these topics are not outside the realm of the
psychological theories compared here. In other judgment domains,
viewpoints also differ: in a court trial, there are defendant,
prosecution, judge, and jury; in politics, there are candidates
who are republicans or democrats, and voters who might also
be republican or democrat. It seems reasonable that a common
cognitive mechanism has evolved in humans to handle these
analogous tasks.

With respect to the present experiment, one can reasonably
ask if results might change with different procedures, incentives,
or instructions. For example, these data represent judgments of
buying and selling prices. Would the same conclusions be reached
with choice-based prices? Similarly, might these results be altered
if differently worded instructions or different incentives had been
used? If so, then we need to develop theories of how results
depend on these factors. According the configural weight models,
instructions or incentives that affect the costs of over- or under-
estimation should affect configural weights.

The estimated parameters in the present study for undergrad-
uates show strong risk aversion in the buyer’s viewpoint and
are closer to risk neutral in the seller’s. Perhaps these configural
weights result from greater experience by undergraduates in buy-
ing rather than selling.
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5. Conclusions

Of the four models of buying and selling prices evaluated in
this study, the two oldest (RAM and TAX) were more accurate
in predicting results than models by Luce (2000) based on his
theory of joint receipts. Systematic violations of complementary
symmetry, consequence monotonicity, and first order stochastic
dominance rule out third generation prospect theory, which fit
least well at both aggregate and individual level. In RAM, TAX,
and Luce’s models, the utility function for negative consequences
plays no role in buying and selling prices of gambles with
non-negative consequences; instead, the gap between WTP
and WTA (‘‘endowment’’ effects) are explained by buyers and
sellers assigning different configural weights to lower and higher
consequences of a gamble or aspects of a good. Our results for
WTP andWTA can be explained without postulating loss aversion.
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