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This study tests between two modern theories of decision mak-
ing. Rank- and sign-dependent utility (RSDU) models, including
cumulative prospect theory (CPT), imply stochastic dominance
and two cumulative independence conditions. Configural weight
models, with parameters estimated in previous research, predict
systematic violations of these properties for certain choices.
Experimental data systematically violate all three properties,
contrary to RSDU but consistent with configural weight models.
This study also tests whether violations of stochastic dominance
can be explained by violations of transitivity. Violations of transi-
tivity may be evidence of a dominance detecting mechanism.
Although some transitivity violations were observed, most choice
triads violated stochastic dominance without violating transitiv-
ity. Judged differences between gambles were not consistent with
the CPT model. Data were not consistent with the editing princi-
ples of cancellation and combination. The main findings are inter-
preted in terms of coalescing, the principle that equal outcomes
can be combined in a gamble by adding their probabilities. RSDU
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models imply coalescing but configural weight models violate it,
allowing configural weighting to explain violations of stochastic
dominance and cumulative independence. q 1999 Academic Press

It has been known since the 1950s that expected utility (EU) and subjective
expected utility (SEU) theories (Savage, 1954) fail to describe choices that
people make between gambles. The paradoxes of Allais (1953; 1979) and other
empirical violations were known to be inconsistent with these theories. Subjec-
tively weighted utility (SWU) theories (Edwards, 1954; 1962; Karmarkar,
1978), including original prospect theory (Kahneman & Tversky, 1979), were
proposed to explain empirical choices, including the “common ratio” and “com-
mon consequence” paradoxes of Allais.

SWU theories represent the value of a gamble as a weighted sum of the
utilities of its outcomes (Edwards, 1954; Kahneman & Tversky, 1979). SWU
explains the Allais paradoxes by allowing weights of outcomes to differ from
their probabilities. However, the equation of SWU, like that of original prospect
theory, makes unrealistic and inaccurate predictions. For example, it predicts
that judges will violate transparent dominance (Fishburn, 1978), where trans-
parent dominance is the premise that if one gamble has outcomes that are
strictly better than another, the one with the better outcomes should be pre-
ferred. Similarly, if two gambles have the same outcomes, but one has higher
probabilities of better outcomes, transparent dominance requires that the domi-
nant gamble should be chosen. Consider the following choices from Birn-
baum (1998a):

Choice 1: would you rather play A or B?
A. .5 probability to win $100 B: .99 probability to win $100

.5 probability to win $200 .01 probability to win $200
Choice 2: would you rather play C or D?
C: .5 probability to win $110 D: .01 probability to win $101

.5 probability to win $120 .01 probability to win $102
.98 probability to win $103

According to SWU, people might prefer B to A and D to C. Such violations
of transparent dominance seem quite implausible as descriptions of human
behavior.1

According to SWU, splitting an outcome’s probability into smaller and smaller
pieces might endlessly make a gamble better and better. To avoid this implica-
tion, Kahneman and Tversky (1979) restricted prospect theory to gambles with
no more than two nonzero outcomes. They also added editing principles that
would prevent strange predictions for cases such as Choices 1 and 2 above.

The dominance principle says that judges detect and conform to transparent
dominance (as in A versus B and C versus D); in such cases, the judge will

1 Let SWU(G) 5 (n
i51 w (pi)u (xi), where SWU(G) is the subjectively weighted utility of gamble

G. For this example, let u (x) 5 xb and w (p) 5 cpg/[cpg 1 (1 2 p)g], where b 5 c 5 g 5 .4. Then
SWU(A ) 5 4.2 , SWU(B) 5 5.0 and SWU(C ) 5 3.8 , SWU(D)5 4.9, both in violation of transparent
dominance. See Birnbaum (1998a) for further discussion.
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select the dominant gamble, even though the equation predicts the opposite.
The principle of combination says that judges will combine equal outcomes by
adding their probabilities. Simplification assumes that judges neglect nones-
sential differences, rounding off to simplify choices. The cancelation principle
says that elements common to both gambles will be canceled and not affect
choices. Segregation asserts that complex gambles are separated into risky
and riskless components.

Although some considered these editing principles to be important insights
into how people process gambles, others considered them an awkward way to
“patch up” predictions of an otherwise errant model. Stevenson, Busemeyer,
and Naylor (1991) noted that the editing principles not only contradict the
equation, but also make different predictions when they are applied in different
orders, making the theory too vague to test without further specification.

Tversky and Kahneman (1992) incorporated the representation of rank- and
sign-dependent utility (RSDU) theory (Quiggin, 1982; Luce & Fishburn, 1991;
1995) into cumulative prospect theory (CPT). CPT seems an advance over
prospect theory because it applies to any number of outcomes, and it automati-
cally satisfies combination and dominance, without editing.

This study investigates new tests that are as damaging to CPT and RSDU
as the Allais paradoxes are to EU. This paper will test the RDU representation
basic to RSDU and CPT, and it will also investigate three of the editing princi-
ples: cancelation, combination, and dominance detection. The results will show
systematic violations of stochastic dominance and two cumulative indepen-
dence conditions. These violations refute not only CPT, but also all members
of a general class of which it is a member. Data systematically violate the
editing principles of cancelation and combination. The recipes that are used
to find these violations of CPT were based on predictions from configural weight
(CW) models. The predictions were made prior to the experiments, based on
previously reported parameters (Birnbaum, 1997).

Our story begins with recent experiments that found violations of branch
independence and distribution independence (Birnbaum & Chavez, 1997; Birn-
baum & McIntosh, 1996). Branch independence holds that if two gambles
have a common branch (the same distinct, probability–outcome combination
produced by the same event), that common branch should have no effect on
the preference order induced by other branches. Branch independence can be
illustrated by the following example (from Birnbaum & Chavez, 1997). Would
you prefer to play S or R?

S: .50 probability to win $2 R: .50 probability to win $2
.25 probability to win $40 .25 probability to win $10
.25 probability to win $44 .25 probability to win $98

Note that S and R share a common branch, a .50 probability to win $2, but
they differ on other branches. According to branch independence, the outcome
$2 on the common branch can be changed to any other distinct outcome without
changing the direction of choice, as follows:
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S8: .25 probability to win $40 R8: .25 probability to win $10
.25 probability to win $44 .25 probability to win $98
.50 probability to win $108 .50 probability to win $108

Note that S8 and R8 are the same as S and R, except the outcome on the common
branch has been changed from $2 to $108. According to branch independence, S
is preferred to R if and only if S8 is preferred to R8. However, Birnbaum and
Chavez (1997) found that whereas 60% of 100 judges preferred S to R, 62% of
the same subjects preferred R8 to S8, in violation of branch independence.
Similar results were observed for 11 other tests of branch independence.

Violations of branch independence refute SWU theories (including EU) and
the cancelation principle (Birnbaum & Chavez, 1997). If judges canceled the
common outcomes in S versus R and S8 versus R8, they would not show system-
atic violations of branch independence.

Violations of branch independence can be explained if the weight of an out-
come is affected, at least in part, by the rank of the outcome among the outcomes
of a gamble. To illustrate how such a CW model works, suppose the weight of
the lowest outcome is three times its probability, the weight of the middle
outcome is twice its probability, and the weight of the highest outcome equals
its probability. Suppose also that relative weights are computed by dividing
each weight by the sum of weights, and a gamble is chosen according to its
configurally weighted (CW) average outcome. In the choice between S and R,
the sum of the weights would be 3(.5) 1 2(.25) 1 1(.25) 5 2.25, and the relative
weights of lowest, middle, and highest outcomes in S and R would be .67,
.22, and .11, respectively. The CW average outcome is $15.11 for S, which is
greater than $14.44, the value of R. However, in S8 and R8, the sum of weights
is 3(.25) 1 2(.25) 1 1(.5) 5 1.75, and relative weights of the lowest, middle,
and highest outcomes are .429, .286, and .286, respectively. The CW average
for S8 is $60.57, which is less than $63.14, the value of R8. These weights
predict the reversal observed by Birnbaum and Chavez (1997). Thus, if weights
are affected by the ranks of the outcomes, one can explain violations of branch
independence (Birnbaum, Coffey, Mellers, & Weiss, 1992, pp. 338–339; Weber &
Kirsner, 1997).

This study tests between two classes of theories that permit weights to be
affected by ranks, yet the theories make different predictions for other tests.
These two rival classes are (1) the configural weight models of Birnbaum
and his associates (Birnbaum, 1974, 1997, 1998a; Birnbaum & Jou, 1990;
Birnbaum & Stegner, 1979; Birnbaum & Sutton, 1992) and (2) the class of
RSDU theories (Luce & Fishburn, 1991; 1995), including CPT (Tversky &
Kahneman, 1992) and rank-dependent utility (RDU) theory (Quiggin, 1982).
Many articles have studied variants of these models (Camerer, 1992; Cham-
pagne & Stevenson, 1994; Lopes, 1990; Luce, 1992, 1996; Miyamoto, 1989;
Starmer & Sugden, 1989; Wakker, 1996; Wakker, Erev, & Weber, 1994; Weber,
1994; Wu, 1994; Wu & Gonzalez, 1996), but few studies have tested between
them. Both account for Allais paradoxes and violations of branch independence.
However, as will be shown in the next sections, these models make different
predictions for stochastic dominance and cumulative independence.
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CONFIGURAL WEIGHT AND RANK-DEPENDENT UTILITY MODELS

RDU Model

The RDU of a gamble can be written as follows:

RDU(G) 5 o
n

i51
u (xi)[W (Pi) 2 W (Pi21)] (1)

where u (xi) is the utility of outcome xi (x1 . x2 . x3 .???); Pi is the probability
that the outcome is greater than or equal xi; and Pi21 is the probability that the
outcome is greater than xi. W (P) is a strictly monotonic function of decumulative
probability that assigns W (0) 5 0 and W (1) 5 1. It is assumed that G1 is chosen
over G2 if and only if RDU(G1) . RDU(G2).

The certainty equivalent (CE ) of a gamble is given by CE(G) 5 u21(RDU(G)).
When gambles are restricted to strictly positive outcomes, RSDU theory

(Luce & Fishburn, 1991, 1995) and CPT (Tversky & Kahneman, 1992) reduce
to RDU (Eq. (1)). In their model of CPT, Tversky and Kahneman (1992) used
the equation

W (P) 5
Pg

[Pg 1 (1 2 P)g]1/g , (2a)

where g 5 .61. Tversky and Kahneman (1992) also estimated u (x) 5 xb, where
b 5 .88.

A more general, two-parameter function for W (P) has been discussed by
Tversky and Wakker (1995). This weighting function can be written as

W (P) 5
cPg

cPg 1 (1 2 P)g , (2b)

where c can be interpreted as an index of risk aversion, apart from the u (x)
function. When P 5 1/2, W (P) 5 c /(c 1 1) for any g. Equations (2a) and (2b)
can both produce an S-shaped (g . 1) or inverse-S (g , 1) shaped curve relating
decumulative weight, W (P), to decumulative probability, P. Tversky and
Wakker (1995) used the term “S-shaped” for what we term the inverse-S (Tver-
sky & Fox, 1995).

Violations of branch independence and distribution independence show the
opposite pattern from that predicted by the inverse-S function (Birnbaum &
McIntosh, 1996; Birnbaum & Chavez, 1997). For example, the model of CPT,
with parameters of g 5 .61, b 5 .88, and c 5 .724, predicts that judges should
prefer R to S and S8 to R8 in the choice problem illustrated above, exactly



STOCHASTIC DOMINANCE AND TRANSITIVITY 49

opposite the modal preference order found by Birnbaum and Chavez (1997).
(CE(S) 5 $17.58 , CE(R) 5 $25.83 and CE(S8) 5 $68.29 . CE(R8) 5 $63.12).2

Although observed violations are opposite those predicted by the model of
Tversky and Kahneman (1992), violations of branch independence and distribu-
tion independence would be consistent with Eq. (1) with a different W (P)
function (also assuming one deletes the editing principle of cancelation). Birn-
baum and Chavez (1997) fit Eqs. (1) and (2b) to their data and estimated g 5

1.59, quite different from the inverse-S function with g , 1.

Configural Weight Models

Birnbaum and McIntosh (1996) argued that the apparent contradiction be-
tween violations of branch independence and the weighting functions of Tver-
sky and Kahneman (1992) and Wu and Gonzalez (1996) might be evidence that
CPT is wrong, because the contradiction in CPT is not a contradiction in
configural weight models. This contradiction in weighting functions led Birn-
baum (1997) to deduce the cumulative independence conditions, described be-
low, to provide a direct test between RSDU/RDU/CPT and the configural weight
models (see Appendix).

Configural weight averaging models were proposed to represent judgments
in a variety of tasks, including impression formation (Birnbaum, 1974), moral
evaluation (Birnbaum, 1973), and judgments of the value of goods or invest-
ments based on estimates from sources of varied expertise and bias (Birn-
baum & Stegner, 1979). Birnbaum and Stegner (1979) used a configural weight
averaging model to describe judgments of the values of used cars in the buyer’s,
seller’s, and neutral’s (“fair price”) viewpoints. Configural weighting also suc-
cessfully predicts judgments of buying and selling prices of investments based
on estimates provided by sources of varied expertise in predicting the future
values of investments (Birnbaum & Zimmermann, 1998).

Analogies among judgment tasks (Birnbaum & Mellers, 1983) show that a
configural weight averaging model that accounts for these different judgment
tasks is also a viable model of both judgments and choices between gambles
(Birnbaum & Beeghley, 1997). In averaging models, there are two parameters
for a stimulus, subjective scale value (analogous to utility) and weight, which
is analogous to probability weighting. Averaging models, unlike the equation
used in original prospect theory, do not violate transparent dominance (Birn-
baum, 1998a), but as we will show in a later section, they can violate stochastic
dominance in other situations. Averaging models have two important proper-
ties: the effect of a manipulation that affects scale value (value of the outcomes)

2 Computer programs, DMCALC and DMCALC2, have been written in BASIC by the first author
to compute the predictions of the models compared in this study. These programs are useful for
designing experiments to distinguish these models, and for exploring the properties of the models.
These programs have also been converted (in collaboration with Rob Bailey) to on-line calculators
that will run through a JavaScript compatible (e.g., Netscape Navigator 3.0 or above) web browser.
Requests may be sent to the first author, and these programs are also available at URL http://
psych.fullerton.edu/mbirnbaum/programs.htm.
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will be amplified by a factor that affects weight (probability), and the effect of
the same manipulation will be inversely related to the total weight of other
factors.

RAM Model

The rank-affected multiplicative (RAM) model of Birnbaum and McIntosh
(1996) can be written for gambles of strictly positive outcomes as

U (G) 5
o
n

i51
u (xi)S (pi) aV(ri , n)

o
n

i51
S (pi)aV(ri , n)

, (3)

where u (xi) is the utility of outcome xi (xi . 0); S (pi) is the psychological weight
of the probability of outcome xi; ri is the rank of xi among the n distinct outcomes
(ri ranges from 1 5 highest rank to n 5 lowest rank); and aV(ri , n) is the
configural weight of this rank in point of view, V. Point of view is affected by
instructions, such as those to identify with a buyer or seller, to identify with
a “neutral” judge, or to take the viewpoint of choice. (For the treatment of
negative and zero outcomes in this model, see Birnbaum, 1997.)

The RAM model can be deduced from the assumption that the value of a
gamble is the value that minimizes a loss function defined on discrepancies
between the judged value and the possible outcomes of a gamble. If this loss
function is the expected value of a (symmetric) squared loss function defined
on differences in utility, minimizing the expected loss leads to the EU represen-
tation (Birnbaum et al., 1992). If the loss function is asymmetric, however,
then this approach implies a configural weight, averaging model in which the
configural weights represent the relative costs of overestimating as opposed
to underestimating the value of a gamble.

Derivations of the configural models from the loss function rationale applied
to gambles are given in Birnbaum et al. (1992) and Birnbaum and McIntosh
(1996, Appendix A). The derivations show (Birnbaum et al., 1992, p. 336, Eq.
6) that judgments of binary gambles can be an inverse-S function of probability
if the psychophysical function of probability is negatively accelerated (Varey,
Mellers, & Birnbaum, 1990). Thus the inverse-S observed by Tversky and
Kahneman (1992) for certainty equivalents of binary gambles as a function of
probability can be viewed as the consequence of the relative weight feature of
an averaging model combined with a negatively accelerated psychophysical
function for probability.

According to the loss function rationale for configural weighting, factors that
affect the relative costs of over- or underestimating the value of a good (taking
the viewpoint of the buyer or seller) should affect the configural weights. Birn-
baum and Zimmermann (1998) noted that changing configural weights in dif-
ferent viewpoints can explain data for buyer’s and seller’s prices, but the
reference level (“loss aversion”) notion coupled with the specific model of CPT
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cannot. In configural weight theory, choice is a viewpoint intermediate between
buying and selling, similar to that of the “neutral” or “fair price” judgment view-
point.

The RAM model is an averaging model with configural weights that are the
product of a function of the outcome’s probability, S (pi), and a function of the
outcome’s rank in a given point of view. Birnbaum and McIntosh (1996) esti-
mated (for choice) that the weights for three-outcome gambles are approxi-
mately proportional to their ranks (3: 2: 1): .51, .33, and .16 for the lowest,
middle, and highest, respectively.

Birnbaum and McIntosh (1996) noted that the RAM model (with S (pi) 5

p .6
i , u (x) 5 x, and configural weights of .63 and .37 for the lower and higher

of two outcomes) makes virtually the same predictions as the model of Tversky
and Kahneman (1992) for two-outcome gambles. Birnbaum and McIntosh
(1996) noted that the RAM model also accounts for the results of Wu and
Gonzalez (1996) without changing parameters; however, the CPT model cannot
explain the data of both Birnbaum and McIntosh and Wu and Gonzalez without
changing parameters.

Although the RAM model accounts for a variety of data (Birnbaum, 1998a),
the RAM model implies distribution independence, which is illustrated by the
following choices:

E: .59 probability to win $4 F: .59 probability to win $4
.20 probability to win $45 .20 probability to win $11
.20 probability to win $49 .20 probability to win $97
.01 probability to win $110 .01 probability to win $110

Note that there are two common branches, a .59 probability to win $4, and
a .01 probability to win $110. According to distribution independence, the
probabilities of the common branches can be changed, and the preference order
should not be altered. In choices E8 and F 8, the probabilities of the common
outcomes have been changed as follows:

E8: .01 probability to win $4 F 8: .01 probability to win $4
.20 probability to win $45 .20 probability to win $11
.20 probability to win $49 .20 probability to win $97
.59 probability to win $110 .59 probability to win $110

The RAM model implies E s F if and only if E8 s F 8, because the configural
weight of an outcome is a function of rank and probability (Birnbaum & Chavez,
1997, pp. 176–177). However, most judges preferred E to F and most judges
preferred F 8 to E8 (Birnbaum & Chavez, 1997). Violations of distribution inde-
pendence refute original prospect theory and the RAM model, but they are
consistent with either RDU, or with another configural weighting model, known
as the TAX model.

TAX Model

Judgments of a person’s morality as a function of the person’s deeds show a
violation of asymptotic independence that is also observed in judgments of the
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buying prices of used cars (Birnbaum, 1973; Birnbaum & Stegner, 1979). If
one deed (or one estimate of a used car) is low, the judgment is low and other
deeds (or estimates) do not appear to be capable of compensating for the low
estimate. This violation of asymptotic independence (Birnbaum, 1997) has been
described by a model in which there are transfers of weight among the stimuli
(Birnbaum & Stegner, 1979).

If one thinks of weights as measures of importance, or attention that a
stimulus receives, then this model can be termed a transfer of attention ex-
change (TAX) model. In this model, there is a fixed amount of attention (weight),
which is transferred among stimuli according to their relative positions by a
policy that depends on viewpoint. The amount of weight transferred from a
stimulus is proportional to the amount of weight that the stimulus has to lose.
For example, if the worst deed that a person has done takes weight from good
deeds, then its relative weight may not be driven to zero by doing an infinite
number of good deeds. Thus, in the TAX model, a person who has done one
very bad deed might no longer be judged “moral” no matter how many good
deeds that person might do. Similarly, a used car that has received one low
estimate might not be judged high in buying price no matter how many other
mechanics give it a good report.

In the TAX model, weight is transferred among stimuli as a proportion of
the weight of the stimulus losing weight. A general weight transfer model can
be written as

U (G) 5
o
n

i51
S (pi)u (xi) 1 o

n

i52
o
i21

j51
[u (xi) 2 u (xj)]v(i, j, G)

o
n

i51
S (pi)

, (4)

where U (G) is the utility of the gamble; the outcomes are ranked from lowest
to highest, x1 , xn; S (p) is a function of probability; and v(i, j, G) are the
configural transfers of weight among the outcomes. If the configural transfers,
v(i, j, G), are all zero, this model reduces to a subjectively weighted average
utility model; if transfers are all zero and S (p) 5 p, the model reduces to EU.
Birnbaum and Chavez (1997) proposed the following simplification for choice,

v(i, j, G) 5 S (pi)d/(n 1 1) if d , 0; (5a)

v(i, j, G) 5 S (pj)d/(n 1 1) if d $ 0; (5b)

where the single configural parameter is d, and n is the number of distinct
outcomes in the gamble. The ratio d/(n 1 1) is the proportion of weight trans-
ferred from one outcome to another, analogous to a tax rate. As in the other
models, CE(G) 5 u21[U (G)].

Birnbaum and Chavez (1997) noted that the TAX model, with u (x) 5 x,
S (pi) 5 p .7

i , and d 5 21, makes the same predictions as the RAM model for
the experiment of Birnbaum and McIntosh (1996). Birnbaum (1998a) noted
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that with these same parameters, the TAX model can account for the Allais
paradoxes, violations of branch independence, risk aversion for high probabili-
ties of positive outcomes, risk seeking for small probabilities of positive out-
comes, and violations of distribution independence. For example, the TAX
model predicts that CE(E ) 5 $21.70 . CE(F ) 5 $20.85 and CE(E8) 5 $49.85 ,

CE(F 8) 5 $50.03. The CPT model of Tversky and Kahneman (1992), deleting
the editing rule of cancelation, predicts the opposite preference order.

Both RAM and TAX models are averaging models with the following property:
if the function of probability, S (p), is negatively accelerated (i.e., if there is a
nonlinear psychophysical function), then a given probability–outcome branch
can gain weight by splitting into two branches. This means that configural
weight models violate the property of coalescing that will be introduced below;
we will argue that violation of coalescing is the key to understanding violations
of RSDU/RDU/CPT reported in this paper.

Summary of the Story So Far

Table 1 summarizes implications of EU, SWU, RAM, RDU/RSDU, and TAX
models, and it compares predictions to previous results. EU theory implies
that choices should satisfy common consequence independence and common
ratio independence; therefore, EU is refuted by the Allais paradoxes. SWU and
original prospect theory can explain the Allais paradoxes, but they imply branch
independence and distribution independence, contrary to data of Birnbaum
and McIntosh (1996) and Birnbaum and Chavez (1997). The configural weight,
RAM model explains violations of branch independence, but it implies distribu-
tion independence. Although the inverse-S weighting function is not consistent
with the particular violations of branch independence reported by Birnbaum
and McIntosh (1996) and Birnbaum and Chavez (1997), the general form of
RDU or RSDU can account for violations of branch independence and distribu-
tion independence. With a different weighting function, RDU explains the
Allais paradoxes. The configural weight TAX model can also account for the
findings reviewed thus far. Thus, two classes of theories are left standing,

TABLE 1

Summary of Previous Research and Implications for the Decision Models

Common
consequence Common ratio Branch Distribution

Model independence independence independence independence

EU/SEU Satisfied Satisfied Satisfied Satisfied
SWU Violated Violated Satisfied Satisfied
CW RAM Violated Violated Violated Satisfied
RDU/RSDU Violated Violated Violated Violated
CW TAX Violated Violated Violated Violated

Empirical Results Violated Violated Violated Violated
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the RDU/RSDU/CPT models (with inconsistencies in the weighting function
between studies) and the configural weight, TAX model.

In the next section, we show that configural models violate stochastic domi-
nance and cumulative independence, which the class of RDU/RSDU/CPT must
satisfy. We assemble these implications from simpler components, to clarify
possible theoretical interpretations.

TESTABLE PROPERTIES

Simple Properties

Let G 5 (x, p; y, q; z, r) represent a three-outcome gamble that yields a
consequence of x with probability p, y with probability q, and z with probability
r 5 1 2 p 2 q; all probabilities are nonzero and all outcomes distinct. Let s
represent the preference relation and , represent indifference.

1. Transitivity of preference means

A s B and B s C implies A s C.

Any theory that assumes that gamble A is preferred to gamble B if and only
if U (A ) . U (B) will inherit transitivity of preference from the transitivity of
numbers (utilities) that represent the gambles. All of the models considered
here imply transitivity because they represent the utilities of gambles on a
single dimension.

Because transitivity might be violated in choices by random error, transitivity
has also been defined in terms of choice probabilities (e.g., Tversky, 1969).
Weak stochastic transitivity (WST) is defined as follows: if P (A, B) . 1/2 and
P (B, C ) . 1/2 then P (A, C ) . 1/2, where P (A, B) is the probability of choosing
A over B. According to strong stochastic transitivity, P (A, C ) should exceed
the larger of P (A, B) and P (B, C ).

2. Outcome monotonicity means that increasing the value of one out-
come, holding everything else in the gamble constant, will improve the gamble.
For example, with a three-outcome gamble, G 5 (x, p; y, q; z, r), monoton-
icity implies

(x +, p; y, q; z, r) s G iff x + . x;

(x, p; y +, q; z, r) s G iff y + . y;

(x, p; y, q; z +, r) s G iff z + . z.

Although monotonicity has been violated in judgment when the lowest outcome
is increased from zero to a small positive value, that recipe produces few
violations in direct choices between gambles (Birnbaum & Sutton, 1992; Birn-
baum, 1997). Systematic violations have also not been reported when the num-
ber of outcomes is fixed and all outcomes are greater than zero. All three
models above imply satisfaction of monotonicity when there is a fixed number
of positive outcomes.
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3. Coalescing assumes that equal outcomes can be combined by adding
their probabilities; for example, for three-outcome gambles,

GS 5 (x, p; x, q; z, r) , G 5 (x, p 1 q; z, r),

and

FS 5 (x, p; y, q; y, r) , F 5 (x, p; y, q 1 r),

where GS and FS are split versions and G and F are the coalesced versions of
the same actual gambles. Note that mathematically equivalent gambles can
be presented in (psychologically) different formats, which should not make a
difference if coalescing holds.

“Event-splitting effect” (Humphrey, 1995; Starmer & Sugden, 1993) refers
to a violation of the following: A s B if and only if AS s BS, where AS and
BS are split versions of A and B. Assuming coalescing and transitivity, there
should be no event-splitting effects. Proof: Coalescing implies that AS , A and
BS , B; therefore A s B iff AS , A s B , BS. By transitivity, AS s BS.

Coalescing is implied by RDU models with any W (P) function (Birnbaum &
Navarrete, 1998; Luce, 1998). In original prospect theory (Kahneman &
Tversky, 1979), coalescing was imposed by the editing rule of combination, but
in RDU, RSDU, and CPT, coalescing is implied.

Coalescing is violated by both RAM and TAX models. For example, in the
TAX model with S (p) 5 pg, if g , 1, then splitting the lowest outcome of a
gamble can make the gamble worse, and splitting the highest outcome of a
gamble can make it better. Suppose u(x) 5 x, d 5 0, and g 5 .7; then CE($0,
.25; $0, .25; $100, .5) 5 $44.82 , CE($0, .5; $100, .5) 5 $50 , CE($0, .5; $100,
.25; $100, .25) 5 $55.18. (See footnote 2.) These violations of coalescing occur
because splitting an outcome can increase that outcome’s total weight. Intu-
itively, two outcomes with the same total probability can have more weight
than one combined outcome, as if each discrete outcome gets some attention
or consideration beyond its objective probability.

When d is not zero, event-splitting has additional effects in the TAX model
(beyond the effect of g), because the relative weight of an outcome of a given
rank will depend on the other outcomes in the gamble. For example, with g 5

1 and d 5 21, CE($0, .25; $0, .25; $100, .5) 5 $25, , CE($0, .5; $100, .5) 5

$33.33 , CE($0, .5; $100, .25; $100, .25) 5 $37.5. Violations of coalescing occur
even when g 5 1 because splitting the lowest of two outcomes converts that
outcome into the lowest and middle outcome of a three-outcome gamble. Split-
ting the highest outcome gives the outcome the weight due to the middle and
highest outcomes of the gamble.

4. Branch independence asserts that if two gambles have a common
branch, then the choice between them will be independent of the outcome on
that common branch. The term “branch” designates that the probability–
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outcome combination is distinct in the problem presentation. For three-outcome
gambles, restricted branch independence requires

(x, p; y, q; z, r) s (x8, p; y8, q; z, r)

if and only if

(x, p; y, q; z8, r) s (x8, p; y8, q; z8, r),

where (z, r) is the common branch, the outcomes (x, y, z, x8, y8, z8) are all distinct,
and the probabilities are not 0 and they sum to 1. This principle is weaker
than Savage’s (1954) independence axiom because it is restricted to distinct
branches of known probability, and it does not presume coalescing. Branch
independence is implied by cancelation (Kahneman & Tversky, 1979), but it
is violated by RDU (Eq. (1)), RAM (Eq. (3)), and TAX (Eqs. (4) and (5)), models.

The special case of branch independence in which the outcomes retain the
same ranks in all gambles is termed comonotonic branch independence (Wakker
et al., 1994). All of the models specified above imply restricted comonotonic
branch independence for positive outcomes.

In summary, the models agree on transitivity, monotonicity, and restricted
comonotonic branch independence, but they disagree on coalescing. We next
show that violations of coalescing can create violations of stochastic dominance
and cumulative independence.

PREDICTIONS OF THE MODELS

Stochastic Dominance

Stochastic dominance is the relation between gambles, A Þ B, such that

A stochastically dominates B if and only if

P (x . t.A ) $ P (x . t.B) for all t (6)

where P (x . t.A ) is the probability that an outcome of Gamble A exceeds t.
The statement preferences satisfy stochastic dominance means

if A stochastically dominates B, then A s B. (7)

It would then be a violation of stochastic dominance if A stochastically domi-
nates B but a judge chooses B over A. With fallible data, one can test the
(very conservative) hypothesis that if A stochastically dominates B, then the
probability of choosing A over B should exceed 1/2.

Birnbaum (1997, 1998a) noted that whereas RDU, RSDU, and CPT models
imply stochastic dominance, RAM and TAX models imply systematic violations
in choices constructed from a special recipe. Birnbaum’s (1997) recipe is illus-
trated by example: Start with G0 5 ($12, .1; $96, .9). Split the lower outcome
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of G0, making G1 dominant over G0 as follows: G1 5 ($12, .05; $14, .05; $96,
.9). Next, split the higher outcome of G0, making G2 dominated by G0: G2 5

($12, .1; $90, .05; $96, .85). G1 stochastically dominates G2.
Assuming transitivity, monotonicity, and coalescing, choices must obey sto-

chastic dominance in this recipe; therefore, RDU/RSDU/CPT theories satisfy
stochastic dominance. However, RAM and TAX models (by violating coalescing)
violate stochastic dominance. For example, the TAX model (with g 5 .7 and
d 5 21) implies CE(G1) 5 $45.77 , CE(G0) 5 $58.10 , CE(G2) 5 $63.10!
(See footnote 2.)

Birnbaum and Navarrete (1998) found that 70% of 100 judges chose G2 over
G1 in four variations of this recipe, contrary to stochastic dominance. Because
stochastic dominance follows from transitivity, monotonicity, and coalescing,
it is possible that violations might be due to one of these principles. This study
will investigate if violations of transitivity account for violations of stochas-
tic dominance.

On the other hand, violations of stochastic dominance might cause violations
of transitivity if judges detect and conform to stochastic dominance in compari-
sons of the three-outcome gambles against G0. In other words, if judges prefer
G1 to G0 and G0 to G2, and if they persist in choosing G2 over G1, then their
choices would be intransitive. A major purpose of the present study is to explore
these possible connections between stochastic dominance and transitivity.

Cumulative Independence and Branch Independence

Birnbaum (1997) derived (from RDU) the following cumulative independence
conditions for gambles selected such that 0 , z , x8 , x , y , y8 , z8 and
p 1 q 1 r 5 1.

Lower cumulative independence.

If S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y8, q)

then S9 5 (x8, r; y, p 1 q) s R9 5 (x8, r 1 p; y8, q) (8)
Upper cumulative independence.

If S8 5 (x, p; y, q; z8, r) a R8 5 (x8, p; y8, q; z8, r)

then S- 5 (x, p 1 q; y8, r) a R- 5 (x8, p; y8, q 1 r) (9)

Any theory that satisfies comonotonic independence, monotonicity, transitiv-
ity, and coalescing must satisfy both lower and upper cumulative independence
(Birnbaum, 1997; Birnbaum & Navarrete, 1998); therefore, RDU/RSDU/CPT
models imply cumulative independence (see also Appendix).

Figure 1 illustrates a test of lower cumulative independence. The branch
with the lowest outcome (z, r) has been improved in both gambles to (x8, r),
which should not reverse preferences, according to comonotonic branch inde-
pendence. It has also been coalesced in R9. Furthermore, S has been improved
by increasing x to y (and coalescing) to create S9. Therefore, it is consistent
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FIG. 1. A test of lower cumulative independence: If S s R, then S9 s R9. Note that the second
comparison is the same as the first, except z has been increased to x8 on both sides, and x has
been increased to y (and coalesced) in S9, which should make S9 relatively better.

with lower cumulative independence to switch from R s S to S9 s R9; however,
it is a violation to change preferences from S s R to S9 a R9.

In upper cumulative independence (Fig. 2), the branch with the highest
outcome (z8, r) has been reduced in both gambles from z to y8, which should
not change the preference order, by comonotonic branch independence. Further-
more, S8 has been made worse by reducing y to x to create S-. Therefore, it is
consistent with upper cumulative independence to switch from S8 s R8 to R- s
S-; however, it is a violation to switch in the opposite direction.

In contrast, RAM and TAX models predict violations of both cumulative
independence conditions. For example, predicted certainty equivalents for the
TAX model (with u (x) 5 x, S (p) 5 p.7, and d 5 21) are

CE(S) 5 CE($2, .6; $40, .2; $44, .2) 5 $16.19

. CE(R) 5 CE($2, .6; $10, .2; $98, .2) 5 $15.47,

but CE(S9) 5 CE($10, .6; $44, .4) 5 $19.74 , CE(R9) 5 CE($10, .8; $98, .2) 5

$26.12, contrary to lower cumulative independence. In addition,

CE(S8) 5 CE($40, .2; $44, .2; $108, .6) 5 $58.89

, CE(R8) 5 CE($10, .2; $98, .2; $108, .6) 5 $62.72,
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FIG. 2. A test of upper cumulative independence: If S8 a R8, then S- a R-. Note that the
second comparison is the same as the first, except z8 has been decreased to y8 on both sides, and
y has been decreased to x (and coalesced) on the left side, which should make S- relatively worse.

but CE(S-) 5 CE($40, .4; $98, .6) 5 $62.06 . CE(R-) 5 CE($10, .2; $98, .8)
5 $52.55, contradicting upper cumulative independence. (See footnote 2.)

Birnbaum and Navarrete (1998) found violations of both cumulative indepen-
dence properties. This study tests for violations predicted by RAM and TAX
models, based on the previously published parameters, for six new sets of
gambles that have not been previously tested.

Choices used in tests of cumulative independence (expressions (8) and (9))
can also be used to test branch independence, which asserts that S s R if and
only if S8 s R8. The TAX model predicts that CE(S) 5 $16.19 . CE(R) 5 $15.47
but CE(S8) 5 $58.89 , CE(R8) 5 $62.72. The CPT model with parameters of
Tversky and Kahneman (1992) makes the opposite predictions.

Interval Independence

When subjects are asked how much they would pay to receive gamble A
instead of B, it is reasonable to theorize that the greater the difference in
utility between the gambles, the more they would be willing to pay (Birnbaum,
Thompson, & Bean, 1997). Suppose that such judgments are a function of
utility intervals,

D (A, B) 5 J [U (A ) 2 U (B)], (10)
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where D (A, B) is a judgment of strength of preference between two gambles,
J is a strictly increasing monotonic judgment function, and U (A ) and U (B)
are the utilities of the two gambles.

Suppose two gambles are otherwise identical but differ on one branch. Inter-
val independence asserts that the difference in utility depends entirely on the
differing branch and is independent of the number, values, and probability
distribution of outcomes that are common to both gambles.

Let D (A, B) represent the judged strength of preference for A over B. Suppose
A and B differ in their outcomes on one branch. Interval independence can be
written as follows:

If A 5 (x1, p1; x2, p2; . . . ; xi, pi; . . . xn , pn) and

B 5 (x1, p1; x2, p2; . . . ; yi, pi; . . . xn , pn), and if

A8 5 ( y1, q1; y2, q2; . . . ; xi, pi; . . . ym , qm) and

B8 5 ( y1, q1; y2, q2; . . . ; yi, pi; . . . ym , qm), then

D (A, B) 5 D (A8, B8). (11)

Note that A and B differ only in the outcome for branch i (xi instead of yi), and
A8 and B8 differ in the same branch. If judges edit and eliminate components
common to both gambles in a comparison (Kahneman & Tversky, 1979; Wu,
1994), and if Eq. (10) holds, then interval independence should hold, because
the common components will have no effect. SWU and EU also imply interval
independence (Birnbaum et al., 1997), assuming Eq. (10). Birnbaum’s (1974,
Experiment 4) “scale free” test is a test of interval independence.

When gambles are also comonotonic, so that the rank position of the con-
trasting branch is the same in all four gambles, this special case is termed
comonotonic interval independence. Assuming Eq. (10), RDU implies comono-
tonic interval independence, and it also implies that strength of preference
should be independent of the number and values of common branches as long
as the cumulative probabilities are the same. RAM and TAX models violate
both properties.

For example, let A 5 ($12, .8; $96, .2), B 5 ($12, 1.0); A8 5 ($12, .4; $96, .6),
B8 5 ($12, .6; $96, .4). The difference between A and B is a .2 branch to win
$96 rather than $12, as is the difference between A8 and B8. Both configural
weight models and RDU allow that D (A, B) and D (A8, B8) will not be equal
in general.

According to RDU, however, the interval between gambles with five equally
likely outcomes, C 5 ($2, $4, $6, $7, $96) and D 5 ($2, $4, $6, $7, $12), should
be the same as the interval between C8 and D8, where C8 5 ($12, .8; $96, .2) and
D8 5 $12 for sure. These intervals should be the same because the cumulative
probabilities and the outcomes of the differing branch are the same, so comono-
tonic common branches will drop out. Similarly, the interval between E 5 ($96,
$108, $111, $113, $115) and F 5 ($12, $108, $111, $113, $115) should be the
same as the interval between E8 5 $96 for sure and F 8 5 ($12, .2; $96, .8), a
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prediction that will be tested in this study. RAM and TAX models do not require
that these intervals will be equal.

Comparison of the Models

All three models (RDU, RAM, and TAX) allow violations of branch indepen-
dence, unlike SWU and EU models. For strictly positive outcomes, all three
models satisfy transparent dominance. All three make similar predictions for
two-outcome gambles. Despite these similarities, however, the models make
different predictions for the tests in this paper. The class of RDU, RSDU,
and CPT models imply transitivity, monotonicity, coalescing, and comonotonic
branch independence. These models therefore imply stochastic dominance,
lower cumulative independence, and upper cumulative independence, three
properties that are violated by the configural weight TAX and RAM models.
This study investigates cases where the configural weight models predict viola-
tions, based on their previously published parameters.

METHOD

Judges were instructed to choose between gambles and to judge how much
they would pay to play their preferred gamble rather than the other gamble
in each choice.

Designs

Stochastic dominance and transitivity design. There were 15 trials designed
to test stochastic dominance and transitivity, composed of five variations of
the following three choices: G2 versus G0, G0 versus G1, and G2 versus G1.
Variations 1 through 5 of {G0, G2, G1} are {($2, .04; $98, .96), ($2, .05; $93,
.02; $98, .93), ($2, .02; $6, .02; $98, .96)}, {($3, .12; $92, .88), ($3, .12; $91, .02;
$92, .86), ($3, .10; $5, .02; $92, .88)}, {($8, .04; $97, .96), ($8, .04; $95, .02; $97,
.94), ($8, .02; $9, .02; $97, .96)}, {($4, .05; $88, .95), ($4, .05; $86, .02; $88, .93),
($4, .03; $6, .02; $88, .95)}, and {($2, .20; $108, .80), ($2, .20; $96, .10; $108,
.70), ($2, .10; $12, .10; $108, .80)}, respectively. The right–left positions of the
gambles were as listed above, except in Variations 2 and 4, which used the
opposite left–right positions.

Cumulative independence and branch independence design. This design
was composed of six variations of each of the following four choices, making
24 trials:

S 5 (z, .6; x, .2; y, .2) versus R 5 (z, .6; x8, .2; y8, .2);

S9 5 (x8, .6; y, .4) versus R9 5 (x8, .8; y8, .2);

S8 5 (x, .2; y, .2; z8, .6) versus R8 5 (x8, .2; y8, .2; z8, .6);

S- 5 (x, .4; y8, .6) versus R- 5 (x8, .2; y8, .8).
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The six levels of (z, x8, x, y, y8, z8) were factorially combined with the four types
of comparisons; these six levels were ($2, $11, $52, $56, $97, $108), ($3, $10,
$48, $52, $98, $107), ($2, $11, $45, $49, $97, $109), ($2, $10, $40, $44, $98,
$110), ($4, $11, $35, $39, $97, $111), and ($5, $12, $30, $34, $96, $108).

Interval independence design (transparent dominance). This design was
composed of eight subdesigns. There were 32 choices with transparent domi-
nance, in which both gambles were the same, except one outcome was higher
in one gamble, or the probability of a better outcome was higher in one gamble.

In Subdesigns 1–6, the gamble on the right was the same as that on the
left, except it had a .2 probability to receive $96 rather than $12. Subdesign
1 had five choices of the form

($12, p; $96, 1 2 p) versus ($12, p 2 .2; $96, 1.2 2 p),

where p 5 1, .8, .6, .4, and .2. In Subdesign 2, there were four choices of the form

($2, .2; $12, p; $96, .8 2 p) versus ($2, .2; $12, p 2 .2; $96, 1 2 p),

with p 5 .8, .6, .4, .2. Note that these are the same as in Subdesign 1, except
the lowest outcome has been split to include a lower outcome ($2). Subdesign
3 used four choices of the form

($12, p; $96, .8 2 p; $108, .2) versus ($12, p 2 .2; $96, 1 2 p; $108, .2),

with p 5 .8, .6, .4, and .2; these are the same as Subdesign 1, except the highest
outcome has been split to include a higher branch ($108). Subdesign 4 added
a middle branch of $48, using four choices,

($12, p; $48, .2; $96, .8 2 p) versus ($12, p 2 .2; $48, .2; $96, 1 2 p),

where p 5 .8, .6, .4, or .2. Subdesign 5 used choices between five-outcome
gambles in which each outcome had probability of .2; these five choices were
($2, $4, $6, $7, $12) versus ($2, $4, $6, $7, $96), ($3, $6, $8, $12, $108) versus
($3, $6, $8, $96, $108), ($3, $5, $12, $108, $112) versus ($3, $5, $96, $108,
$112), ($5, $12, $107, $109, $113) versus ($5, $96, $107, $109, $113), and ($12,
$108, $111, $113, $115) versus ($96, $108, $111, $113, $115). Subdesign 6 used
four choices,

(z, p; $12, .2; z8, .8 2 p) versus (z, p; $96, .2; z8, .8 2 p),

where p 5 .8, .6, .4, or .2, and (z, z8) 5 ($5, $96), ($4, $108), ($3, $114), or ($2,
$110), respectively.
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Subdesigns 7 and 8 used six choices composed of three variations of the
following two forms,

($10, r; $99, 1 2 r) versus ($10, r 1 .1; $99, .9 2 r),

and

($3, r; $99, .1; $107, .9 2 r) versus ($3, r; $10, .1; $107, .9 2 r),

where r 5 .85, .45, and .05. Note that these six gambles all have an additional
.1 probability to win $99 on the left instead of $10 on the right.

Procedure and Judges

Each booklet contained three pages of instructions with examples, 10 practice
trials, followed by 71 experimental choices (15 1 24 1 32), randomly ordered
and embedded among an additional 22 unlabeled warmups and fillers, for a
total of 93 trials. Choices were printed in random orders, restricted so that
successive trials did not repeat the same design. Two booklets used different
orderings (and different experimenters); half of the judges in each booklet
worked in reverse order. Other details of stimulus presentation and procedure
were as in Birnbaum and Chavez (1997).

The judges were 110 undergraduates who violated transparent dominance
no more than twice out of 32 tests. Of the 110 judges, 58 had no violations of
transparent dominance, 26 had one, and 26 had two (average rate of violation
of transparent dominance is 2.2%).

RESULTS

Violations of Stochastic Dominance and Transitivity

Table 2 shows choice patterns for tests of stochastic dominance and transitiv-
ity. Rows represent variations, in the order listed under Method. The column
labeled “G2 s G1” shows the number of judges (out of 110) who chose G2

over G1, violating stochastic dominance. For example, in the first variation,
90 out of 110 (81.8%) violated stochastic dominance by choosing G2 5 ($2, .05;
$93, .02; $98, .93) over G1 5 ($2, .02; $6, .02; $98, .96). In every variation
of the recipe, significantly more judges violated stochastic dominance when
comparing G2 to G1 than allowed by the null hypothesis that stochastic
dominance is satisfied half the time (critical value is 66 for a two-tailed, bino-
mial sign test with a 5 .05). Averaged over variations, 73.6% violated stochastic
dominance. Therefore, we can reject the hypothesis that people conform to
stochastic dominance (at least half the time) in favor of the hypothesis that
they systematically choose the dominated gambles in this recipe.

Examining each person’s data, we found 88 judges (80%*) who chose G2

over G1 3, 4, or 5 times (including 46* who violated stochastic dominance on
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TABLE 2

Number of Judges Who Showed Each Combination of Preferences in Tests of
Stochastic Dominance and Transitivity

Preference pattern

Variation G2 s G1 222 221 212 211 122 121 112 111 Mean

1 90 12 33 7 38 0 2 2 16 2$14.33
2 76 10 31 12 23 3 8 3 20 2$4.88
3 86 11 42 7 26 2 3 2 17 2$11.21
4 67 10 32 11 14 5 6 6 26 2$2.98
5 86 5 43 3 35 0 4 1 19 2$10.75

Totals 405 48 181 40 136 10 23 14 98 2$8.83

Note. Column G2 s G1 shows the number of judges (out of 110) who violated stochastic domi-
nance by choosing G2 over G1 for each variation of the recipe. Minus signs (2) represent preference
for G2 over G1, G2 over G0, and G0 over G1, respectively, contrary to stochastic dominance, and
plus signs (1) are used to designate preferences for the dominant gambles. Patterns 2 1 1 and
1 2 2 are intransitive. Pattern 1 1 1 indicates three satisfactions of stochastic dominance. In
Variations 2 and 4, left–right positions of the gambles were reversed.

all five choices). Only 22 subjects had 0, 1, or 2 violations (only 5 satisfied
stochastic dominance on all five choices).

How much do people offer to get the dominated gamble? When the data are
coded so that negative numbers are assigned to violations of dominance and
positive numbers to satisfactions of dominance, the mean amount offered for
G1 over G2 was 2$8.83, indicating that more money was offered for dominated
(G2) than dominant gambles. Of 110 subjects, 85 offered more money for
dominated gambles, compared to only 25 judges whose means were positive.
Mean judgments were negative for all five choices in Table 2. These results
are consistent with those of Birnbaum and Navarrete (1998), and extend their
results to five new variations of the gambles and new judges.

Minus signs in the column labels of Table 2 represent violations of stochastic
dominance in the choices of G2 over G1, G2 over G0, and G0 over G1, respec-
tively. Each entry in the table shows the number of judges (out of 110) who
showed each combination of preferences for each variation of the choice triad.
For example, in Row 1, 90 judges violated stochastic dominance in the compari-
son of G2 and G1, 12 violated stochastic dominance on all three comparisons
(2 2 2), and 38 satisfied stochastic dominance on both comparisons with G0

(2 1 1), violating transitivity. There were only 16 who satisfied stochastic
dominance on all three choices (1 1 1) in this triad.

Averaged over variations of the choice (rows), stochastic dominance is violated
in comparisons of G2 against G0 in 47.6% of the trials, and it is violated in
the comparison of G0 against G1 in 20.4% of the trials. Recall that no single
judge is included who violated transparent dominance on more than 2 per 32
tests (6%) and that the average rate of violation was 2.2%. Thus, although
violations in choices against G0 are less frequent than for G2 versus G1, they
are substantially more frequent than violations of transparent dominance.
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Table 2 shows that among those 405 cases (out of 550) where stochastic
dominance was violated in the comparison of G2 and G1, there are 136 cases
where choices satisfied stochastic dominance in both comparisons with G0,
creating a violation of transitivity (2 1 1). Thus, the conditional probability
of violating transitivity, given violation of stochastic dominance in G2 versus
G1, is .336. However, among the 145 cases of satisfaction of stochastic domi-
nance in G2 versus G1, there are only 10 cases of violation of transitivity
(1 2 2), for a conditional probability of .069. The overall percentage of choice
triads violating transitivity was 26.5%.

According to WST, if P (A, B) . 1/2 and P (B, C ) . 1/2 then P (A, C ) . 1/2.
Averaged over rows, P (G1, G0) 5 .796 and P (G0, G2) 5 .524. Therefore, by
WST, P (G1, G2) should exceed .5; by strong stochastic transitivity, P (G1,
G2) should exceed .796. Instead, P (G1, G2) is only .264. The conditional
probability of violating stochastic dominance on G2 versus G1 given satisfac-
tion of dominance in both comparisons with G0 is .581, which is still quite high.
The conditional probability of violating stochastic dominance on G2 versus
G1 given satisfaction of transitivity in the triad is .67, which is even higher.
Therefore, these results suggest that violations of stochastic dominance can
produce but are not explained by violations of transitivity.

There were two modal patterns of data among judges who violated stochastic
dominance in G2 vs G1: the second most frequent pattern is to obey stochastic
dominance on both simpler choices, thereby violating transitivity (33.6%). How-
ever, the most frequent pattern was also to violate stochastic dominance in the
comparison of G2 vs G0 (181 out of 405, or 44.7%). Additionally, some subjects
violated stochastic dominance in the comparison of G0 vs G1 (40 of 405 cases)
or both of these choices (48 of 405). By violating stochastic dominance more
than once, about two-thirds of choice triads satisfy transitivity.

Analyzing individuals, we found 37 judges whose modal preference pattern
was the transitive pattern, 2 2 1, 28 whose modal pattern was the intransitive
combination, 2 1 1, and 17 who had the modal pattern, 1 1 1. There were
16 who had multiple modes (of whom 14 had at least one of their modes on 2

2 1 or 2 1 1); 5 had the modal pattern 2 2 2; 4 had the modal pattern 2

1 2; 2 had the modal pattern 1 1 2; 1 had the modal pattern 1 2 1; and
no one had as their most frequent pattern the intransitive sequence, 1 2 2.
Although modal patterns are counted in a mutually exclusive way, choices are
not mutually exclusive; for example, 35 judges had some choices in both of
these patterns: 2 2 1 and 2 1 1. In summary, individual patterns echo the
group analyses: a minority of 28 judges appear to violate transitivity by vio-
lating stochastic dominance in the comparison of G2 against G1 and by satis-
fying it in comparisons against G0. However, a larger number violated stochastic
dominance at least twice in each choice triad, thereby satisfying transitivity.

Tests of Cumulative Independence and Branch Independence

Tests of cumulative independence are shown in Tables 3 and 4. Lower cumula-
tive independence, S s R ⇒ S9 s R9, is refuted by instances of S s R and S9 a
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TABLE 3

Test of Lower Cumulative Independence: S s R ⇒ S9 s R9

x y x8 y8 SS9 SR9 RS9 RR9

52 56 11 97 45 31* 17 17
48 52 10 98 42 25 17 26
45 49 11 97 33 33* 15 29
40 44 10 98 20 31* 15 44
35 39 11 97 15 23 27 45
30 34 12 96 16 14 23 57

Totals: 171 157* 114 218

R9, designated SR9 in Table 3. Each entry shows the number of subjects who
displayed each preference pattern for each variation. Violations of lower cumu-
lative independence, SR9 (bold), are more frequent than RS9 (consistent with
the property), in four of six variations, three of which are significant (asterisks).

Upper cumulative independence, S8 a R8 ⇒ S- a R-, is refuted by cases
where S8 a R8 and S- s R-, denoted R8S- in Table 4. Violations (bold type)
are more frequent than satisfactions in all six variations of the gambles used,
as well as the total, summed over rows. Four of six are statistically significant
(asterisks), tested individually.

Branch independence requires S s R ⇔ S8 s R8, and can be tested by
inequality of SR8 and RS8. Consistent with previous results with other gambles
(Birnbaum & McIntosh, 1996; Birnbaum & Chavez, 1997; Birnbaum & Navar-
rete, 1998), SR8 choices are more frequent than RS8: there were 129 SR8 choices
and 97 RS8 choices (z 5 2.13*).

Tests of Interval Independence

In six subdesigns that tested interval independence, judges received pairs
of gambles that were identical, except that one gamble (A ) had a .2 probability
to win $96 instead of $12. Thus, all differences in expected value (EV) were
$16.80 in these designs. To test interval independence, the interval between
$12 and $96 was placed in different configurations of outcomes that were

TABLE 4

Tests of Upper Cumulative Independence: S8 a R8 ⇒ S- a R-

x y x8 y8 S8S- S8R- R8S- R8R-

52 56 11 97 61 14 19 16
48 52 10 98 53 15 20 22
45 49 11 97 45 9 23* 33
40 44 10 98 30 11 34* 35
35 39 11 97 25 4 42* 39
30 34 12 96 21 8 36* 45

Totals: 235 61 174* 190
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common to both gambles. Assuming SWU and Eq. (10), judgments in these
subdesigns should all be equal (Birnbaum et al., 1997).

Figure 3 shows mean judgments for tests of comonotonic interval indepen-
dence, in subdesigns where the better gamble (A ) had a comonotonic (but
sometimes coalesced) .20 probability to receive $96 instead of $12 (in B). Mean
judgments are shown as a function of the cumulative probability of the con-
trasting branch in the better gamble, where P (x , $96. A ) 5 0 indicates
improvement in the lowest outcome and P (x , $96.A ) 5 .8 indicates improve-
ment of the highest outcome. Separate curves show results with 2, 3, or 5
outcome gambles. EU implies that the curves should coincide in a horizontal
line. RDU allows judgments to change as a function of rank, but the curves
should coincide (because coalescing should have no effect). CPT with the
inverse-S weighting function (Tversky & Kahneman, 1992) implies that the
curves coincide and the (single) curve in Fig. 3 should have a U-shape, first
decreasing, then increasing.

Figure 3 shows that the data have three features that refute these predic-
tions. First, contrary to EU, the curves are not horizontal, but systematically
decrease as the rank of the contrast increases. Improving the worst outcome

FIG. 3. Tests of interval independence. Mean judgments of strength of preference between
gambles A and B, which are identical except the outcome on a .2 branch is $96 in A instead of
$12 in B. The abscissa shows the cumulative probability that an outcome is less than $96 in the
dominant gamble, A. Interval independence, which is implied by EU theory combined with the
subtractive model, requires that all judgments be equal. RDU implies that judgments need not
be equal, but should be the same for all rank positions, so the curves should coincide. Instead, the
curve for five-outcome gambles has a steeper slope than curves for three- or two-outcome gambles.



68 BIRNBAUM, PATTON, AND LOTT

of a gamble makes the greatest difference. For example, when four common
outcomes are all lower than $12, improving the highest outcome from $12 to
$96 is worth an average of only $8.98, about half of the difference in EV.
However, when all four common outcomes exceed $96, improving the worst
outcome from $12 to $96 is judged to be worth $52.98, more than twice the
EV difference.

Similarly, ($12, .8; $96, .2) is judged to be worth (on average) $10.76 more
than $12 with certainty; however, a sure win of $96 is judged to be worth
$36.12 more than ($12, .2; $96, .8).

This first feature, a decrease in strength of preference as the contrast is
increased in rank, is consistent with all three models (RDU, RAM, and TAX);
it extends previous results with binary gambles (Birnbaum et al., 1997). This
decrease is characteristic of the majority of individual data; e.g., for 5 outcome
gambles, 102* out of 110 judges showed a decrease in judgments as P (x ,

$96. A ) is increased from 0 to .8, 5 showed an increase, and the rest were tied.
Similar results were obtained with two- and three-outcome gambles, and the
decrease was also characteristic of the majority when P (x , $96. A ) is increased
from .2 to .6, averaged over data in Fig. 3.

The second feature of Fig. 3 is that the curves do not coincide, contrary to
RDU. The interval between ($2, $4, $6, $7, $96) and ($2, $4, $6, $7, $12) is
judged less than the interval between ($12, .8; $96, .2) and $12 for sure. The
interval between ($96, $108, $111, $113, $115) and ($12, $108, $111, $113, $115)
is judged more than the interval between $96 for sure and ($12, .2; $96, .8).
The slopes for three-outcome gambles are intermediate between two and five.
Comparing P (x , $96. A ) 5 0 versus P (x , $96. A ) 5 .8, 76 judges showed a
steeper negative slope for five-outcome gambles than for two-outcome gambles,
29 showed the opposite, and 5 showed no difference. Comparing P (x ,

$96. A ) 5 .2 versus .6, 67* showed a greater decrease for five-outcome gambles
than for two-outcome gambles, 28 showed the opposite, and 15 showed no
difference.

Third, mean judgments do not increase between P (x , $96. A ) 5 .6 and .8,
contrary to the inverse-S weighting function of Tversky and Kahneman (1992).
Averaged over choices with comparisons of P (x , $96. A ) 5 .6 against .8, there
were 65* subjects who showed a decrease, 23 who showed an increase, and 22
who showed no change. A significant majority show continued decrease, con-
trary to the U prediction of the inverse-S weighting function.

The TAX model allows that the curves in Fig. 3 can differ for different
numbers of outcomes. With g 5 .7 and d 5 21, the predicted intervals for
n 5 5 should strictly decrease, consistent with the data; however, the curve
for n 5 2 should decrease and then increase again at the upper end, similar
to the predictions for CPT with n 5 2. Therefore, although the TAX model is
in better agreement with the data than CPT, the failure of the curve for n 5

2 to increase at the upper end is not in accord with the TAX model, if g , 1.
The effect of n is also not consistent with g , 1.

Figure 4 shows mean judgments between three-outcome gambles as a func-
tion of rank position (cumulative probability), with separate curves for different
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FIG. 4. Tests of interval independence with three-outcome gambles, plotted as in Fig. 3. Large
filled triangles show judgments when common outcome is the highest ($108), and the interval
represents an improvement in the lower outcomes. Small filled triangles show judgments when
the common outcome is the lowest ($2). Unfilled triangles show judgments when there are common
outcomes that are both higher and lower than the contrast.

common outcomes. The upper curve, shown as large filled triangles, shows
data when the common outcome was $108 (highest). The lowest curve (small
filled triangles) shows data when the common outcome was $2 (lowest). The
middle curve (unfilled triangles), shows results when there are common out-
comes that are both lower and higher, and the dominant gamble has a .2 branch
with an outcome of $96 instead of $12. According to EU theory, the curves
should be horizontal and they should all coincide. According to RDU and CPT,
the curves need not be horizontal, but all three curves should coincide.

Instead, the curves in Fig. 4 decrease in all cases, and they do not coincide.
Vertical gaps between the curves, which refute RDU, are representative of the
majority. For example, out of 110 individuals, 85 gave greater mean judgments
[averaged over P (x , $96. A ) 5 .2, .4, and .6] when the common outcome was
$108 than when it was $2, 20 showed the opposite, and 5 showed no difference.
Other vertical gaps in the means of Fig. 4 were also representative of the
majority of individuals.

Subdesigns 8 and 9 yielded similar conclusions. For example, judges evalu-
ated the gamble ($10, .85; $99, .15) to be worth an average of $11.70 more than
($10, .95; $99, .05); however, they judged the gamble ($10, .05; $99, .95) to be
worth $25.03 more than ($10, .15; $99, .85). When the same contrast (a .10
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probability to win $99 instead of $10) was expressed as a change in outcome
value in a three-outcome gamble, the effect was more extreme, consistent with
the change of slopes in Fig. 3. For example, ($3, .85; $99, .10; $107, .05) was
judged to be worth $9.08 more than ($3, .85; $10, .10; $107, .05); however, ($3,
.05; $99, .10; $107, .85) was judged to be worth $26.75 more than ($3, .05;
$10, .10; $107, .85).

Fit of TAX and CPT Models

Following Birnbaum and Chavez (1997), we fit TAX and CPT models to each
judge’s choices, excluding choices with transparent or “translucent” dominance
(comparisons with G0). (CPT and TAX both satisfy transitivity and transparent
dominance). Models were fit to a compromise of the negative log likelihood of
the choices given the model and the sum of squared discrepancies between the
model and judgments. Both models were fit with u (x) 5 x. Median parameters
for the TAX model are g 5 .793 and d 5 2.751. For CPT, median parameters
are g 5 .962 and c 5 .207. The negative log likelihood was significantly lower
for the TAX model than the CPT model, t (109) 5 3.47*, and the mean sum of
squared deviations was also lower, but not significantly. Fitting the mean
judgments, the comparison of fit was more extreme. The parameters fitting
mean judgments are g 5 1.06 and d 5 2.796 for TAX and g 5 .852 and c 5

.434 for CPT. The negative log likelihood for TAX was .01 with a sum of
squared deviations of 435.1, much better than the values for CPT, 16.54 and
4389.6, respectively.

DISCUSSION

Violations of stochastic dominance and of cumulative independence are to
the class of RDU/RSDU/CPT models as the Allais paradoxes are to EU. Even
with freedom to select any u (x) and W (P) functions, no member of this class
of models can account for violations of these three properties. The present study
adds five new variations of the recipe that produces violations of stochastic
dominance. This study also adds to the evidence concerning violations of cumu-
lative independence by using six variations not previously tested. These data
reinforce and extend the findings of Birnbaum and Navarrete (1998).

Because these results are predicted by the RAM and TAX models with pre-
viously estimated parameters, our conclusion is not merely that configural
weight models are flexible enough to be consistent with odd patterns of data.
Instead, the conclusion is that these models with their previously estimated
parameters made dramatic predictions for new experiments—and when these
experiments were carried out, these unusual predictions were confirmed by
the empirical choices.

The present study also investigated whether judges would correctly obey
stochastic dominance when choosing between three-outcome gambles and two-
outcome gambles. We found that in about two-thirds of triads in which judges
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violated stochastic dominance in the comparison between three-outcome gam-
bles, judges also violated stochastic dominance on at least one of the two simpler
comparisons, thereby satisfying transitivity. Although violations of transitivity
represent a minority of choices (about one-fourth of all triads), they suffice to
produce violations of both strong and weak stochastic transitivity.

Tests of interval independence indicated systematic violations. Judgments
of intervals were greatest when the lowest outcome of a gamble was improved.
Contrary to the inverse-S weighting function, improvement of the middle out-
come was not the smallest interval; instead, judged intervals decreased mono-
tonically as the rank of the (contrasting) outcome increased.

Summary of Evidence against RDU/RSDU/CPT

Table 5 analyzes five tests that refute the class of RDU/RSDU/CPT models.
These five complex tests have in common that they can be deduced from coalesc-
ing, combined with other simple assumptions. Although the class of RSDU/
RDU/CPT models must satisfy these tests, RAM and TAX models violate coa-
lescing and predict systematic violations.

Cumulative independence. The properties of lower and upper cumulative
independence can be derived from transitivity, monotonicity, coalescing, and
comonotonic branch independence. Both properties were systematically vio-
lated in Tables 3 and 4, as predicted by RAM and TAX models.

Tail independence. The property of upper tail independence (ordinal inde-
pendence) tested by Wu (1994) can be derived from comonotonic branch inde-
pendence, coalescing, and transitivity. Wu (1994) noted that his results, which

TABLE 5

Analysis of Five Tests that Distinguish Configural Weight Models from RDU models

Simpler properties Models

T C M CBI RDU CWT

Complex tests
Event-splitting X X S V
Stochastic dominance X X X S V
Tail independence X X X S V
Lower cumulative independence X X X X S V
Upper cumulative independence X X X X S V

Models
RDU S S S S
CWT (RAM and TAX) S V S S

Note. T, transitivity; C, coalescing; M, monotonicity; CBI, comonotonic branch independence. S,
satisfied; V, violated. X indicates that the simpler property can be used to derive the complex
property; in each case the complex property can be derived from the combination of simpler
properties marked with X. For example, stochastic dominance should be satisfied if choices satisfy
transitivity, coalescing, and monotonicity. RDU satisfies stochastic dominance, and CWT violates it.
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violated tail independence, were inconsistent with the family of RDU/RSDU/
CPT models. Wu combined editing principles with the CPT model to describe
his data. He proposed that when common branches are “transparent” (i.e., not
coalesced with other outcomes), judges cancel common branches; in contrast,
when common branches are coalesced with other branches, judges do not cancel
them. Thus, although his explanation is different, Wu focused on the role of
coalescing in producing the violations from the RDU models. The model of Wu
(1994), however, implies that choices should satisfy branch independence and
distribution independence, contrary to data of Birnbaum and McIntosh (1996)
and Birnbaum and Chavez (1997).

Branch independence and the inverse-S. Research on branch independence
and distribution independence (Birnbaum & McIntosh, 1996; Birnbaum &
Chavez, 1997) found violations of these properties that were opposite those
predicted by the inverse-S weighting function of Tversky and Kahneman (1992).
The present data also extend the pattern reported previously to new gambles.

Stochastic dominance. Stochastic dominance follows from transitivity, coa-
lescing, and monotonicity. Violations refute any theory that assumes these
three principles. This study tested whether violations of stochastic dominance
can be explained by violations of transitivity in choice triads including G2,
G1, and G0. The data show systematic violations of transitivity by a minority
of the judges, but they also show that the conditional probability of violation
of stochastic dominance in G2 versus G1 given satisfaction of transitivity is
.67, which is still quite high. This finding suggests that violations of stochastic
dominance were not produced by violations of transitivity.

Event-splitting effects. Event-splitting effects refer to reversals of prefer-
ence when the same choice is presented in split or coalesced format (Starmer &
Sugden, 1993; Humphrey, 1995). Event-splitting effects violate RDU/RSDU/
CPT models, but can be explained by configural weight models. Birnbaum
(1998b) tested for violations of both stochastic dominance and event-splitting
effects, using undergraduates who were given a chance to play one of their
chosen gambles for real money. One of the choices was between G2 and G1

as follows:

G1: .05 probability to win $12 G2: .10 probability to win $12
.05 probability to win $14 .05 probability to win $90
.90 probability to win $96 .85 probability to win $96

Consistent with the present data, most favored G2 over G1, violating domi-
nance. However, a majority of the same judges reversed preferences in the
following choice:

GS1: .05 probability to win $12 GS2: .05 probability to win $12
.05 probability to win $14 .05 probability to win $12
.05 probability to win $96 .05 probability to win $90
.85 probability to win $96 .85 probability to win $96

GS1 is the same as G1, and GS2 is the same as G2, except for coalescing.
These event-splitting effects refute the combined assumptions of coalescing
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and transitivity. The TAX model (with u (x) 5 x, g 5 .7, and d 5 21) implies
the following CEs for these gambles: CE(G1) 5 $45.77 , CE(G2) 5 $63.10
but CE(GS1) 5 $53.06 . CE(GS2) 5 $51.38, consistent with the data.

According to any special case of RDU/RSDU/CPT, the dominant gamble
should have the same higher value whether it is split or not. These results
with event-splitting, combined with the present exoneration of transitivity as
the cause of violations of stochastic dominance, are consistent with the argu-
ment that violations of stochastic dominance and cumulative independence are
most likely due to violation of coalescing.

Critical Evaluation of Editing Principles of Prospect Theory

Both versions of prospect theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992) used editing principles in addition to evaluation rules. Wu
(1994), Leland (1994), and Starmer (in press) have made more precise specifica-
tions of editing principles, to make these notions testable. The present data bear
on three of the editing principles. Evidence is inconsistent with the principles of
cancelation and combination, but there may be some evidence for a domi-
nance detector.

Cancelation. The editing principle of cancelation implies that common com-
ponents should have no systematic effect on preferences. Therefore, this princi-
ple cannot explain systematic violations of branch independence and distribu-
tion independence.

Violations of interval independence also constitute evidence against cancel-
ation. About half of all choices in this study involved comparisons in which
judges could have edited out and canceled common branches. If subjects had
canceled common branches, then the curves in Figs. 3 and 4 would have coin-
cided in a horizontal line. Instead, the data show that it is worth more to
improve the worst outcome than to improve the best outcome. If CPT gives up
the cancelation principle, then the inverse-S weighting function predicts that
the (single) curve in Fig. 3 should have been U-shaped. The failure of the
curves in Figs. 3 and 4 to coincide shows that judged intervals depend on
features of the gambles that are supposed to have no effect according to RSDU/
RDU/CPT models (with any W (P) function). These violations may be due to
violations of coalescing.

Perhaps there is a way to modify the idea of cancelation to make it more
compatible with data (e.g., perhaps common branches cause distinct branches
to make a greater difference), but the simple theory of cancelation cannot
explain violations of distribution independence, branch independence, and in-
terval independence. It is also hard to see how one could explain violations of
branch independence in both judgment and choice with editing principles.

Combination. The editing principle of combination implies coalescing. It
predicts that judges should combine the equal outcomes of GS2 and GS1

before choosing, which would convert that choice into the choice between
G2 and G1. Event-splitting effects contradict this editing principle (Starmer &
Sugden, 1993).
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Dominance detection. Kahneman and Tversky (1979; Tversky & Kahne-
man, 1986) proposed that subjects will conform to dominance when the relation
is “transparent,” but not when it is “masked” by the problem frame. The present
results show that violations of stochastic dominance can occur even without
any framing manipulation.

The concept of transparency is not completely clear, but presumably it is
easier to see dominance relationships between the two-outcome gamble, G0,
and the three-outcome gambles than between G1 and G2. If tests of outcome
monotonicity and probability monotonicity are termed “transparent,” and if
the choice between G2 and G1 is termed “opaque,” then perhaps we should
call choices between G2 and G0 and between G1 and G0 “translucent,” since
their rates of violation are intermediate between the other two. This “visibility”
metaphor may help us name and remember the results, but it does not really
explain them.

The results can be summarized as follows: (1) There are 2.2% violations of
transparent dominance (outcome monotonicity or probability monotonicity).
(2) Comparing G1 and G0, there are 20.4% violations. (3) Comparing G2 and
G0 there are 47.6% violations. (4) Comparing G1 and G2 there are 73.6%
violations.

All of the models compared here are transitive, yet the data show violations
of transitivity. We need to explain why people violated stochastic dominance
so often in the comparison of G1 and G2, and why they did not violate stochastic
dominance more often than they did in the comparisons of G2 and G1 against
G0. The TAX model predicts that G2 s G0 s G1. If we theorize that choice
probabilities are a function of utility differences, then the TAX model correctly
implies that the greatest choice proportion should be between G2 and G1,
since they are most different in utility; however, the model also implies that
the choice proportions for P (G0, G1) and P (G2, G0) should have both exceeded
1/2, which they did not.

To make an editing notion predictive, we need to specify its mechanism
(Leland, 1994; Wu, 1994; Starmer, in press). We need a clearer definition of
“translucence.” Suppose a dominance detector works by first comparing the
values of corresponding outcomes (“corresponding” means the outcomes have
the same ranks, when ranked by discrete values) and then comparing probabili-
ties of equal outcomes. In cases where these two comparisons do not conflict,
the choice is “transparent,” and the judge chooses the dominant gamble. How-
ever, when one gamble has at least one higher outcome, but the other gamble
has a larger probability for an equally high outcome, the case seems “mixed,”
and the judge chooses the gamble with the higher U (G). Because the compari-
son of G1 and G2 is “mixed” to this detector, the judge will violate stochastic
dominance when U (G2) . U (G1), which it can be under either RAM or
TAX model.

In the case of choices between two- and three-outcome gambles, the middle
outcome of the three-outcome gamble has no corresponding middle outcome in
G0. Suppose the judge compares the middle outcome half the time to the higher
outcome of G0 and half the time to the lower outcome of G0; if so, then half of
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these “translucent” cases will be detected as dominant, and half of these cases
will appear as mixed. Such a mechanism would partially satisfy stochastic
dominance in these “translucent” cases.

One obvious question that remains is as follows: Why are there twice as
many violations of stochastic dominance in G2 versus G0 as in G1 versus G0?
In all cases of G0 5 (x, p; y, 1 2 p) studied thus far, the lowest outcome also
has the lowest probability; i.e., p , 1 2 p. Thus, the comparison of G2 versus
G0 involves splitting a small piece off from a relatively large probability. For
example, G0 5 ($2, .04; $98, .96) and G2 5 ($2, .05; $93, .02; $98, .93). In
contrast, G1 5 ($2, .02; $6, .02; $98, .96) differs from G0 by a splinter that is
half the probability of the lower outcome. It is possible that the effect of a
splinter of probability obeys Weber’s law. However, different variations of the
recipe must be investigated empirically to determine if this asymmetry is due
to asymmetric effects of splitting the higher or lower outcome, or of splitting
the larger or smaller probability.

A recent study by Starmer (in press) reported violations of transitivity in
25% of choice triads that may also be attributable to dominance detection.
Starmer used the following recipe: A 5 (0, 1 2 p; y, p), B 5 (0, 1 2 q; x, q),
and C 5 (0, 1 2 q 2 r; y 2, r; y, q 2 r), where y . y 2 . x . 0. The comparison
of A and C involves event-splitting, since y is split into y and y 2, which was
intended to make C more attractive relative to A. Starmer (in press) found
that 64.7% preferred A to B, 93.6% preferred the dominant B to C, but only
48.5% preferred A to C. (The rate of satisfaction of dominance is much higher
in this study than ours, since B and C were juxtaposed in a format that
made the stochastic dominance relation equivalent to transparent outcome
monotonicity.) Transitivity is such an important theoretical property that evi-
dence of systematic deviation should be pursued.

Editing versus Configural Weighting Explanations

One might attempt to explain violations of stochastic dominance in choice
as the result of simplification and cancelation (Kahneman & Tversky, 1979;
Leland, 1994), as follows. Suppose the judge is presented with the following
choice:

G1 5 ($12, .05; $14, .05; $96, .9) versus G2 5 ($12, .1; $90, .05; $96, .85).

Suppose the judge noticed that outcomes $12 and $96 are the same in both
gambles and canceled these common outcomes (of approximately equal proba-
bilities). That leaves G2 with a 5% chance of $90 as opposed to G1 with a 5%
chance at $14. This heuristic might decide that gamble G2 (which is actually
dominated by G1) is better than G1.

However, this heuristic would not explain why there should be violations of
stochastic dominance in judgment experiments, where G1 and G2 are pre-
sented on separate trials. Birnbaum and Yeary (1997) found that judgments
of both buying prices and selling prices violated stochastic dominance. For
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example, the median buying prices of G1 5 ($12, .05; $14, .05; $96, .9) and
G2 5 ($12, .1; $90, .05; $96, .85) were $30 and $60, respectively, a $30 violation!
Median judgments of selling prices were $73.5 and $83.5, respectively, also
violating dominance. Because gambles are presented individually in judgment,
separated by many intervening trials, it is difficult to see how this cancelation
strategy would account for violations of stochastic dominance in judgment.

It seems simpler to theorize that the combination rule is a configurally
weighted average, and that this same model applies to choices and to judgments
of buying and selling prices, with different configural weights. This theory
predicts violations of stochastic dominance, branch independence, cumulative
independence, and event-splitting effects in both judgment and choice.

Intuitions and Implications of Configural Weighting

In both configural weight models, if S ( p) 5 pg, where g , 1, then the utility
of a two-outcome gamble will be more “sensitive” to changes in probability near
zero and near one than near 1/2. This pattern is also implied by the inverse-
S weighting function of CPT. All three models can account for risk seeking for
low probabilities of positive outcomes, and for risk aversion for medium and
high probabilities of positive outcomes. In the configural weight models, these
properties are consequences of the relative weight expression in an averaging
model and the negatively accelerated psychophysical function for probability.

The equations of configural weighting may appear complex, but they can be
understood by very simple intuitions: each discrete outcome carries some
weight, and these weights are affected by relationships among the outcomes
and the probability distribution over the outcomes. One can think of configural
weights as measures of attention given each separate probability–outcome
branch of a gamble. In both the RAM and TAX models, the relative weight of
an outcome increases as the probability of the outcome increases, and it de-
creases as a function of the total weight of other outcomes. In this intuition,
configural weighting differs from RSDU/RDU/CPT models, which assume that
it doesn’t make any difference how branches are presented.

Unlike CPT and RSDU models, both of the configural weight models imply
violations of coalescing. For d , 0 and g , 1, splitting an outcome of probability
p into two discrete outcomes of probability q and p 2 q has the effect of
increasing that outcome’s relative weight. (Other functions, such as S ( p) 5

ap 1 b, with b . 0, would also have this property for small p.) All of the
violations of RDU reviewed in Table 5—violations of stochastic dominance,
violations of lower and upper cumulative independence, violations of tail inde-
pendence, and event-splitting effects—can be attributed to violations of coalesc-
ing. Intuitively, an outcome can gain weight when it is split into two or more
branches. The increase in weight due to event-splitting can even overcome the
effects of monotonicity (increasing the value of an outcome), as is the case in
violations of stochastic dominance and cumulative independence.

Both RAM and TAX models allow the weight of an outcome to be affected
by the rank of the outcome among the other outcomes in the same set; this
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effect of ranks on the weights is similar to rank dependence in RDU models.
However, unlike RDU models, in which cumulative weight is a monotonic
function of cumulative probability, both configural models assume that the
ranks of the outcomes are the ranks of the values of discrete outcomes, not
their cumulative probabilities.

Birnbaum and Stegner (1979) discuss the theory that configural weights
are produced by motivational effects of asymmetric costs of overestimation as
opposed to underestimation. This account is similar to that used in signal
detection theory, in which differential rewards and costs for hits and false
alarms can be manipulated to produce different responses to the same stimulus.
If it is more costly to overprice (than undervalue) a gamble, then more weight
should be placed on outcomes of lower value. Buyers appear to worry more
about setting too high a value on a gamble, and sellers worry about judging its
value too low. This theory gives an intuitive account, or rationale, for changing
configural weights produced by instructions to identify with the buyer or the
seller.

Previous research has shown that configural weight models can account for
the differences in preference order between buying and selling prices and
between judged prices and choices. The theory assumes that configural weights
depend on the judge’s point of view (i.e., instructions to identify with the buyer,
seller, or a neutral, or the instruction to choose). The theory also assumes that
the utility function, u (x), and the probability function, S (p), are independent
of viewpoint and task (Birnbaum & Beeghley, 1997; Birnbaum & McIntosh,
1996; Birnbaum & Zimmermann, 1998). The agreement of the estimates of
u (x) between different viewpoints provides a test of configural weight models
(Birnbaum & Sutton, 1992; Birnbaum et al., 1992). Although judgments of
buying and selling prices are not monotonically related, and these also are
distinct from the preference order inferred from choice, the configural weight
model can reproduce these different preference orders with assumption that
utility is proportional to money. The ability of the configural weight models to
account for preference reversals, violations of branch independence, distribu-
tion independence, stochastic dominance, cumulative independence, and the
Allais paradoxes with the same utility function seems an attractive feature of
these models (Birnbaum, 1998a).

The effect of the judge’s viewpoint in Birnbaum and Stegner (1979; i.e., the
discrepancy between buying and selling prices) was later termed the “endow-
ment effect” in the economic literature of the 1980s (reviewed in Kahneman,
Knetsch, & Thaler, 1991). In this literature, the notion of “loss aversion” was
suggested as a possible explanation of endowment effects. Birnbaum and Zim-
mermann (1998) compared configural weight theories against “loss aversion”
and “anchoring and adjustment” theories of this effect. Their analysis shows
that when these notions are stated explicitly and combined with assumptions
used in CPT, they do not account for the data in the published literature.
Therefore, configural weight models can account for phenomena in both judg-
ment and choice that apparently cannot be reconciled with the model of CPT.

Although both the RAM and TAX models predict violations of stochastic
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dominance and cumulative independence in this study, RAM and TAX models
differ from each other with respect to the following concept. In the RAM model,
weights are a function of the rank and probability of a discrete outcome, and
relative weights are weights divided by the sum of these rank-affected weights.
In the TAX model, in contrast, each outcome gains weight by taking weight
from other outcomes. Each rank position can have some ability to tax, or pull
weight from other items, and the weight transferred is proportional to the
amount of weight that each of the other items has to lose.

The special case of the TAX model, as fit by Birnbaum and Chavez (1997)
and used here to predict the results, assumes further that lower outcomes
always take weight from higher ranked outcomes by taxing them at the same
rate. If this tax rate is d 5 21/(n 1 1), then for n 5 2, the tax rate is 1/3;
therefore, the lower of two equally likely outcomes ( p 5 .5) will take one-third
of the weight of the higher outcome, so the relative weights will be 2/3 and
1/3, with the lower outcome having twice the weight of the higher. For three
equally likely outcomes, the weights would be 3/6, 2/6, and 1/6 for the lowest,
middle, and highest outcomes; four equally likely outcomes will have weights of
4/10, 3/10, 2/10, and 1/10, for the lowest through highest outcomes, respectively.

This special case model implies that the ratio of weights of the lowest to
highest outcomes will increase as the number of outcomes increases, and it also
implies that configural weights of equally likely outcomes will be a monotonic
function of the ranks of the discrete outcomes. Birnbaum and Veira (1998) and
Birnbaum and Zimmermann (1998) found evidence against this implication
for judgments of value of gambles from the seller’s point of view. Sellers appear
to place more weight on higher than lower outcomes, but they appear to place
most weight on middle outcomes. Therefore, in judgment, a more complex
configural model is required to fit the data than the theory that the weight
transfers are all at the same rate. The next level of complication is to allow
each rank position to have its own tax rate.

The RAM and TAX models are nearly identical in their predictions for this
study, but they can be distinguished by other experiments. As noted earlier,
the RAM model implies distribution independence, which is violated by choices
(Birnbaum & Chavez, 1997). Violation of distribution independence in choice
is the strongest argument to date against the RAM model.

The TAX model with S ( p) 5 pg and d , . 0, violates asymptotic independence,
unlike the RAM model with the same assumptions. Asymptotic independence
asserts that as an outcome’s probability goes to 0, the value of that outcome
should become irrelevant. Violation of this property can be illustrated by a
situation in which the value of the lowest outcome does not become irrelevant
as p approaches 0, but places an upper bound on the utility of the gamble, as
long as that lowest outcome is possible. For example, with g 5 1 and d 5 21,
the TAX model implies that CE(0, p; $1000, 1 2 p) asymptotically approaches
$666.67 as p approaches (but does not equal) 1. In the TAX model, the role of
insurance is to increase the lowest outcome. Even with utility proportional to
money, insurance can be worth a great deal in the TAX model, so insurance
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companies can sell premiums at a profit, and both buyer and seller are pleased
with the transaction.

CONCLUSIONS

These data show systematic violations of stochastic dominance and cumula-
tive independence. Violations of these properties are inconsistent with any
RSDU model, including RDU and CPT. Violations of interval independence
also show evidence against RDU models, and several aspects of the data (viola-
tions of branch independence and tests of interval independence) show trends
inconsistent with the inverse-S weighting function. Results are not consistent
with the editing principles of cancelation (which implies branch independence
and interval independence) or combination (which implies coalescing). The
major violations observed in this paper may be due to violations of coalescing.
The data are better described by the TAX model of configural weighting, which
violates coalescing, than by the RDU/RSDU/CPT class of models, which satisfy
coalescing. Violations of stochastic dominance appear to produce violations of
transitivity in about one-fourth of the choice triads. None of these models can
account for intransitivity, which may require an editing principle to explain
why choices partially satisfy and partially violate stochastic dominance in
“translucent” cases.

APPENDIX: CUMULATIVE INDEPENDENCE

Any theory that satisfies comonotonic independence, monotonicity, transitiv-
ity, and coalescing must satisfy both lower and upper cumulative independence
(Birnbaum, 1997; Birnbaum & Navarrete, 1998). For upper cumulative inde-
pendence, if S8 a R8 then (x, p; y, q; y8, r) a (x8, p; y8, q; y8, r), by comonotonic
independence. By monotonicity (x, p; x, q; y8, r) a (x, p; y, q; y8, r) a (x8, p; y8,
q; y8, r); hence, (x, p; x, q; y8, r) a (x8, p; y8, q; y8, r), by transitivity. Finally,
(x, p 1 q; y8, r) a (x8, p; y8, q 1 r), by coalescing, which is the same as S- a
R-, Q.E.D. The next proof shows that cumulative independence follows directly
from Eq. (1). It shows that violation of cumulative independence can be inter-
preted as a contradiction in the weighting function within RDU.

Lower cumulative independence: S s R ⇒ S9 s R9. Proof by contradiction.
Suppose S9 5 (x8, r; y, p 1 q) a R9 5 (x8, r 1 p; y8, q). From RDU representation
(Eq. (1)),

W ( p 1 q)u ( y) 1 [1 2 W ( p 1 q)]u(x8) , W (q)u ( y8) 1 [1 2 W (q)]u (x8)

[W ( p 1 q) 2 W (q) 1 W (q)]u ( y) 1 [1 2 W ( p 1 q)]u (x8)

, W (q)u ( y8) 1 [1 2 W (q) 1 W ( p 1 q) 2 W ( p 1 q)]u (x8)

W (q)u ( y) 1 [W( p 1 q) 2 W (q)]u( y) 1 [1 2 W ( p 1 q)]u (x8)

, W (q)u ( y8) 1 [1 2 W ( p 1 q)]u (x8) 1 [W ( p 1 q) 2 W (q)]u (x8)
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W (q)u ( y) 1 [W( p 1 q) 2 W (q)]u( y) , W (q)u ( y8) 1 [W ( p 1 q) 2 W (q)]u(x8)

W (q)u ( y) 1 [W( p 1 q) 2 W (q)]u(x) , W (q)u ( y8) 1 [W ( p 1 q) 2 W (q)]u (x8)

[W ( p 1 q) 2 W(q)]u (x) 2 [W ( p 1 q) 2 W (q)]u (x8) , W (q)u ( y8) 2 W(q)u ( y)

[W ( p 1 q) 2 W (q)][u (x) 2 u (x8)] , W (q)[u ( y8) 2 u ( y)]

[W ( p 1 q) 2 W (q)]/W (q) , [u ( y8) 2 u ( y)]/[u (x) 2 u (x8)]. (12)

Now suppose S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y8, q). From RDU repre-
sentation,

W (q)u( y) 1 [W( p 1 q) 2 W (q)]u (x) 1 [1 2 W ( p 1 q)]u (z)

. W (q)u ( y8) 1 [W( p 1 q) 2 W (q)]u(x8) 1 [1 2 W ( p 1 q)]u (z)

W (q)u ( y) 1 [W( p 1 q) 2 W (q)]u (x) . W (q)u ( y8) 1 [W ( p 1 q) 2 W (q)]u (x8)

[W ( p 1 q) 2 W (q)]u (x) 2 [W ( p 1 q) 2 W (q)]u (x8) . W (q)u ( y8) 2 W (q)u ( y)

[W ( p 1 q) 2 W(q)][u (x) 2 u (x8)] . W (q)[u ( y8) 2 u ( y)]

[W ( p 1 q) 2 W (q)]/W (q) . [u ( y8) 2 u ( y)]/[u (x) 2 u (x8)], (13)

which contradicts expression (12), the implication of S9 a R9, thus proving the
proposition. The contradiction between expressions (12) and (13) is analogous
to the contradiction between the results of Birnbaum and McIntosh (1996) and
of Wu and Gonzalez (1996) under the assumption of CPT. Upper cumulative
independence can also be derived from Eq. (1) using the same approach. Viola-
tions of cumulative independence can be interpreted as a contradiction between
the weighting functions in RDU for the cases of n 5 2 outcomes and n 5

3 outcomes.
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