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Abstract

The common consequence paradox of Allais can be decomposed into three simpler principles: transitivity, coalescing, and

restricted branch independence. Different theories attribute such paradoxes to violations of restricted branch independence only, to

coalescing only, or to both. This study separates tests of these two properties in order to compare these theories. Although rank-

dependent utility (RDU) theories, including cumulative prospect theory (CPT), violate branch independence, the empirical pattern

of violations is opposite that required by RDU theories to account for Allais paradoxes. Data also show systematic violations of

coalescing, which refute RDU theories. The findings contradict both original and CPTs with or without their editing principles of

combination and cancellation. Modal choices were well predicted by Birnbaum’s RAM and TAX models with parameters estimated

from previous data. The effects of event framing on these tests were also assessed and found to be negligible.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The paradoxes of Allais (1953, 1979) revealed that
people systematically violate implications of Expected
Utility (EU) theory. Different explanations have been
proposed for these paradoxes, including Subjectively
Weighted Utility (SWU) theory (Edwards, 1962; Kar-
markar, 1979), Original Prospect (OP) theory (Kahne-
man & Tversky, 1979), Rank-Dependent Expected
Utility (RDU) theory (Diecidue & Wakker, 2001;
Quiggin, 1985, 1993), Rank- and Sign-Dependent
Utility (RSDU) theory (Luce & Fishburn, 1991, 1995;
Luce, 2000), Cumulative Prospect (CPT) theory (Cha-
teauneuf & Wakker, 1999; Starmer & Sugden, 1989;
Tversky & Kahneman, 1992; Tversky & Wakker, 1995;
Wakker & Tversky, 1993; Wu & Gonzalez, 1996, 1998),
and Configural weight models, including the Rank-
Affected Multiplicative Weights (RAM) and Transfer of
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Attention Exchange (TAX) models (Birnbaum, 1997,
1999a, b). The purpose of this paper is to test among
these rival theories, which give different explanations for
the constant consequence paradoxes of Allais.

1.1. Constant consequence paradox and expected utility

The constant consequence paradox of Allais (1953,
1979) can be illustrated with the following choices:
A:
 $1M for sure
 B:
 0.10 to win $2M

0.89 to win $1M

0.01 to win $0
C:
 0.11 to win $1M
 D:
 0.10 to win $2M

0.89 to win $0
 0.90 to win $0
Expected Utility theory assumes that Gamble A is
preferred to B if and only if the EU of A exceeds
that of B: This assumption is written,
AgB3EUðAÞ4EUðBÞ; where the EU of a gamble,
G ¼ ðx1; p1; x2; p2;yxi; pi;y; xn; pnÞ can be expressed
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1The Ellsberg (1961) paradox can also be analyzed as a failure of at

least one of these same three premises; in particular, this paradox may

also result from violation of event coalescing. See Luce (submitted).
2These models do, however, imply a still weaker form of

independence known as comonotonic branch independence, which is

the assumption that Expression 2 holds when corresponding con-

sequences (x and x0; y and y0; z and z0) retain the same rank orders

(cumulative probabilities) in all comparisons.
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as follows:

EUðGÞ ¼
Xn

i¼1
piuðxiÞ ð1Þ

According to EU, A is preferred to B iff
uð$1MÞ40:10uð$2MÞ þ 0:89uð$1MÞ þ 0:01uð$0Þ: Sub-
tracting 0:89uð$1MÞ from each side, it follows that
0:11uð$1MÞ40:10uð$2MÞ þ 0:01uð$0Þ: Adding 0:89uð0Þ
to both sides, we have 0:11uð$1MÞ þ
0:89uð$0Þ40:10uð$2MÞ þ 0:90uð$0Þ; which holds if
and only if CgD: Thus, from EU theory, one can
deduce that AgB3CgD: However, many people
choose A over B and prefer D over C: This pattern of
empirical choices violates the implication of EU theory,
so such results were termed ‘‘paradoxical.’’

1.2. Dissection of the Allais paradox

It is useful to decompose this type of paradox into
three simpler premises that can be used to deduce Allais
independence (Birnbaum, 1999a), the property that is
violated in the paradox of Allais (1953, 1979). If people
satisfy transitivity, restricted branch independence, and
coalescing, then they will not violate Allais independence.

Transitivity, assumed in all of the models reviewed
here, is the premise that AgB and B gC ) AgC:

Coalescing is the assumption that if a gamble has two
(probability–consequence) branches yielding identical
consequence, those branches can be combined by adding
their probabilities, without affecting the utility. For
example, if G ¼ ð$100; 0:2; $100; 0:2; $; 0:6Þ; then
GBG0 ¼ ð$100; 0:4; $0; 0:6Þ; where B denotes indiffer-
ence. Violations of coalescing combined with transitivity
are termed event-splitting effects (Humphrey, 1995;
Starmer & Sugden, 1993; Birnbaum, 1999a, b). For
example, if GgA and G0

!A; we say there is an event-
splitting effect. Assuming transitivity, event-splitting
effects are violations of coalescing.

Restricted Branch independence is weaker than Sava-
ge’s (1954) ‘‘sure thing’’ axiom. It is restricted to
gambles that have the same number of distinct branches
and the same probability distributions over those
branches (same events produce those branches). With
these restrictions, if two gambles have a common
probability–consequence (or event–consequence)
branch, one can change the value of the common
consequence on that branch without affecting the
preference induced by the other components.
For the case of three-branch gambles with nonzero

probabilities ðp þ q þ r ¼ 1Þ; restricted branch indepen-
dence can be written as follows:

S ¼ ðx; p; y; q; z; rÞgR ¼ ðx0; p; y0; q; z; rÞ
3

S0 ¼ ðx; p; y; q; z0; rÞgR0 ¼ ðx0; p; y0; q; z0; rÞ
ð2Þ
Transitivity, coalescing, and restricted branch inde-
pendence imply Allais independence, as illustrated
below:
A:
 $1M for sure
 g
 B:
 0.10 to win $2M

0.89 to win $1M

0.01 to win $0
3 (coalescing & transitivity)

A0:
 0.10 to win $1M
 g
 B:
 0.10 to win $2M
0.89 to win $1M
 0.89 to win $1M

0.01 to win $1M
 0.01 to win $0
3 (restricted branch independence)

A00:
 0.10 to win $1M
 g
 B0:
 0.10 to win $2M
0.89 to win $0
 0.89 to win $0

0.01 to win $1M
 0.01 to win $0
3 (coalescing & transitivity)

C:
 0.11 to win $1M
 g
 D:
 0.10 to win $2M
0.89 to win $0
 0.90 to win $0
The first step converts A to its split form, A0; A0 should
be indifferent to A by coalescing, and by transitivity, A0

should be preferred to B: From the third step, the
consequence on the common branch (0.89 to win $1M)
has been changed to $0 on both sides, so by restricted
branch independence, A00 should be preferred to B0: By
coalescing branches with the same consequences on both
sides, we see that C should be preferred to D:
This derivation shows that if people obeyed these

three principles, they would not show this paradox,
except by chance or error. Because people show
systematic paradoxes, at least one of these assumptions
must be false. By Allais independence, I mean to include
all such derivations with arbitrary values for probabil-
ities and consequences that can be deduced from the
premises of transitivity, coalescing, and restricted
branch independence. Similarly, the term Allais paradox

is used to designate a systematic pattern of violations of
Allais Independence.1

Different theories attribute Allais paradoxes to
different causes (Birnbaum, 1999a). SWU (including
the equation of OP) attributes the Allais paradox to
violations of coalescing. In contrast, the class of RDU,
RSDU, and CPT explain the paradox by violations of
restricted branch independence.2 It is important to keep
in mind that restricted branch independence is not an
axiom of either the class of RDU/RSDU/CPT models
or the class of TAX and RAM models; indeed, all of
these models can violate this property. Similarly,
coalescing was not initially stated as an axiom of the
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RDU/RSDU/CPT theories, but it can be deduced from
them.
The configural weight, RAM and TAX models imply

that both coalescing and restricted branch independence
are systematically violated (except in special cases where
these models reduce to EU); like the rank-dependent
models, these models satisfy restricted comonotonic
branch independence.
This paper will compare the theories in Table 1 by

separating tests of branch independence from those of
coalescing in Allais common consequence paradoxes.

1.3. SWU and OP models

One way to describe Allais paradoxes is to replace
objective probabilities with subjective weights (Edwards,
1962) as follows:

SWUðGÞ ¼
Xn

i¼1
wðpiÞuðxiÞ; ð3Þ

where SWUðGÞ is the subjectively weighted utility
(SWU) of gamble G: In this model, the weight of a
given objective probability is a function of its prob-
ability. In this model, there is no contradiction in
choosing A over B and D over C: In particular, if wðpÞ is
an inverse-S function of p; paradoxes of Allais can be
described by Eq. (3).
However, Eq. (3) implies that people will violate

transparent dominance in ways that few humans
would do (Fishburn, 1978). For example, with
parameters chosen to fit the Allais paradoxes,
Eq. (3) implies that people should prefer
E ¼ ð$103; 0:98; $102; 0:01; $101; 0:01Þ over F ¼
ð$120; 0:5; $110; 0:5Þ; despite the fact that the lowest
consequence of F is better than the best consequence of
E (see Birnbaum, 1999a).
Table 1

Comparison of decision theories

Branch Independence

Coalescing Satisfied Violated

Satisfied EU (OP
/CPT
) RDU/RSDU/CPT


Violated SWU/OP
 RAM/TAX

Notes: Expected Utility (EU) theory satisfies both properties. OP ¼
Original Prospect theory and CPT ¼ Cumulative Prospect theory;

these theories make different predictions with and without their editing

rules. The editing rule of combination produces satisfaction of

coalescing and the editing rule of cancellation implies branch

independence. CPT has the same representation as Rank Dependent

Expected Utility (RDU). With or without the editing rule of

combination, CPT satisfies coalescing. The Rank Affected Multi-

plicative (RAM) and Transfer of Attention Exchange (TAX) models

are configural weight models that violate both branch independence

and coalescing.
In their Original Prospect (OP) model, Kahneman
and Tversky (1979) restricted Eq. (3) to gambles with no
more than two nonzero consequences (which puts
Gamble E and the four gambles of Expression 2 outside
the domain of OP). They also added editing rules to OP
in order to avoid certain implausible implications of
Eq. (3). For example, people are assumed to detect and
conform to transparent dominance. Three other editing
principles of OP are relevant to this paper: (1)
Combination assumes that people combine branches
with identical consequences by adding their probabilities
(which implies coalescing). (2) Cancellation postulates
that people will cancel elements that are identical in two
gambles of a choice, implying restricted branch inde-
pendence. (3) Simplification is an editing rule where
people round off and ignore small differences, which
facilitates cancellation or combination of nearly equal
branches. Starmer and Sugden (1993) refer to ‘‘stripped’’
prospect theory as Eq. (3) without the editing rules of
OP, which can be extrapolated to include three branch
gambles.

1.4. Rank-dependent expected utility models

Quiggin (1985, 1993) proposed RDU theory, which
accounts for the Allais paradoxes without violating
stochastic dominance. Luce and Narens (1985) devel-
oped a dual bilinear representation for two branch
gambles that generalizes the original form of Quiggin,
which required the weight of 1/2 to be 1/2. RSDU was
later proposed, which generalized the rank-dependent
approach to allow different weightings for positive and
negative consequences (Luce & Fishburn, 1991, 1995;
Luce, 2000). Tversky and Kahneman (1992); Tversky
and Wakker (1995); Wakker and Tversky (1993)
proposed CPT, which combined rank- and sign-depen-
dent weighting with the editing principles of OP (see also
Starmer & Sugden, 1989). All of these rank-dependent
theories have the same representation for gambles
composed of strictly positive consequences:

RDUðGÞ ¼
Xn

i¼1
½WðPiÞ � WðQiÞ	uðxiÞ; ð4Þ

where the consequences are ranked, such that

x14x24?4xi4?4xn40; Pi ¼
Pi

j¼1 pj; the (decu-

mulative) probability that a consequence is greater than

or equal to xi; and Qi ¼
Pi�1

j¼1 pj is the probability that a

consequence is strictly greater than xi:
Eq. (4) satisfies stochastic dominance, avoiding the

need for the editing principle of dominance detection
(Tversky & Kahneman, 1992). It also automatically
satisfies coalescing, eliminating the need for the editing
rule of combination (Birnbaum, 1999a; Birnbaum &
Navarrete, 1998; Luce, 1998). CPT generalizes OP to
gambles with more than two nonzero consequences. The
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SP/A theory of Lopes and Oden (1999) also satisfies
coalescing and stochastic dominance.
The rank-dependent theories attribute the Allais

paradox to violations of restricted branch independence.
Eq. (4) links the pattern of violation of branch
independence to the Allais paradox, because both
phenomena are (in theory) produced by the same
weighting function (Birnbaum & McIntosh, 1996;
Birnbaum & Chavez, 1997).
Wu and Gonzalez (1998) presented an illuminating

analysis of three distinct types of common consequence
paradoxes, among which the original versions of Allais
represent only one type. These correspond to changing
the consequence on the common branch from the lowest
to middle, from middle to highest, and from lowest to
highest consequence in the choice. They showed that if
the weighting function has an inverse-S shape, the
observed paradoxical choices in these three types of
common consequence paradoxes can be fit by Eq. (4).
Birnbaum (2001b) replicated all three types of common
consequence paradoxes with chances at real but modest
monetary prizes.
The studies of Wu and Gonzalez (1998) and of

Birnbaum (2001b) investigated violations of Allais
independence, which confounds branch independence
and coalescing. All three types of constant consequence
effects can be predicted equally well by the CPT model
(which attributes the paradoxes to violations of branch
independence) and by Birnbaum’s configural weight
models (which attribute constant consequence para-
doxes mainly to violations of coalescing). The present
paper will dissect these two properties in order to
distinguish the models in Table 1; therefore, the design
allows a comparison of these four classes of rival
theories.
In this paper, CPT will be tested both with and

without its editing principle of cancellation, which
implies branch independence. Allowing CPT both its
equation and its contradictory editing principles is a very

lenient standard, since it allows CPT to handle two of
three possible outcomes of a test of branch indepen-
dence, including mixtures of those two. The standard is
as follows: Either the Allais paradox and violations of
branch independence will be linked by the same
weighting function in Eq. (4), or branch independence
will hold in ‘‘transparent’’ tests, or the data will be
intermediate between these two patterns.
Note that OP and CPT with or without these editing

rules lay claim to three of the four cells in Table 1. There
is only one possible outcome of the experiment that
would refute both prospect theories with or without
their editing rules.
This experiment is designed to test predictions of

prospect theories against the configural weight models
of Birnbaum (1997, 1999a). The configural models were
fit to data of Birnbaum and McIntosh (1996) for
violations of restricted branch independence in gambles
with three equally likely branches, and to Tversky and
Kahneman’s (1992) data for certainty equivalents of
binary gambles with nonnegative consequences. Calcu-
lations from those parameter estimates are termed here
the ‘‘prior’’ predictions, and should not be confused
with ‘‘predictions’’ based on a post hoc fit of a model to
the same data being ‘‘predicted.’’

1.5. Configural weight, RAM and TAX models

Birnbaum (1974); Birnbaum and Stegner (1979)
proposed configural, branch weighted averaging models
in which the weight of a branch ‘‘depends in part on its
rank within the set.’’ Birnbaum employed this configural
weighting to explain interactions in judgment data
(Birnbaum, 1973, 1974), risk aversion and risk seeking
in buying and selling prices (Birnbaum & Sutton, 1992),
and violations of branch independence (Birnbaum &
McIntosh, 1996). Although these models have some
similarities to rank-dependent utility models (Weber,
1994), it is important to keep in mind that the definition
of rank in Birnbaum’s models applies to consequences
on discrete branches, and not to cumulative probability.
In the class of models that have subsequently come to be
known as ‘‘rank-dependent’’ models (including RDU,
RSDU, CPT, and SP/A), rank refers to cumulative
probability.
In a risky gamble, the term ‘‘branch’’ refers to each

probability–consequence pair that is distinct in the
gamble’s presentation. In this notation, gambles that
represent the same prospect may be subjectively distinct.
Event-splitting produces extra branches, whereas coa-
lescing reduces the number of branches in a gamble. For
example, G ¼ ð$98; 0:8; $2; 0:2Þ is a two branch gamble
that is distinct from the three branch gamble, H ¼
ð$98; 0:4; $98; 0:4; $2; 0:2Þ; even though they are the
same objectively, and represent the same prospect.
These two classes of representations (configural versus

rank-dependent) cannot be distinguished when applied
separately to certain types of experiments, such as
experiments of Birnbaum and McIntosh (1996), Tversky
and Kahneman (1992), or Wu and Gonzalez (1998).
However, these two classes of models can be distin-
guished by other tests (Birnbaum, 1997), including new
tests used in this paper (Table 1).
The Rank-Affected Multiplicative Weights Model

(RAM) and Transfer of Attention Exchange (TAX)
models (Birnbaum, 1999a, b; Birnbaum & Navarrete,
1998) are two configural weight models that make
identical predictions for modal choices in the present
study, but which can be distinguished by other tests
(Birnbaum, 1997; Birnbaum & Chavez, 1997). Both
RAM and TAX models are special cases of branch-
weighted configural expected utility models in which the
weight of each distinct branch of a gamble gets a weight
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RAM Model
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Fig. 1. Predictions of the RAM model with prior parameters for

certainty equivalents (CE) of two-branch gambles of the form, F ¼
ðx; p; yÞ; plotted as a function of p: Each CE has been linearly

transformed to a 0–100 scale. The height of the curve at p ¼ 1=2 can be

used to solve for branch rank weights, and the value of g can be

estimated from the curvature.
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that is affected by its probability, the rank of its
consequence, and the weights of other branches, as
follows:

CWUðGÞ ¼
Pn

i¼1 wðpi;GÞuðxiÞPn
i¼1 wðpi;GÞ ð5Þ

where CWUðGÞ is the configurally weighted utility of
gamble G; and wðpi;GÞ is the configural weight of the
branch with consequence xi in Gamble G ¼
ðx1; p1; x2; p2;y; xi; pi;y; xn; pnÞ; where the conse-
quences are ranked such that x14x24?4xn: This
expression is quite general and includes CPT, RAM and
TAX as special cases.

RAM model. In the RAM model, each configural
weight is a product of a function of branch probability
and a function of the rank and augmented sign of the
branch’s consequence (Birnbaum, 1997). For gambles
with strictly positive consequences, the weight of each
branch is assumed to be a product as follows: wðpi;GÞ ¼
aði; nÞsðpiÞ; where sðpiÞ is a function of branch prob-
ability and aði; nÞ is the (positive) weight of the branch
having the ith ranked consequence in a gamble with n

discrete branches. Substituting this assumption for the
weights in Eq. (5) yields the RAM model:

RAMðGÞ ¼
Pn

i¼1 aði; nÞsðpiÞuðxiÞPn
i¼1 aði; nÞsðpiÞ

: ð6Þ

The rank weights describe how much weight is
applied to each discrete branch depending on the rank
of the consequence of that branch in the gamble. In
practice, for n ¼ 2; 3, and 4 branches, the estimated rank
coefficients in the RAM model are approximately equal
to their ranks; i.e., aði; nÞ ¼ i; with 1 ¼ highest; 2 ¼
second highest, 3 ¼ third highest. In practice, sðpÞ and
uðxÞ are approximated by power functions, sðpiÞ ¼ p

g
i

with 0ogo1; and uðxÞ ¼ xb where 0obp1: It has been
found that for positive cash prizes in the domain of
pocket money ð$1oxo$150Þ; the approximations,

uðxÞ ¼ x; and sðpÞ ¼ p0:6 gives a good fit to choices
made by undergraduates. These will be termed the
‘‘prior’’ parameters of RAM, as they were selected to
approximate previous data of Birnbaum and
McIntosh (1996) and Tversky and Kahneman (1992).
The use of a linear utility function reveals that risk
aversion in this RAM model is ascribed entirely to the
rank weights, with lower ranked branches receiving
more weight.
The Certainty Equivalent (CE) of Gamble G is the

value of cash for which a person would be equally happy
to accept the cash or Gamble G; i.e., CEðGÞBG; where
B represents indifference. Predicted certainty equiva-
lents of gambles of the form, G ¼ ðx; p; y; 1� pÞ; based
on the prior parameters of RAM are shown in Fig. 1.
These are an inverse-S function of probability:

CEðGÞ ¼ að1;2Þ�tðpÞ
að1;2ÞtðpÞþað2;2Þtð1�pÞ:
The height of the curve at p ¼ 1=2 can be used to
estimate the ratio of rank weights; for example, in Fig. 1,
að2; 2Þ=að1; 2Þ ¼ 2 : 1: If go1; the curve will have an
inverse-S shape in which people are risk-seeking for
small p; and with g41; it will have an S-shape in which
people can be risk averse for small p: The prior RAM
model, illustrated in Fig. 1, agrees with data of Tversky
and Kahneman (1992) and with the Tversky and
Wakker (1995) model of CPT for two branch gambles.
Like CPT, the RAM model violates restricted branch

independence and satisfies comonotonic restricted
branch independence. Unlike CPT, which violates
distribution independence, RAM satisfies distribution
independence (Birnbaum & Chavez, 1997). If all of the
rank weights were equal to each other (e.g.,
aði; nÞ ¼ 18i; n), the RAM model would imply no
violations of restricted branch independence, but would
still violate coalescing and properties derived from
coalescing, such as stochastic dominance. When the
branch rank weights are all equal and sðpÞ ¼ p; then
RAM reduces to EU.
It is important to keep in mind that although CPT

and RAM can both account for violations of restricted
branch independence, they make opposite predictions
for the types of violation, given their prior parameters
(which as we will see below, are needed to account for
Allais paradoxes).

TAX model. The TAX model is also a special case of
Expression 5. In the TAX model, a portion of the
probability weight of each branch is transferred among
branches according to the ranks of the consequences on
the branches. To explain risk aversion in the TAX
model, it is assumed that weight is taken from branches
with higher valued consequence and given to branches
with lower valued consequences.
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TAX Model
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Fig. 2. Predictions of the prior TAX model for binary gambles,

plotted as in Fig. 1. Height of the curve at p ¼ 1=2 can be used to

estimate d; the curvature can be used to estimate g:
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Birnbaum and Chavez (1997) represented branch
weights in the TAX model for a risk-averse subject by
a model that can be rewritten as follows:

wn ¼ tn � On; ð7aÞ

where wn is a 1 n vector containing the relative weights
of branches 1–n; respectively, tn is a 1 n vector
containing transformed probabilities normalized to
sum to 1 in each gamble. In practice, the normalized

probability weighting is approximated as follows: ti ¼
p
g
iPn

j¼1 p
g
j

; where g is the parameter of the probability

transformation. Each entry of the n  n matrix, On; oijn

represents the proportion of weight transferred from
branch i to branch j in a gamble with n branches. The
sum of each row of this matrix is 1. Birnbaum and
Chavez (1997) further simplified this model by the
assumption that in choice, weight transfers are given by
oijn ¼ on ¼ �d=ðn þ 1Þ for j4i; and on ¼ 0 for joi:

For three branch gambles, this model can be written as
follows:

½w1 w2 w3 	 ¼ tðp1Þ tðp2Þ tðp3Þ½ 	


1� 2o o o

0 1� o o

0 0 1

2
64

3
75; ð7bÞ

where o ¼ �d=4; for three branch gambles.
If o ¼ 0; then all weight transfers are zero and there

would be no violations of restricted branch indepen-
dence. In this case, each branch’s weight would be a
simple function of branch probability. If d ¼ 0 and
tðpÞ ¼ p; this TAX model reduces to EU. When da0;
the proportion of weight transferred is assumed to be a
fixed proportion ½d=ðn þ 1Þ	 of the branch giving up the
weight. Therefore, the sum of the weights is constant, so
that weight is neither created nor destroyed, but only
transferred from one branch to another.
When do0; weight is transferred from branches with

higher ranked consequences to branches with lower
ranked consequences. Intuitively, the transfer of weights
in the TAX model represents a transfer of attention
from branches with higher valued consequences to
branches with lower valued consequences. The TAX
model, like RAM, can imply risk aversion without
postulating a nonlinear utility function. With the
assumption that utility is linearly related to cash value,
risk averse behavior for binary gambles with p ¼ 1=2
holds iff do0 in this model.
Birnbaum and Chavez noted that if d ¼ �1; this

model would reproduce violations of branch indepen-
dence reported by Birnbaum and McIntosh (1996).
Birnbaum and Navarrete (1998), who tested three new
properties not examined in the previous work, estimated
the median value of d for 100 undergraduates to be
�1:09; close to this prior value of �1: With d ¼ �1; the
transfers are as follows: In two branch gambles, one-
third of the probability weight of the branch with the
higher consequence is transferred to the lower valued
branch. In three branch gambles, one-fourth of the
weight of each higher branch is transferred to each lower
valued branch. Birnbaum and Navarrete (1998) re-
ported that the median estimate of g was 0.74, close to
the prior value of 0.7 that was chosen to mimic data of
Tversky and Kahneman (1992). Birnbaum (1999b)
reported median estimates for a more highly educated
sample of people tested via the Internet to be d ¼ �0:33
and g ¼ 0:79:
Predictions for the prior TAX model in this paper are

computed with the following parameters: uðxÞ ¼ x;

tðpiÞ ¼ p0:7
iPn

j¼1 p0:7
j

; and d ¼ �1: These parameters were

chosen to approximate data of Tversky and Kahneman
(1992) and Birnbaum and McIntosh (1996), but they
also work well for predicting other phenomena (Birn-
baum, 1999a). Predictions for two branch gambles for
this TAX model are shown in Fig. 2, plotted as in Fig. 1.
The value of the configural parameter, d; can be
estimated from the relative height of the curve at p ¼
1=2; and the curve will be inverse-S or S-shaped when g
is less than or greater than 1, respectively.
When there is a fixed number of positive-valued

branches with a fixed probability distribution, RDU/
RSDU/CPT, RAM and TAX are all equivalent to each
other and reduce to what Birnbaum and McIntosh
(1996) called the ‘‘generic rank-dependent configural
weight model,’’ which Luce (2000) calls the rank
weighted additive model.
In both RAM and TAX models, the approximation

uðxÞ ¼ x; gives a good fit to data in studies involving
risky decisions with monetary consequences in the
domain of pocket money, i.e., when $1oxo$150: With
this assumption, RAM and TAX have fewer parameters
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Fig. 3. Analysis of violation of stochastic dominance in the TAX

model. The values calculated are CEðGþÞ � CEðG�Þ for Choice 5 in

Table 4. Negative values show violations of stochastic dominance,

which occur for do0 (risk averse for p ¼ 1=2) and go1 (inverse-S in

Fig. 2). Violations of stochastic dominance can also occur for risk-

neutral ðd ¼ 0Þ and even risk-seeking ðd40Þ people if g is small

enough.
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than the comparable CPT model for strictly positive
consequences. But in this paper, RAM and TAX will use
prior parameters to predict the new results, requiring
nothing to be estimated from the present data. Predic-
tions of CPT with parameters of Tversky and Kahne-
man (1992) will be calculated for comparison. Thus,
both models are tested on equal footing.3

RAM and TAX models violate both restricted branch
independence and coalescing, except when they reduce
to EU. Because they violate coalescing, these models
violate properties that can be derived from coalescing
including stochastic dominance and Allais indepen-
dence.
Unlike stripped prospect theory, RAM and TAX

models do not, however, violate transparent dominance
(Birnbaum, 1999a): improving the consequence of a
given branch (holding everything else constant) im-
proves a gamble. Similarly, moving probability from a
branch with a lower valued consequence to a branch
with a higher valued consequence (holding everything
else constant) improves the gamble.
Although they satisfy transparent dominance,

both RAM and TAX violate first order stochastic
dominance for specially constructed choices (Birnbaum,
1997).

1.6. Violations of stochastic dominance

Because RAM and TAX models violate coalescing,
they violate stochastic dominance. Birnbaum’s (1997)
recipe for creating violations of stochastic dominance in
configural weight models is based on splitting the lower
or higher-valued branch of a root gamble. For example,
let the root gamble be G ¼ ð$98; 0:9; $12; 0:1Þ; and
construct the following:
G�:
3To

the

http://
0.85 to win $98
explore prediction

following URL fo

psych.fullerton.edu/m
Gþ:
s of

r lin

birnb
0.90 to win $98

0.05 to win $90
 0.05 to win $14

0.10 to win $12
 0.05 to win $12
According to the configural weight RAM and TAX
models, splitting the higher branch of G gives greater
total weight to higher consequence(s). Thus, even
though the consequence on the 0.05 splinter has been
reduced from $98 to $90 (G� is dominated by G),
TAX ðG�Þ4TAX ðGÞ: Splitting the lower branch of G

creates Gþ; which dominates G; but in theory, now the
lower consequences get greater weight, making Gþ
worse than G; even though the 0.05 splinter has been
increased in value from $12 to $14. So, according to
RAM and TAX models, people should choose G� over
Gþ; even though Gþ dominates G � :
TAX, RAM, CPT, and EV, visit

ks to free on-line calculators:

aum/calculators/
An analysis of predicted violations of stochastic
dominance in the TAX model is shown in Fig. 3. The
ordinate plots the value of CEðGþÞ � CEðG�Þ; as a
function of the value of d; the configural weighting
parameter of TAX. Separate curves are used for
different values of g: Negative values on the ordinate
represent violations of stochastic dominance.
Fig. 3 shows that the TAX model always violates

stochastic dominance in this case if do0 and go1:
Given the data of Tversky and Kahneman (1992), one
concludes that d o 0 because people are risk-averse for
two-branch, 50–50 gambles to win positive conse-
quences. In addition, one concludes that g o 1 because
people are simultaneously risk-seeking for 2-branch
gambles with very small probabilities to win (for a
fit of this model to their data, see Birnbaum, 1997,
Fig. 9). Therefore, given the data of Tversky and
Kahneman (1992), the TAX model of Eq. (7b)
is forced to predict violations of stochastic
dominance in this recipe. Birnbaum (1997, p. 94) put
this prediction in print, specifying both G� and Gþ and
stating (p. 94), ‘‘It seems worthwhile to test such
predictions...’’
Birnbaum and Navarrete (1998) tested this interesting

prediction and found that about 70% of 100 under-
graduates tested violated stochastic dominance in this
choice and three others like it. Birnbaum, Patton, and
Lott (1999) found similar results with a new group of
110 subjects and five new choices constructed from the
same recipe.
In a subsequent study, Birnbaum (1999b) found that

72% of a new group of 124 undergraduates violated
dominance on the above choice, but only 15% of the
same people violated stochastic dominance when the

http://psych.fullerton.edu/mbirnbaum/calculators/
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same (objective) choices are presented in split form, as
follows:
GS�:
 0.85 to win $98
 GSþ:
 0.85 to win $98

0.05 to win $90
 0.05 to win $98

0.05 to win $12
 0.05 to win $14

0.05 to win $12
 0.05 to win $12
Because the choice between G� and Gþ is the same as
that between GS� and GSþ; except for coalescing,
people should make the same choices, if coalescing
holds. Approximately 62% of undergraduates tested
(significantly more than half!), however, switched from
G� to GSþ; whereas fewer than 5% switched in the
opposite direction; these systematic preference reversals
indicate that coalescing is not descriptive of human
choice (Birnbaum, 1999b, 2000; Birnbaum & Martin,
2003). The prior RAM and TAX models predicted both
results.
One might express reservations about these previous

tests of event-splitting, however, based on the following
argument. The choice between GS� and GSþ might
invoke the editing mechanism of dominance detection,
so the apparent violation of coalescing might be
produced by comparison processes such as editing,
rather than by the evaluation function. The present
study provides new tests of coalescing that do not
involve dominance.

1.7. Event framing versus coalescing

Tversky and Kahneman (1986) presented a case in
which more violations of stochastic dominance were
observed in a framed and coalesced choice than in a
differently framed and split form of the same choice.
They noted that their theory assumed coalescing (see
also Kahneman, 2003, p. 727), and they emphasized
instead the importance of the event framing used to
‘‘mask’’ the dominance relationship. In their framing,
the dominated gamble was made to appear as if for any
named event (for any color of marble drawn from an
urn) the dominated gamble gave either an equal or
better consequence. Because there were (slightly) differ-
ent numbers of marbles of each color in the two urns,
however, the so-called ‘‘events’’ were not really the
same. Because the numbers of marbles were nearly
equal, Tversky and Kahneman theorized that judges
would simplify the choice by canceling the nearly equal
branches produced by the ‘‘same’’ named events. They
conceded, however, that in their test, several different
interpretations were confounded, including a compar-
ison of the number of branches with positive or negative
consequences in each gamble.
A second purpose of the present study is therefore to

assess the importance of event framing (as opposed to
event-splitting/coalescing) in tests of branch indepen-
dence and Allais independence as well as in tests of
stochastic dominance. Event framing would be expected
to reduce violations of branch independence in the split
forms. Such choices might be termed ‘‘transparent’’ tests
of branch independence in the framed form, because
both gambles would clearly share a common event–
consequence branch. In such a framed format, a
decision-maker should find it easy to cancel branches
that are identical in two choices and to make a choice
based strictly on what is left.
The event framing manipulation is illustrated in

Choice 16 of Table 2, which is ‘‘framed’’ as opposed
to Choice 14 in Table 3, which is ‘‘unframed’’. If people
attend to framing and cancel common branches, they
would presumably show greater conformance to branch
independence in framed than unframed tests. Choices 9
and 16 (Table 2) should more likely yield the same
decisions in the FU condition, where the common
branch has the same color than they would in condition
UF, where the colors of marbles on corresponding
branches are different.
Similarly, people should be more likely to violate

stochastic dominance on Choice 5 in Table 4 in the FU
condition, with common color framing, than in the UF
condition where it is unframed. The reasoning here uses
the editing principles (Kahneman & Tversky, 1979) of
simplification and cancellation: the common color
branches to win $96 and $12 in Choice 5 are nearly
equal (in probability), which if cancelled from both
sides, leaves a branch that favors the (dominated)
gamble.
2. Method

Deciders made 20 choices between pairs of gambles.
They viewed the materials on-line via the Internet,
clicking the button beside the gamble they would rather
play in each choice. They were informed that 3 lucky
participants would be selected at random to play one of
their chosen gambles for money, with prizes as high as
$110, so they should choose carefully. Prizes were
awarded as promised. Each choice appeared as in the
following example:
1.
 Which do you choose?

A:
 50 red marbles to win $100
50 white marbles to win $0

OR
B:
 50 blue marbles to win $35

50 green marbles to win $25
Instructions read (in part) as follows:
‘‘Think of probability as the number of marbles in

one color in an urn (container) containing 100 otherwise
identical marbles, divided by 100. Gamble A has 50 red
marbles and 50 white marbles; if a marble drawn at
random from urn A is red, you win $100. If a white



Table 3

Dissection of Allais paradox into branch independence and coalescing (Series B)

No Relation to previous row Choice as in condition FU Condition Prior TAX model Prior CPT model

First gamble, S Second gamble, R FU UF Rep S R S R

10 15 red marbles to win $50 10 blue marbles to win $100 86 74 82 13.6 o18.0 15.9 o22.1

85 black marbles to win $7 90 white marbles to win $7

17 Split #10 10 red marbles to win $50 10 black marbles to win $100 53 45 46 15.64 14.6 15.9 o22.1

05 blue marbles to win $50 05 purple marbles to win $7

85 white marbles to win $7 85 green marbles to win $7

20 RBI #17 10 red marbles to win $50 10 black marbles to win $100 44 49 52 50.04 40.1 504 49.2

85 white marbles to win $50 85 purple marbles to win $50

05 blue marbles to win $50 05 green marbles to win $7

14 RBI # 17, 20 85 red marbles to win $100 85 black marbles to win $100 63 63 60 68.4 o69.7 82.24 79.0

10 white marbles to win $50 10 yellow marbles to win $100

05 blue marbles to win $50 05 purple marbles to win $7

8 Coalesce #14 85 black marbles to win $100 95 red marbles to win $100 25 16 34 75.74 62.0 82.24 79.0

15 yellow marbles to win $50 05 white marbles to win $7

Notes: Gambles unframed, as in condition FU; in condition UF, each choice was framed. Each entry is the percentage of people in each condition

who chose the second, ‘‘risky’’ gamble, R: The common branch is 85 marbles to win either $7 (in Choices 10 and 17), $50 (Choice 20), or $100

(Choices 14 and 8), respectively). RBI ¼ restricted branch independence.

Table 2

Dissection of Allais paradox (Series A) (each entry is the percentage in each condition choosing the ‘‘safe’’ gamble, S)

No Relation to previous row Choice as in condition FU Condition Prior TAX model Prior CPT model

First gamble, R Second gamble, S FU UF Rep R S R S

6 10 black marbles to win $98 20 black marbles to win $40 41 37 36 13.34 9.0 16.94 10.7

90 purple marbles to win $2 80 purple marbles to win $2

9 Split # 6 10 red marbles to win $98 10 red marbles to win $40 69 66 60 9.6 o11.1 16.94 10.7

10 blue marbles to win $2 10 blue marbles to win $40

80 white marbles to win $2 80 white marbles to win $2

12 RBI #9 10 red marbles to win $98 10 red marbles to win $40 62 55 47 30.6 o40.0 38.0 o40.0

80 blue marbles to win $40 80 blue marbles to win $40

10 white marbles to win $2 10 white marbles to win $40

16 RBI #9, 12 80 red marbles to win $98 80 red marbles to win $98 47 45 39 62.64 59.8 67.6 o74.5

10 blue marbles to win $98 10 blue marbles to win $40

10 white marbles to win $2 10 white marbles to win $40

19 Coalesce #16 90 red marbles to win $98 80 red marbles to win $98 81 82 72 54.7 o68.0 67.6 o74.5

10 white marbles to win $2 20 white marbles to win $40

Notes: The common branch was 80 marbles to win $2 in Choices 6 and 9, $40, in Choice 12, and $98 in Choices 16 and 19, respectively.

RBI ¼ Restricted Branch Independence, R ¼ Risky Gamble, S ¼ Safe Gamble, In condition FU, these choices were all ‘‘framed’’ by having the same

color of marbles on corresponding branches; in condition UF, these were unframed; Rep ¼ replication study with n ¼ 150: TAX model shows

calculated certainty equivalent values of each gamble with prior parameters. CPT model shows calculated certainty equivalents under model of

Tversky and Kahneman (1992).
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marble is drawn, you win $0. So, the probability to draw
a red marble and win $100 is 0.50 and the probability to
draw a white marble and get $0 is 0.50. If someone
reaches in urn A, half the time they draw red and win
$100 and half the time they draw white and win $0. But
in this study, you only get to play a gamble once, so the
prize will be either $0 or $100. Gamble B’s urn has 100
marbles also, but 50 of them are blue, winning $35, and
50 of them are green and win $25. Urn B thus
guarantees at least $25, but the most you can win is
$35. Some will prefer A and others will prefer B. To
mark your choice, click the button next to A or B...’’
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Table 4

Violations of stochastic dominance and coalescing linked to event framing and event-splitting

No. Choice as in condition FU Condition Prior TAX Prior CPT

Gþ G� FU UF Rep Gþ G� Gþ G�

5 90 red marbles to win $96 85 red marbles to win $96 73 85 76 45.8 o63.1 70:34 69.7

05 blue marbles to win $14 05 blue marbles to win $90

05 white marbles to win $12 10 white marbles to win $12

11 85 red marbles to win $96 85 red marbles to win $96 15 11 11 53:14 51.4 70:34 69.7

05 blue marbles to win $96 05 blue marbles to win $90

05 green marbles to win $14 05 green marbles to win $12

05 white marbles to win $12 05 white marbles to win $12

15 90 red marbles to win $96 85 black marbles to win $96 77 74 78 45.8 o63.1 70:34 69.7

05 yellow marbles to win $14 05 blue marbles to win $90

05 pink marbles to win $12 10 white marbles to win $12

7a 94 black marbles to win $99 91 red marbles to win $99 78 74 70 46.0 o66.6 76:24 75.9

03 yellow marbles to win $8 03 blue marbles to win $96

03 purple marbles to win $6 06 white marbles to win $6

13a 91 black marbles to win $99 91 red marbles to win $99 10 16 13 54:24 53.2 76:24 75.9

03 pink marbles to win $99 03 blue marbles to win $96

03 yellow marbles to win $8 03 green marbles to win $6

03 purple marbles to win $6 03 white marbles to win $6

18a 94 red marbles to win $99 91 red marbles to win $99 75 72 70 46.0 o66.6 76:24 75.9

03 blue marbles to win $8 03 blue marbles to win $96

03 white marbles to win $6 06 white marbles to win $6

Notes: Choices 5, 11, and 18 were framed. In Choices 5, 11, and 15, the dominant gamble was presented first and in Choices 7, 13, and 18, Gþ was

presented second. Each entry is the percentage of people in each condition who violated stochastic dominance (bold type shows violations in framed

choices.
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2.1. Allais paradoxes: coalescing and branch

independence

Choices for Series A and B of Allais paradoxes are
shown in Tables 2 and 3, respectively. Each choice is
created from the choice in the row above by either
coalescing/splitting or by restricted branch indepen-
dence. Within each series, choices should be the same in
every row, according to EU, except for random error. In
Series A, the common branch is 80 marbles to win $2
(first two rows), $40 (middle row), or $98 (last two
rows). In Series B, the common branch is 85 marbles to
win $7 (first two rows), $50 (third row), or $100 (fourth
and fifth rows). Note that the positions (First or Second)
of the S or ‘‘safe’’ gamble with higher probability to win
a smaller prize and the R; or ‘‘risky’’ gamble are
counterbalanced between Series A and B.

2.2. Framing manipulation

Each choice was either framed or unframed. In the
framed version, the same marble colors are used for each
ordered branch. A framed and coalesced test of
stochastic dominance is shown in Choice 5 of Table 4,
and the unframed version of the same (objective) choice
is shown in Choice 15. The framed and split form of this
choice is shown as Choice 11 of Table 4.
There were two conditions to which participants were

randomly assigned by means of a JavaScript routine
(Birnbaum, 2001a, p. 211). In the FU condition (shown
in Tables 2, 3, and 4), all choices in Series A (Table 2)
were framed, all in Series B (Table 3) were unframed;
Choices 5, 11, and 18 of Table 4 were framed and
Choices 7, 13, and 15 were not. In the UF condition,
framing was reversed from that of FU.
The first four choices, which served as a ‘‘warm-up,’’

were the same as those of Birnbaum (1999b), formatted
in terms of the marbles. Complete materials can be
viewed at URLs: http://psych.fullerton.edu/mbirnbaum/
Exp2 urnsUF A.htm http://psych.fullerton.edu/mbirn-
baum/Exp2 urnsFU A.htm

2.3. Participants

Participants were 200 people recruited by links on the
Web and from the usual ‘‘subject pool’’ in the
psychology department of California State University,

http://psych.fullerton.edu/mbirnbaum/Exp2_urnsUF_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsUF_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsUF_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsUF_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsFU_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsFU_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsFU_A.htm
http://psych.fullerton.edu/mbirnbaum/Exp2_urnsFU_A.htm
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Fullerton. When each condition had 100 participants,
the study was deemed complete.

2.4. Replication study

An additional 150 participants, recruited entirely
from the Web, were randomly assigned to Conditions
FU or UF, and were tested in a simple replication of the
entire study.
3. Results

3.1. Allais paradoxes

Tables 2 and 3 show the percentage of participants in
each condition who chose the second gamble in each
choice of Series A and B. Separate columns show choice
percentages for each framing condition of the main
study and for the combined results of the replication
study. According to EU, choices should be the same in
every row within Table 2 and within Table 3, except for
error; therefore, the choice percentages should not
change systematically from row to row. The original
type of the Allais paradox involves comparison of
Choices 6 and 12 in Table 2, but any systematic change
in preference from row to row in Tables 2 and 3 would
be a violation of Allais independence. The data show
systematic reversals, demonstrated by the finding that
choice percentages change significantly from row to row
in both tables.
For example, Choice 6 in Table 2 (averaged over

framing) shows that only 39% chose the ‘‘safe’’ gamble
(with 20 marbles to win $40) over the ‘‘risky’’ gamble
(with 10 marbles to win $98 and 10 to win $2) when the
common branch was 80 marbles to win $2. However, in
Choice 19 (where the common branch was 80 marbles to
win $98), 82% chose the ‘‘safe’’ gamble. Similarly, Table
3 shows that the percentage choice changed from 20%
(for the ‘‘safe’’ gamble in Choice 10) to 80% (for the
‘‘safe’’ gamble in Choice 8), as the common consequence
on the branch with 85 marbles was increased from $7 to
$100. These are large violations of Allais independence.
The replication study (column labeled ‘‘Rep’’) yielded
very similar results, which are averaged over two
framing conditions.
These violations of Allais independence are statisti-

cally significant, even by the conservative standard that
the modal choice had to be significantly reversed. For a
sample of n ¼ 200; the binomial distribution with p ¼
1=2 has a mean of 50% and a standard deviation of
3.5%; therefore, observed percentages outside the
interval from 43% to 57% deviate significantly from
50% by a two-tailed test with a ¼ 0:05: Combining over
conditions, the percentage choosing the ‘‘risky’’ gamble
changed from significantly less than 50% to significantly
greater than 50% as the common consequence was
increased from the lowest value to the highest value in
both Tables 2 and 3. The replication study ðn ¼ 150Þ
also shows significant reversals by the same test in both
tables.
The binomial test of correlated proportions is a more

sensitive test of significance of within-subject changes in
choice proportions. This test checks for equality of
choice proportions, rather than requiring a significant
reversal of the mode. Comparing Choices 6–19, for
example, this test compares the number who switched
from choosing the (‘‘risky’’) first gamble in Choice 6 to
the (‘‘safe’’) second gamble in Choice 19 against the
number who switched preferences in the opposite
direction. In the FU condition of Series A, 47 switched
from ‘‘risky’’ to ‘‘safe’’, against only 7 who switched in
the opposite direction ðz ¼ 5:44
Þ; in the UF condition,
the numbers were 50 versus 5 ðz ¼ 6:07
Þ: The critical
value of jzj for a two-tailed test with a ¼ 0:05 is 1.96.
The term ‘‘significant’’ and asterisks ð
Þ are used
throughout this paper to denote significant differences
by this test.
For Series B (Table 3), the first gamble was the ‘‘safe’’

one; hence, the same directional change is observed in
both tables, counterbalanced for position. The numbers
who switched from the ‘‘risky’’ second gamble in Choice
10 to the ‘‘safe’’ first gamble in Choice 8 were 64 and 60
in the FU and UF conditions, respectively, against only
4 and 4 who switched in the opposite directions
(z ¼ 7:28
 and 7:00
), respectively.

3.2. Tests of coalescing in Allais paradoxes

Tables 2 and 3 separate coalescing/splitting from
branch independence. Note that in Table 2, Choice 9 is
the same as Choice 6, except for coalescing. The first
gamble in Choice 9 is the same as the first gamble in
Choice 6, except the lower branch of 90 marbles to win
$2 has been split into 80 marbles to win $2 and 10
marbles to win $2. According to the class of RDU/
RSDU/CPT models, this manipulation should have no
effect; however, the TAX model (with its prior
parameters) implies that splitting the lower branch
increased the relative weight of winning only $2 and
thus made the first gamble worse.
Similarly, the second gamble of Choice 9 is the same

as in Choice 6, except that the 20 marble branch to win
$40 was split, which should have no effect according to
the RDU/RSDU/CPT models, but makes the second
gamble better according to RAM or TAX. If people
obeyed coalescing, they should make the same decisions
in Choices #6 and #9. However, according to the prior
TAX model, this split makes the second gamble in
Choice 9 better because more weight is transferred to the
higher consequence.
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Choice 19 in Table 2 is the result of coalescing the
upper branches (to win $98) in the first gamble of Choice
16 and coalescing the lower branches (to win $40) in the
second Gamble. Table 3 (Series B) is based on the same
plan.
According to the class of RDU/RSDU/CPT models

(apart from editing), a person should make the same
decisions in Choices 6 and 9, 16 and 19, 10 and 17, and
14 and 8, since each of these comparisons involves only
event coalescing/splitting (and transitivity). The values
labeled CPT in the tables show calculated certainty
equivalent (cash value) of each gamble, based on the
model and parameters of Tversky and Kahneman
(1992). Although a particular model was used to
calculate these predictions, the invariance with respect
to coalescing/splitting holds for any functions with any
parameters in CPT.
According to the TAX model, however, coalescing/

splitting affects the weights of the branches and hence
the values of the gambles. The three tables show
calculated cash equivalents for each gamble based the
TAX model with prior parameters (see Introduction).
From Choice 9 to 12, the lower branch of the first
gamble has been split. In theory, this split increases the
weight of $2, thereby making the ‘‘risky’’ first gamble
ðRÞ seem worse (in Choice 9) than it does in the
coalesced form of Choice 6 (the calculated certainty
equivalent of R drops from $13.3 to $9.6). In addition,
the higher-valued branch of the ‘‘safe’’ second gamble
ðSÞ has been split, which increases the weight of $40,
making the Second gamble seem relatively better in #9
compared to #6 (its CE increases from $9 to $11.1).
Therefore, the prior TAX model correctly predicts that
there will be a reversal in the modal choice from R in
Choice 6 to S in Choice 9.
Similar predictions in Tables 2 and 3 can be under-

stood from these implications of branch weighting in
RAM and TAX: splitting the lower branch makes a
gamble worse and splitting the higher branch makes a
gamble better.
Testing separately in each framing condition, all eight

tests of coalescing in the main design are significant by
the test of correlated proportions, with all eight shifts in
the direction predicted by the configural weight TAX
model with its prior parameters. For example, from
Choice 6 to 9, 68
 people switched from picking R in
Choice 6 to S in Choice 9, compared with only 6 who
reversed preferences in the opposite direction. From
Choices 16 to 19, the higher valued branches of R have
been coalesced, making R seem worse in Choice 19 than
it did in Choice 16, whereas the lower consequences of S

have been coalesced, making S seem better in Choice 19.
In this case, 77
 switched from R to S compared with
only 8 who switched in the opposite direction. For
Choices 10 and 17 in Series B (Table 3), the results are
similar: 73
 reversed preferences in the direction
predicted by the TAX model compared to only 12
who switched in the opposite direction. For Choices 14
and 8, 96
 reversed preferences in the predicted direction
against only 13 who switched in the opposite direction.
All eight significant changes due to coalescing/

splitting are predicted by the configural weight model
with its prior parameters, and all eight results are
inconsistent with the class of RDU/RSDU/CPT models
with any set of parameters, because those models require
no systematic effects of coalescing or splitting. The
replication study confirms the same conclusions: in all
four cases, the shifts are significant by the test of
correlated proportions. In three of the four cases (all
except Choice 10 versus 17), the shift is even significant
by the conservative standard that coalescing signifi-
cantly reverses the mode.

3.3. Tests of branch independence in Allais paradoxes

Choices 9, 12, and 16 in Table 2 differ only in that the
common branch of 80 marbles to win $2 in Choice 9 has
been changed to 80 marbles to win $40 in Choice 12, and
to 80 marbles to win $98 in Choice 16. Therefore, if
choices obeyed restricted branch independence, deci-
sions in Choices 9, 12, and 16 would be the same.
Similarly, Choices 17, 20, and 14 in Table 3 are the
same, except that the consequence on the common
branch of 85 marbles was either $7, $50, or $100.
Consider, the following defense of CPT for the

violations of coalescing in the previous section. Suppose
that in transparent tests of branch independence, people
used the editing rule of cancellation at least part of the
time. Such a strategy would produce greater satisfaction
of restricted branch independence. For example,
Choices 9 versus 16 might be called a ‘‘transparent’’
test of branch independence because in each case, the
judge could simply cancel the common branch (80
marbles to win $2 or $98), which leaves the same
remainder in Choices 9 and 16. Similarly, Choices 17
and 14 would be the same if one canceled the common
branch of 85 marbles to win $7 or $100. Such editing
might give an explanation for significant shifts (between
the coalesced and split forms in Tables 2 and 3) observed
with the tests of correlated proportions.
The problem with this argument, however, is that the

violations of branch independence are statistically
significant and in the opposite direction from that
observed in the coalesced versions of the same choices.
Summed over framing conditions, 57 switched from the
‘‘safe’’ to the ‘‘risky’’ gamble from Choice 9 to Choice 16
compared to only 17 who switched in the opposite
direction ðz ¼ 4:65
Þ: Similarly, 55 reversed from ‘‘safe’’
to ‘‘risky’’ from Choices 17 to 14, compared with only
28 who made the opposite switch ðz ¼ 2:96
Þ:
In the replication study, significantly more than half

chose S in Choice 9 and significantly less than half chose
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S in Choice 16. Similarly, significantly less than half
chose S in Choice 6 but significantly more than half
chose S in Choice 9. In addition, there was a significant
reversal in the majority choice between 16 and 19. These
significant reversals, even by the conservative standard,
show that CPT, even with its editing principle of
cancellation, can be rejected. If we theorize that
cancellation is used some of the time by some of the
judges, we must conclude that the results would have
been even more devastating for CPT.
According to CPT, RDU, and RSDU models, Choice

6 is the same as Choice 9 and Choices 16 and 19 are the
same. Similarly, Choice 10 is the same as 17 and 14 is the
same as Choice 8 in Table 3. Assuming people some-
times do and sometimes do not use cancellation, the
results might have been intermediate between no
violations of branch independence and the pattern
needed to explain the Allais paradox. For example,
had the percentages of choosing the second gamble in
Choices 9 and 16 been 47% and 69%, respectively,
instead of 69% and 47%, respectively, it might have
been argued that the apparent violations of coalescing
are caused by partial used of cancellation. However, the
results in Tables 2 and 3 are opposite those required to
save the CPT/RDU/RSDU models even with this
editing argument.
Even by the conservative standard of significantly

reversing the mode (but lenient to CPT), there is at least
one significant switch in each series of the modal choice
from significantly less than 50% to significantly greater
than 50%. (These significant switches are observed in
Choices 6 versus 9 in Series A, and Choices 14 versus 8
in Series B). In the replication study, there are three
reversals that significantly reverse by this conservative
test (Choices # 6 versus 9, 16 versus 19, and 14 versus 8).
It is hard to see how to reconcile such results with CPT,
even with the editing principle of cancellation, because
the violations are not merely reduced by splitting (as
might be expected from the editing principle of
cancellation) but significantly reversed.

3.4. Tests of stochastic dominance and coalescing

Table 4 summarizes tests of stochastic dominance and
coalescing. In Choices 5, 11, and 15, the first gamble
dominates the second. The second gamble dominates the
First in Choices 7, 13, and 18. In Table 4, all percentages
represent violations of stochastic dominance. Violations
of stochastic dominance are significantly greater than
50% in all 12 tests of coalesced choices (values exceeding
60% are significant). There are 12 values in the table
exceeding 70%, with an average of 75%.
In contrast, violations of stochastic dominance are

significantly less than 50% in all 6 tests of the
appropriately split versions of the same choices (average
of 13%). Each of the 12 tests of event-splitting/
coalescing is also significant by the test of correlated
proportions. The replication study again repeats the
pattern of significant violations observed in the main
study. These results reinforce those of previous tests of
stochastic dominance and coalescing in this recipe.

3.5. Event framing

The framing effect of marble color had very small
effects. For framed and coalesced choices, violations of
stochastic dominance had an average of 74% compared
to 78% for coalesced and unframed. In the split forms,
there were 15.5% violations in the framed cases and
10.5% in the unframed cases. These are small effects,
and they go opposite the directions anticipated by the
editing notion, which predicted more violations when
framed and coalesced and fewer violations in the framed
and split conditions.
For tests of branch independence, summing over

Series (Choices 9 versus 16 and 17 versus 14), there were
65 choices with the SR switch compared to 26 who
showed the opposite in framed choices. With unframed
choices, there were 47 showing the SR switch compared
to 19 showing the opposite switch. The editing notion
held that there should be fewer violations of branch
independence in the framed cases, so the data again
show small effects that are opposite those predicted. In
sum, event framing had minimal effects and did not
show the patterns expected from the idea that framing
would increase the use of cancellation. The replication
study also found that event framing effects were
minimal (not shown).

3.6. Prior predictions

This experiment was designed based on calculations
under CPT and TAX models. As noted by Birnbaum
and McIntosh (1996), the prediction of violations of
branch independence requires a careful ‘‘fishnet’’ design
unless parameters are known in advance. Based on the
previous parameters, it was possible to design an
experiment that should distinguish these theories, if
the prior parameters also work for new choices and new
participants. Naturally, fitting models to the same data
would give a better fit than using previous data to
predict new results. However, because post hoc predic-
tions can take advantage of lack of constraint in an
experimental design, I think results are more impressive
if one can use a model and its parameters to predict
from one study to new properties tested in another
study.
Tables 2–4 show calculated certainty equivalents from

the TAX model with prior parameters (Birnbaum,
1999a). The RAM model with its prior parameters
makes the same (directional) predictions as TAX in this
study (not shown). TAX and RAM models correctly
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predict the majority choice in 31 of 32 percentages of the
main study listed in Tables 2–4 (all except Choice 17 in
the FU condition, where the 53% should have been less
than 50%). It also predicts the majority choice in all but
two of 16 choices in the Replication study (in Choice 12,
the 47% should have been greater than 50% and in
Choice 20, the 52% should have been less than 50%). In
none of these three cases where prior TAX was wrong
were the percentages significantly different from 50%.
There are eight choice sets where CPT and TAX make

different predictions (Choices 9, 16, 17, 14, 5, 15, 7, and
18). Of the 24 empirical choice percentages for these
eight cases, the modal choice agreed with TAX in 23
cases and with CPT in only one choice (Choice 17 in the
FU condition, 53%). In 19 of 24 cases, empirical choice
proportions were significantly different from 50%; in all
of these cases, CPT predicted the wrong choice. If the
two models were equally good, one would expect half of
these 19 significant cases to favor either model.
The prior TAX and RAM models agree with CPT for

Choices 6, 12, 19, 10, 20, 8, 11, and 13. That is, these
‘‘configural’’ models make the same predictions as CPT
for coalesced tests of Allais independence and for split
tests of stochastic dominance. RAM and TAX models
differ from any member of the rank-dependent models
in that they predict violations of stochastic dominance
in Choices 5, 15, 7, and 18 of Table 4. They also differ
from any of the rank-dependent models in predicting
reversals in Tables 2–4 due to coalescing/splitting.
4. Discussion

Table 1 shows how the separation of restricted branch
independence and coalescing allows one to distinguish
theories of decision making. The results are inconsistent
with both original and cumulative prospect theories
because the data show significant violations of both
properties. In addition, the type of violation of restricted
branch independence is opposite what is needed by CPT
to account for the Allais paradoxes.
These results are instead consistent with the conclu-

sion that the primary cause of Allais common con-
sequence paradoxes is violation of coalescing. In every
test of coalescing/splitting in Tables 2 and 3, there are
large and significant changes that agree in direction with
the Allais paradoxes.
Although ‘‘pure’’ tests of restricted branch indepen-

dence show systematic violations in Table 2 (Choice 9
versus 16) and Table 3 (Choice 17 versus 14), these
‘‘pure’’ violations go in the opposite direction from what
is needed by rank-dependent models RDU/RSDU/CPT
to explain the Allais paradoxes (first to last row in
Tables 2 and 3). Put another way, the inverse-S function
with CPT correctly predicts the results of Choices 6, 19,
10 and 8 in Tables 2 and 3. However, that same
weighting function fails to predict the results of Choices
9, 16, 17, and 14, which are identical prospects
according to CPT. Both sets of results are consistent
with the pattern predicted by RAM and TAX.
All systematic reversals of preference due to splitting/

coalescing reported in Tables 2–4 are in the direction
one expects from the RAM or TAX models if splitting a
branch gives those splinters greater total weight than
they would receive when coalesced. Splitting the higher
valued branch of a gamble should make the gamble
relatively better and splitting the lower valued branch
should make it relatively worse. Note that the configural
models imply that each splitting and coalescing opera-
tion (from top to bottom rows of Tables 2 and 3) should
improve S and diminish R:
Therefore, even if there were no violations of branch

independence [i.e., even with d ¼ 0 in TAX or with
aði; nÞ ¼ 18i; n in RAM], TAX and RAM models would
still imply Allais paradoxes from violations of coalescing
produced by the curvature of tðpÞ (in TAX) or sðpÞ (in
RAM) alone.
Violations of coalescing also explain violations of

stochastic dominance. Splitting or coalescing (in Table
4) changes the percentage of violations from 76% to
13%, significantly reversing the preference between two
equivalent prospects.
The RDU/RSDU/CPT models imply coalescing;

therefore, these models cannot account for any of the
effects in Tables 2–4 produced by coalescing (or
splitting).
The class of RDU/RSDU/CPT models easily violate

restricted branch independence. However, the particular
observed pattern in previous studies as well as this one is
opposite that predicted by the inverse-S form (Birn-
baum & Chavez, 1997; Birnbaum & McIntosh, 1996;
Birnbaum & Navarrete, 1998). A new feature of the
present study is that the experimental tests of branch
independence are elegantly coupled precisely with Allais
common consequence paradoxes to disentangle branch
independence and coalescing in the Allais paradoxes. In
this design, CPT must violate branch independence in
order to explain the Allais paradox, but it does so in the
opposite way from what is observed.

4.1. The case against CPT

The cumulative array of data that violate the class of
RDU/RSDU/CPT models has now reached a critical
threshold where those theories must be questioned as
descriptive of human decision making. The weight of
evidence against CPT now exceeds the case against EU
theory reviewed by Kahneman and Tversky (1979).
The RDU/RSDU/CPT models can be replaced by a

more accurate model that uses no more parameters, but
which accounts for seven different results that refute this
class of theories. CPT (with any choice of functions and
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parameters) cannot account for violations of coalescing
(event-splitting effects), violations of stochastic dom-
inance, violations of lower cumulative independence,
violations of upper cumulative independence, or viola-
tions of 3-branch tail independence. In addition, the
CPT model, in order to account for Allais paradoxes,
violates both branch independence and distribution
independence in the opposite direction from that
observed. Each of these seven phenomena has now been
well established by systematic experiments, and most
have been replicated in more than one study or
confirmed in the same study with multiple variations.
Each of these seven phenomena are consistent with the
TAX model, which predicted five of them in advance,
including the dissection of the Allais paradox in the
present paper.
Birnbaum (1997) derived the properties of lower

cumulative independence and upper cumulative inde-
pendence to clarify the contradiction between empirical
violations of branch independence and empirical evi-
dence that implied the inverse-S weighting function in
RDU/RSDU/CPT models. These two theorems can be
deduced from transitivity, monotonicity, coalescing, and
comonotonic restricted branch independence (Birn-
baum, 1997). They were originally deduced directly
from the RDU representation (Birnbaum et al., 1999,
Appendix). Based on RAM and TAX models, Birn-
baum (1997) predicted violations of these properties,
which were subsequently confirmed in several studies
(Birnbaum, 1999b, 2000; Birnbaum & Navarrete, 1998).
Without modification, the class of rank dependent

models does not account for violations of 3-branch
upper ‘‘tail’’ independence reported by Wu (1994) and
replicated by Birnbaum (2001b), a property that can be
deduced from transitivity, coalescing, and restricted
comonotonic branch independence. These results are,
however, consistent with RAM and TAX.

4.2. RAM and TAX models

Both RAM and TAX models predicted the phenom-
ena that violate the class of CPT and RDU models.
Indeed, the TAX model was used to design the empirical
tests in this paper. Birnbaum’s (1999a) review showed
that with the same set of parameters, RAM and TAX
models predict results of tests of stochastic dominance,
event-splitting effects, lower and upper cumulative
independence, and branch independence.
TAX also implies violations of distribution indepen-

dence (Birnbaum & Chavez, 1997), which violate RAM.
The TAX model, with the same prior parameters,
explains both classic and modern variations of the
Allais paradoxes (Birnbaum, 2000, 2001b; Birnbaum &
Martin, 2003; Wu & Gonzalez, 1996, 1998), as well as
other data that can be fit with the inverse-S weighting
function (Abdellaoui, 2000; Gonzalez & Wu, 1999;
Tversky & Wakker, 1995; Quiggin, 1993; Luce, 2000;
Starmer, 2000). The present study completes the picture
by showing that the TAX model with the same (prior)
parameters correctly predicts the effects of branch
independence and coalescing on new variations of the
common consequence paradoxes of Allais.

4.3. Can CPT be saved by changing procedure?

It has been found that violations of CPT are obtained
when choices are presented in many different forms and
formats (Birnbaum submitted). Majority violations of
stochastic dominance and coalescing have been ob-
served whether branches are presented in juxtaposed
format or with two other arrangements and whether
branches are presented in increasing or decreasing order
of consequences (Birnbaum & Martin, 2003). They have
been observed whether probabilities are presented
numerically or accompanied by pie charts that see-
mingly reveal dominance. They are found both with and
without financial incentives. They are observed with
highly educated people as well as students (Birnbaum,
1999b, 2000). They are found with students tested in
class, in the lab, or via the Web (Birnbaum & Martin,
2003). They are observed whether probabilities are
presented as decimal fractions, as natural frequencies,
or as lists of equally likely consequences (Birnbaum
submitted). They are even found when gambles are
presented with decumulative probabilities, which should
help people ‘‘see’’ stochastic dominance, because they do
not need to use addition to compute the probability of
getting a certain prize or higher. The present data show
that violations of stochastic dominance are observed
whether choices are framed by the same marble colors or
not. This growing collection of null findings represents a
waste basket of failed attempts to explain violations of
CPT by mechanisms other than coalescing, which has
substantial effects in all of these different studies despite
surface differences in how splitting/coalescing appears in
different formats.
Similar results are also obtained whether people make

choices between gambles or judge buying and selling
prices of Gþ and G� on different trials (Birnbaum &
Beeghley, 1997; Birnbaum & Yeary submitted Birn-
baum, Yeary, Luce & Zhou submitted). Violations of
stochastic dominance in judgments of value suggest that
one should look to theories of the evaluation of
gambles, rather than models that focus on contrasts or
comparisons between gambles. In other words, if
judgments, which (necessarily) satisfy transitivity, also
show violations of CPT, one infers that comparison
processes or other mechanisms specific to choice seem
less plausible than theories of the evaluation of the
gambles.



ARTICLE IN PRESS
M.H. Birnbaum / Journal of Mathematical Psychology 48 (2004) 87–106102
4.4. Predicting choice percentages

This study used the prior TAX model to accurately
predict majority choices; however, one might want to
predict exact (numerical) choice percentages. Birnbaum
and Chavez (1997) used an approximate model for
predicting choice percentages. Their model, like the
most restricted case of Thurstone’s law of comparative
judgment or Luce’s choice model, assumed that choice
percentages are a function of utility differences between
gambles. However, such models are oversimplified, since
they do not distinguish utility difference from ease of
comparison.
For example, in Choice 5 of Table 4, the TAX model

implies a utility difference of 63:1� 45:8 ¼ 17:3; and the
empirical choice percentages range from 73% to 85%.
However, in Choice 11, the utility difference is much
smaller, 51:4� 53:1 ¼ �1:7; but the choice percentages
are more extreme, ranging from 11% to 15%. Here the
smaller absolute utility difference produced the more
extreme choice percentage. Similar results can be found
in other cases in the tables. To account for such data,
one can use a choice model in which the predicted choice
percentage is a function of the difference in utility
divided by a parameter representing the difficulty of
discrimination (see Diederich & Busemeyer, 1999).
Despite the small difference, it is ‘‘easy to see’’ that the
first gamble is better in Choice 11. The parameter
representing the difficulty of discrimination can be
thought of as the standard deviation of the difference.
Jerome Busemeyer (pers. comm., 2003) is currently
working on ideas for calculating this standard deviation
for the case of independent gambles.

4.5. Are tests of CPT unfair?

It is sometimes claimed that because CPT has been
axiomatized, it must satisfy ‘‘axioms’’ like branch
independence. Although branch independence is a clear
principle, it is certainly not an axiom of either CPT or
TAX. Branch independence should be violated accord-
ing to both CPT and TAX (given their prior para-
meters), so it can hardly be an axiom of either class of
theories. These prior CPT and TAX models predict
opposite types of violations of this property, however,
when their parameters have been chosen to explain the
Allais paradoxes.
In this paper, CPT was granted its equation (which

implies violation of branch independence) and the
option of invoking the editing rule of cancellation
(which satisfies branch independence). The present data,
however, show that even with this extra flexibility CPT
can still be rejected. Because CPT was allowed two of
three possible outcomes, whereas TAX was granted only
one, the test was not equally ’’fair’’ to both models. The
point is, however, that the theory that was granted the
larger space of compatible outcomes was the one
rejected by the data.
Prospect theories were also granted a larger space of

possibilities in Table 1, since they were allowed to
invoke or not invoke two editing principles and two
equations. It is difficult to calculate how many free
parameters are consumed by an editing rule that may or
may not be exercised, but it should be clear that the
editing rules permit more flexibility to prospect theories
than to TAX or RAM.
If we treat the editing rules of combination and

cancellation as free-standing scientific hypotheses
(rather than as post hoc excuses or as partial tendencies
that operate only in some of the people some of the
time), then they can be rejected by the present results in
Tables 2 and 3. Both of these editing rules are
systematically violated by significant departures.
Coalescing was not initially stated as an axiom of

RDU, RSDU, or CPT (Tversky & Kahneman, 1992;
Luce & Fishburn, 1991, 1995; Wakker & Tversky, 1993).
Birnbaum (1997) used coalescing to simplify his proofs
of lower and upper cumulative independence and
considered coalescing as a testable theorem that can be
derived from the RDU/RSDU/CPT representation.
Luce (1998) subsequently showed that this simple
property can be treated as an axiom, and showed that
it forces RDU in the context of a fairly general class of
rank-weighted utility models. The point, however, is
that the property was derived as a theorem implied by
the RDU representation before it was used as an axiom
to derive the representation. Thus, it was not the
axiomatization of CPT that exposed its vulnerability
to coalescing.
These tests of coalescing and branch independence are

best considered as tests among implications of theories
(theorems) rather than as ‘‘axiom’’ testing.
Dominance detection was also stated as an editing

rule in original prospect theory (Kahneman & Tversky,
1979). Stochastic dominance is implied by any para-
meterization of CPT, however, so systematic departures
from stochastic dominance refute CPT, with or without
this editing principle. This rule also needs revision;
clearly, the majority does not conform to stochastic
dominance in the simple choices of Table 4. Presumably,
those tests are not ‘‘transparent,’’ so people do not
recognize dominance in these choices. What is needed,
to save this editing rule as a theory, are definitions of
‘‘transparent’’, ‘‘translucent’’ and ‘‘opaque,’’ that speci-
fy how and when such a dominance detector is used
(Birnbaum et al., 1999).
RAM and TAX models have not been axiomatized.

This does not mean that the theories are not testable. An
axiomatization is a proof that one can deduce theory
from primitive assumptions. It is not a derivation of
predictions from theory, nor is it a deduction of theory
from data. Theory tests, on the other hand, are tests of
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propositions of the form, ‘‘if that theory is true, then this
testable implication follows.’’ Showing that the implica-
tion is false refutes that statement, but showing that
implications are acceptable for some data does not bear
on the truth of the theory, except by virtue of empirical
induction.
Suppose all of the axioms of a system are testable and

one has shown that all of these axioms are acceptable
when tested in isolation. It does not follow that all
theorems derived from those axioms can now be
assumed as true empirical statements. For example, it
seems plausible that highly educated people might not
violate coalescing if it was presented in plain form as a
simple indifference. However, it has been shown that
quite a few highly educated people do violate coalescing
when it is tested in concert with transitivity.
Luce and Marley (pers. comm., June 11, 2003) are

currently working on the axiomatic analysis of config-
ural weighting models. They have been working with
rank-weighted utility models, of which RAM and TAX
are both special cases; however, as of this writing, none
of us has yet found what additional assumptions force
the particular forms of RAM and TAX. Nor is it yet
understood how to axiomatize certain other configural
weight models (e.g., Birnbaum & McIntosh, 1996,
Appendix) that are not special cases of rank weighted
utility. See Luce (submitted) for a summary.
RAM implies distribution independence, whereas

TAX and CPT do not. This illustrates that there are
indeed properties that are satisfied by RAM and
violated by CPT. RAM satisfies asymptotic indepen-
dence (Birnbaum, 1997), whereas TAX does not.
Although RAM and TAX make the same directional
predictions in this paper, empirical evidence has favored
TAX over RAM when the models are directly compared
(Birnbaum & Chavez, 1997).

4.6. The domain of predicted violations

When a model violates a principle, it does not mean
that people are expected to always violate it or even that
they should ‘‘frequently’’ violate it, only that they will
violate it in certain special situations, which should be
predictable by calculations from parameter estimates fit
to previous data.
To assess how ‘‘often’’ TAX violates stochastic

dominance, ‘‘random’’ 3-branch gambles were sampled
in the following way: First, three probabilities were
selected by random numbers uniformly distributed from
0 to 1. These were each divided by their sum so they
would sum to 1. Next, prizes were randomly sampled,
uniformly distributed between $0 and $100. ‘‘Random
choices’’ were constructed by independently
selecting pairs of such ‘‘random’’ gambles. In
1,000,000 such random choices, it was found that
33.3% had a stochastic dominance relationship, but
only 163 of these one million cases produced a predicted
violation of stochastic dominance by the TAX model
with its prior parameters. Put another way, if an
experimenter randomly picked 1,000 random choices
by this scheme, the odds would be more than 7:1 against
having even a single case of a predicted violation of
stochastic dominance according to the prior TAX
model.4

In addition, it was found that TAX and CPT with
their prior parameters agree in 94.4% of such
random choices. Thus, one should not expect these
theories to disagree in general. If one wants to compare
the models, we need to test their distinguishing
predictions rather than explore random or haphazardly
devised choices.

4.7. Do RAM and TAX have ‘‘unfair’’ advantages?

It might be argued that RAM and TAX have
unfair advantages over CPT. The configural
weight models have been studied a bit longer than
prospect theory, and they had been developed to
describe earlier findings in judgment (Birnbaum, 1973,
1974) that are apparently applicable to risky
decision making. These models also have the advantage
that they had been developed to provide comprehensive
numerical fits to several properties of judgment data,
including buying and selling prices (Birnbaum &
Stegner, 1979).
The predictions from RAM and TAX models are

algebraic derivations from the representations and
calculations made with parameters estimated from
previous data to make predictions to new experiments.
The use of prior parameters and the TAX model to
calculate how and where to find deviations from CPT is
not trivial, for there are many experiments one could do
in which a property will not be violated. An experiment
is something like a search for a key that may have been
lost at the mall. Even if there is a key, there are many
places to search where no key will be found. A theory
that tells us where to look can be a great advantage over
unguided search.
Just as these models only rarely violate stochastic

dominance, TAX and RAM do not always violate
branch independence. It takes careful planning to
calculate how and where to find violations (Birnbaum
& McIntosh, 1996). TAX and its prior parameters
informed us where to search for the key. To a person
who maintains there is no key, however, it might seem
‘‘unfair’’ to use a rival theory to intentionally search
where the key should be found.

http://psych.fullerton.edu/mbirnbaum/calculators/RandomGambles4.htm
http://psych.fullerton.edu/mbirnbaum/calculators/RandomGambles4.htm
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4.8. Psychological intuitions of prospects versus branch

weighting

Prospect theory and cumulative prospect theory
assume that people frame and edit risky gambles as
‘‘prospects.’’ One of the properties of a prospect is that
it satisfies coalescing, either by the editing rule of
combination (Kahneman & Tversky, 1979; Kahneman,
2003) or by the RDU representation used in CPT
(Tversky & Kahneman, 1992), which implies coalescing
(Birnbaum & Navarrete, 1998, p. 57–58). Therefore, two
ways of presenting the same prospect, with branches
split or coalesced, should be evaluated the same, if risky
gambles are framed as psychological prospects.
Kahneman (2003) described the history of his

collaboration with Amos Tversky on prospect theory.
They thought that their original formulation made a
number of predictions that they imagined would be
disproved. They added editing principles that contra-
dicted implications of the model that they thought were
false. Kahneman (2003, p. 727) wrote, ‘‘...we proposed
that decision makers, prior to evaluating the prospects,
perform an editing operation that collects similar
outcomes and adds their probabilities. He judged that
they ‘‘had also made a truly significant advance, by
making it explicit that the objects of choice are mental
representations, not objective states of the world.’’
The configural weight models of Birnbaum (1973) and

Birnbaum and Stegner (1979) also use mental represen-
tations, but different ones. In those representations, two
sources that provide the same message cannot be
combined by simply adding their weights. RAM and
TAX models treat risky gambles as trees with branches
rather than as prospects. The same prospect can be
presented in many different trees, by splitting or
coalescing branches. In these models, the carriers of
weight are probability–consequence branches. One can
manipulate the weight of a branch by changing its
probability and the relationship between a branch’s
consequence and the consequences and probabilities of
other branches. Birnbaum and Stegner (1979) also
proposed that the relative weights of ranked branches
would be affected by changes in the viewpoint of the
judge, who might be asked to judge buyer’s, seller’s, or
neutral’s prices (see also Birnbaum & Sutton, 1992;
Birnbaum, Coffey, Mellers, & Weiss, 1992; Birnbaum,
Yeary, Luce, & Zhou submitted).
If people view risky gambles as trees, they are not

expected to be indifferent to splitting or coalescing
branches. If the probability function is a negatively
accelerated function of branch probability (i.e., go1),
splitting a branch will increase the total relative weight
of the splinters and thus reduce relative weights of other
branches. Similarly, if risk aversion is represented by
transfers of weight from higher to lower ranked
branches, splitting branches can also change the relative
weights of other branches (Fig. 3). Both prospect theory
and cumulative prospect theory, despite their acknowl-
edgment of various framing effects, require that two
different trees representing the same psychological
prospect will be evaluated identically.
CPT, RAM, and TAX are all behavioral, psycholo-

gical models that attempt to describe how people
interpret, perceive, evaluate, and choose between risky
gambles. These three models share several other
principles in common. All three models allow a utility
(or value) function defined on changes from a status
quo. All three models allow weighting of the con-
sequences to be affected by a consequence’s probability
and its position relative to other consequences. The
three models differ, however, in how this configural
weighting is calculated. The prospect theories assume or
imply coalescing, a property that some might call
‘‘rational,’’ since splitting or coalescing branches does
not alter the objective probabilities of the consequences.
But according to Kahneman (2003, p. 727), the reason
this property was assumed was because it was thought to
be descriptive of how people edit prospects.
If the probability function ½sðpÞ or tðpÞ	 is negatively

accelerated, both RAM and TAX imply that certainty
equivalents of binary gambles with fixed consequences
will be an inverse-S function of probability to win the
higher consequence (Figs. 1 and 2). So all three models
agree on this prediction, first reported for bids by
Preston and Baratta (1948) and replicated in choices
between gambles and sure cash by Tversky and Kahne-
man (1992).
In CPT, this empirical inverse-S relationship between

certainty equivalents and probability in binary gambles
is taken as the cumulative probability weighting function
(apart from the utility transformation). The psychologi-
cal ‘‘intuition’’ is that the subjective impact of a change
in probability from impossible to possible and a change
from nearly certain to certain are larger psychological
changes than an equal numerical change near 1/2. In my
opinion, however, this ‘‘intuition’’ simply restates this
theoretical cumulative weighting function in words.
The inverse-S weighting function can be tested by

exploring its implied violations of restricted branch
independence and distribution independence (Birnbaum
& McIntosh, 1996; Birnbaum & Chavez, 1997), two
properties that should be violated in particular ways if
the inverse-S cumulative weighting function is correct.
The CPT model with its inverse-S weighting function
implies violations of both of these properties. Both
properties are indeed violated; but the empirical data
show the opposite patterns of violation from those
predicted by the inverse-S weighting function. Because
the inverse-S cumulative weighting function yields
wrong predictions, either the data, the weighting
function, or the CPT model must be wrong. In my
opinion, the best interpretation of the evidence is that
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the ‘‘intuition’’ of the inverse-S is fine as a description of
one empirical result, but the theory behind it is just
wrong, because other implications of this theory are
contradicted by empirical evidence.

4.9. Final comments on Allais paradoxes

The history of research on the Allais paradox has
perhaps been retarded by attention to irrelevant details
of the choices as originally constructed by Allais (1953).
The original version used hypothetical choices between
chances to win very large amounts of money, and it used
a choice between a pair of two-branch gambles in one
case and a choice between a sure thing and a three-
branch gamble in the other.
The consequence of zero (win nothing) was also a

prominent feature of early tests. Indeed, the conse-
quence of zero has been shown to behave differently
from nonzero consequences in tests of consequence
monotonicity (Birnbaum, 1997). These two cases (of
gambles with and without the zero consequence) were
treated differently by Edwards (1962) and by Kahneman
and Tversky (1979).
Many ideas proposed to explain the paradox were

based on such details of the original form of the
paradox; for example, see various chapters in Allais and
Hagen (1979). It was proposed, for example, that the
paradox might go away with monetary prizes of modest
value, with real consequences (Camerer & Hogarth,
1999), with intellectual arguments (Savage, 1972; Slovic
& Tversky, 1974), with different formats or representa-
tions (e.g., Keller, 1985), or without sure things.
Kahneman and Tversky (1979), for example, described
the common consequence paradox as an illustration of
the ‘‘certainty effect,’’ which they represented as a
discontinuity in the weighting function, wðpÞ as p-1:
The present data and those of others show that none

of those features are crucial to the phenomenon. In this
study, Allais paradoxes are found with small sums of
money, with real prizes at stake, with comparisons
between gambles having equal numbers of branches,
without the use of the zero consequence, and without
the need of sure things. They are found with or without
event framing.
Many studies have been conducted in attempts to

‘‘avoid’’ paradoxical behavior by some experimental
manipulation. The literature can be summarized as
follows: the variable tested failed to eliminate the
paradox. This paper follows in that tradition, with one
exception. The exception in this study is that a variable
has been identified that not only undoes the Allais
paradox, it significantly reverses it. That variable is the
splitting or coalescing of branches, which appears to
give the best explanation of common consequence
paradoxes.
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