PAGE
14
Generic HTML Form Processor

Running Head: Generic HTML Form Processor

Generic HTML Form Processor: A versatile PHP Script to save

Web-collected data into a MySQL database

Anja S. Göritz and Michael H. Birnbaum

University of Erlangen-Nuremberg, Germany and California State University, Fullerton

Mailing Address:
Department of Psychology, esp. Organizational and Social Psychology

University of Erlangen-Nuremberg

Lange Gasse 20

90403 Nuremberg, Germany

Phone:

+49-(0)911-5302373

E-mail Address:
anja.goeritz@wiso.uni-erlangen.de

Homepage:

http://www.goeritz.net

URL of Paper:

http://www.goeritz.net/brmic/
Authors' note:
This work was supported by a University of Erlangen-Nuremberg postdoctoral scholarship (HWP) and by National Science Foundation Grants SES-9986436 and BCS-0129453. Correspondence concerning this article should be addressed to Anja S. Göritz, Department of Psychology, esp. Organizational and Social Psychology, University of Erlangen-Nuremberg, Lange Gasse 20, 90403 Nuremberg, Germany. (e-mail: anja.goeritz@wiso.uni-erlangen.de).

Abstract

The customizable PHP script Generic HTML Form Processor is intended to assist researchers and students in quickly setting up surveys and experiments that can be administered via the Web. The Generic script relieves researchers from the burden of writing new CGI scripts and of building databases for each Web Study. The Generic HTML Form Processor processes any syntactically correct HTML form input and saves it into a dynamically created open-source database. Use of the Generic HTML Form Processor is free for academic purposes. We describe five modes of usage of the script that allow increasing functionality but require increasing levels of knowledge of PHP and Web servers: the first two modes require no previous knowledge and the fifth requires PHP programming expertise.

In the last decade, experiments and surveys run via the WWW have grown exponentially (Birnbaum, 2004a & 2004b; Kraut, et al., 2004). Several reviews have concluded that data quality achieved in online studies is comparable to that obtained in more conventional environments such as the lab, with paper questionnaires or via telephone (Birnbaum, 2001; Krantz, Ballard, & Scher, 1997; McGraw, Tew, & Williams, 2000). On the Web, people can be tested at any time and place, one does not need laboratory rooms or physically present experimenters, experimenter effects remain constant, and automated data handling reduces error (Birnbaum & Reips, in press; Göritz & Schumacher, 2000). In addition, the Web allows one to collect large samples inexpensively, which makes it possible to draw clear conclusions and to check their generality to different sub-samples tested (Birnbaum, 1999; Reips, 2002).

An example of an HTML Web form is given in Birnbaum (2000). Such an HTML page can be placed on a server, where the participant can view it, and fill in answers by typing information and clicking on choices. When the participant is finished, he or she can click on a button to send the data. Birnbaum's (2000) surveyWiz and factorWiz are freely available programs that make it easy to create HTML forms for simple surveys and within subjects factorial experiments. Reips and Neuhaus (2002) have developed WEXTOR, which is useful for generating Web experiments such as between subjects factorial designs that utilize multiple pages for different conditions.

Sending Data from an HTML Form

There are two methods of receiving data that have been collected through an HTML form. A simple method is to have the form data e-mailed to the researcher. This can be done by means of the HTML form's action attribute, for example:

<form action="mailto:you@your.domain.net" method="post" enctype="text/plain">

However, some systems choke on such an action attribute, for example, if no e-mail client is set up (e.g., as might be the case for computers in a library). Moreover, some browsers issue a more or less draconian alert, which the participant has to confirm for the data to be e-mailed. Most problematic for large efforts, each submission generates its own e-mail, so data need to be extracted from thousands of individual e-mails and merged into one data file. So, whereas the e-mail method might be useful during testing of a form, or for small efforts, like obtaining RSVPs to a party, the method is not practical for large research projects.

A second method is to use server-side CGI (common gateway interface) scripts to process and save the form data. In this case, the action attribute of a Web form sends the form's data to a CGI script that is located on a Web server (Schmidt, 1997; 2000), for example:
 <form action="http://your.domain.net/script.php" method="post">
Thus, use of CGI requires the researcher to have access to a CGI enabled directory on a Web server.
There are several benefits of using a CGI script: First, the CGI can process the data and save them in a file format ready for analysis. Order bias can be eliminated by presenting items and alternative answers in random order, and the CGI can reorganize the data. Also, skip patterns can be incorporated into questionnaires. In addition, participants' input can be validated in real-time. For example, data errors can be detected and respondents can be pointed to omitted items (Göritz & Schumacher, 2000).

CGI scripts can be written in any language that a given server can execute, for example, ASP (Active Server Pages), Perl (Practical Extraction and Report Language), or PHP (Hypertext Preprocessor). PHP is an increasingly popular scripting language (http://www.php.net/usage.php). PHP interpreters are open-source and free. They are available for many different platforms. One can check the availability of PHP for one's own platform and download a suitable installation package from the Downloads section of the PHP home at http://www.php.net/.

Run your Own Server with Apache, PHP, and MySQL

There are many advantages to running your own server (Birnbaum & Reips, in press; Schmidt, Hoffman, & MacDonald, 1997). You can configure the most common Web servers to work with PHP. You can install PHP on a Web server by following the installation instructions that come along with the downloaded package. In most cases PHP is installed on the same server where the HTML forms reside; but it can be installed on any other server where the data are to be saved. Apache Web Server is a powerful, wide-spread, and flexible open-source Web server. Apache's Web server comes already installed in new MacIntosh computers, as are Perl and PHP. Apache Web Server is freely available for PCs and almost any other platform from http://www.apache.org/.

There are two options where a PHP script can store the data from the HTML form. One simple method is to have the PHP script save the form data into a text file that is located on the server. For example, this might be a Comma Separated Values (CSV) file. After all data have been collected, the file can be read into a spreadsheet or statistical application. However, if participants' input at some stage of the research needs to be used dynamically to determine the next question, or if the questionnaire consists of more than one HTML form, it is advisable to have one's PHP script save the form data into a database. The advantage of the database is that it can store information about the participant, make computations on those data, and dynamically respond to the participant's behavior. It allows the server to keep track of a participant who may perform many tasks over a period of time.

Various databases can be used by servers, including Oracle, MS Access, and MySQL. We recommend MySQL(because it is an open-source, free, compact, fast, reliable, robust, and multi-user database server that compiles on many platforms. Its home is http://www.mysql.com/. MySQL databases can easily be administered with the free tool MySQL Control Center, which can also be downloaded from http://www.mysql.com/.

The installation and configuration details of the PHP interpreter, Apache, MySQL, and MySQL Control Center are beyond the scope of this article. However, plenty of relevant information can be found on the Web. For example, there is an introductory tutorial on PHP, Apache, MySQL, and MySQL Control Center by the first author, which can be downloaded from http://www.goeritz.net/ati/download.htm. Moreover, with precompiled binaries being available, installation has nowadays become fairly easy. Less experienced users might want to install an automatically configuring all-in-one bundle (e.g., the free Apache2Triad package). Several packages with suitability for different platforms are available from http://www.hotscripts.com/PHP/Software_and_Servers/Installation_Kits/.

To sum up, a powerful way of collecting data with HTML forms is to have the data sent to a CGI script, which processes the input and writes the processed data into a database. The most cost-effective way of accomplishing this is to use free, open-source software. We recommend the combination of Apache server to host your Web site, PHP for CGI scripting, and MySQL for the database.

A Generic HTML Form Processor in PHP

A versatile PHP script called Generic HTML Form Processor has been developed that processes any syntactically correct HTML form input. Along with sample HTML forms it is available from http://www.goeritz.net/brmic/. The script creates a MySQL database containing one data table "on the fly". In the table, the script dynamically sets up columns for all submitted HTML input fields and saves the data in the previously created columns. Thus, this script relieves researchers from the burdens of writing a CGI script and building a database to store their data for each new project. To run a survey or experiment, researchers merely have to fulfill the relatively simple task of creating HTML forms that fit their needs. There are many commercial and non-commercial HTML editors available that can assist the researcher with this duty. For example, one of the two free programs surveyWiz and factorWiz (Birnbaum, 2000) might be used. The following versions have been written to automatically include the proper link to the script described in this paper:

http://psych.fullerton.edu/mbirnbaum/programs/surveyWiz4.htm

http://psych.fullerton.edu/mbirnbaum/programs/factorwizRB4.htm

Besides the basic functionalities of creating a database and saving the form input into this database, Generic HTML Form Processor can point respondents to omitted questions in the HTML form. Also, the researcher can choose whether the HTML input shall be written into the database in chronological or alphanumeric order. Moreover, the wording of feedback messages to participants can be customized (e.g., the text to be displayed upon omission of an item or the thank-you message that appears after submission of the questionnaire). To enable identification of multiple submissions (i.e., most likely participations from the same IP-number within a short period of time) and non-serious participants (e.g., who filled out the questionnaire too fast or too slowly), the date, IP and browser information are logged along with submission timestamps of each questionnaire page. The script supports both one-page and multiple-page questionnaires. Researchers with access to a PHP-enabled Web server with MySQL can use the Generic HTML Form Processor on their own server at no cost. They are free to further customize the script. Researchers who do not have access to a server can use the Generic HTML Form Processor and MySQL database on a dedicated server at the first author's university. According to this spectrum of possible usage, we will now describe five modes of use that require different levels of knowledge of PHP and server issues.

1. The easiest mode of use of the Generic HTML Form Processor is with one-page HTML questionnaires made to save data on a server at the first author's university. For this purpose, no knowledge of PHP and Web servers is required. The only preparatory act is to set the action attribute of your HTML form to the URL (Internet address) of the Generic HTML Form Processor. The HTML file itself can reside on any server. Let us have a look at an example HTML form called sample.htm. It contains most of the existing HTML input field types (cf. Figure 1).
Insert Figure 1 about here.

The HTML code of sample.htm is in Listing 1. Note the action attribute in the form tag

<form method="post" action="http://www.goeritz.net/brmic/generic.php"> which is printed in bold in Listing 1.

Insert Listing 1 about here.
To use the script on our server, leave this line (the action attribute) as it is. If you would like to have the order of items or alternative answers in your HTML form randomized or rotated you can use Birnbaum's (2000) factorWiz or another JavaScript program to accomplish that
 (Birnbaum & Wakcher, 2002).

To obtain your study data from our server call up the display script http://www.goeritz.net/brmic/display_generic.php. Next, enter the URL of your HTML survey; all datasets belonging to your study are displayed. The data can be copied from this Web page and pasted into a spreadsheet program. By clicking on the Excel-Icon you may also obtain your data in Excel format. Once you have fetched your data you can clean them as usual from your own test runs as well as from any multiple submissions. For more information on data analysis and filtering of multiple submissions, see Birnbaum (2001).

Please note that four months old records are automatically deleted from this public database. Thus, make sure to retrieve them in time. Furthermore, researchers intending to collect sensitive data (that should by no means be accessible to strangers) are encouraged to use the script on their own server (cf. Modes 3 to 5 of usage). Moreover, due to the public nature of this database, only up to 1000 records per IP-number and up to 70 unique HTML input fields per study are saved. If you plan a larger study than that you are requested to use the script on your own server.

2. The second mode of usage employs the Generic HTML Form Processor with a multiple-page HTML questionnaire on the server at the first author's university. This also requires no knowledge of PHP or server issues. However, you have to make a few more changes in your HTML forms, which are as follows: First, as in the previous mode, you need to set the action attribute of each of the HTML forms to the URL of the Generic HTML Form Processor. Second, to tell the Generic HTML Form Processor which HTML page it needs to call up after processing the previous page, one extra line of HTML code needs to be inserted within the form tags. This line defines the hidden variable "next_page" and its value, which is the location of the next HTML page. An example is shown in italics:

<input type="hidden" name="next_page" value="sample2.htm">

Alternatively, if the next page was called "page_two.html" this line would read as follows:

<input type="hidden" name="next_page" value="page_two.html">
If the next survey page is located on another server or not within the same directory of the first page the value needs to be set to the absolute URL of the second page, for example:

<input type="hidden" name="next_page" value="http://full_path_on_server.net/pagename.htm">
Let us inspect an example survey that consists of three HTML pages. The first page is sample1.htm (cf. source code in Listing 2 and browser view in Figure 2), the second page is sample2.htm, and the third is sample3.htm.

Insert Listing 2 about here.
Insert Figure 2 about here.

To track individual participants across the pages of a multiple-page survey, an identifier needs to be passed from page to page. This is automatically accomplished by extracting an identifier for each participant (called "op56") from the database and appending it to the query string of the next survey page, for example: http://www.goeritz.net/brmic/generic2.htm?op56=16&nr93=1
The other transmitted variable "nr93" tells the Generic HTML Form Processor with which page of a multiple-page survey it is dealing. With the help of JavaScript, these two variables are extracted from the query string and inserted into the HTML form as hidden variables. Therefore, into each HTML page of a multiple-page survey except the first page, a JavaScript snippet (cf. bold print in the source code of sample2.htm in Listing 3) needs to be pasted within the form tags
,
.

Insert Listing 3 about here.
Figure 3 depicts the browser view of the HTML file sample2.htm.

Insert Figure 3 about here.

On the third page of our multiple-page study sample3.htm, the researcher again needs to paste the JavaScript snippet in between the form tags. Inclusion of the hidden variable "next_page" is no longer necessary, because sample3.htm is the last page of the survey (cf. source code in Listing 4).

Insert Listing 4 about here.
Figure 4 depicts the browser view of the HTML file sample3.htm.

Insert Figure 4 about here.

Again, the MySQL database called "generic" with the results table "generic" is created. Because now there are three HTML pages, in addition, the names and submission timestamps of Pages 2 and 3 are recorded (cf. Figure 5). Retrieval of the survey data follows the same procedure as described for the one-page case.

Insert Figure 5 about here.

To implement skip patterns in your survey there are two options, both using JavaScript. First, the skip pattern might be included within the same page of a survey (e.g., by having JavaScript display an additional item or answer alternative if a particular answer has been selected prior to that). For example, if a respondent indicates to have had a particular experience an additional item comes up which asks to describe this experience in more detail. The second option is to display any contingent material on a consecutive page. As an example, look at the source code of the HTML file sample1a.htm in Listing 5. This is a modified version of sample1.htm, with the bold text having been added. If in sample1a.htm a participant indicates to be female she is directed to the interposed page sampleextra.htm (not shown but you can see it in action at http://www.goeritz.net/brmic/) instead of being directly directed to the page sample2.htm.

Insert Listing 5 about here.

The same method can also be used for randomization of survey pages. For this purpose, a JavaScript snippet can draw an element of an array at random. The next page is displayed contingent on the element selected.

3. The third mode of use entails using the Generic HTML Form Processor with a one-page HTML questionnaire on a server with PHP and MySQL running to which you have access. First, download the Generic HTML Form Processor from http://www.goeritz.net/brmic/ and extract it onto your server in a suitable directory. To customize the script's behavior follow the guidelines in the script. Alter the action attribute in your HTML form to the location of the Generic script on your server, for example:

<form method="post" action="http://My.domain.net/MyFolder/generic.php">
Upon the first submission of the HTML form, the script creates a MySQL database called "generic" with a results table also called "generic". Data are to be retrieved from your MySQL database either by running a SELECT syntax command or with the help of a graphical administration tool such as MySQL Control Center.

Note that for the Generic script to function properly the researcher needs ALTER, INSERT, SELECT, UPDATE, and CREATE privileges for MySQL. If the researcher wishes to use a public server, he or she might not own some of these privileges, because it is a security hazard to allocate global ALTER privileges to any user (in this case the researcher). There are three ways of dealing with this: (1) The researcher may ask the server administrator to create a minimal MySQL database with one table in it (this should take less than 1 min) and to allocate the relevant privileges only for the single table within this database. There is no security risk involved in that. (2) As the ALTER privileges are needed only once, namely to define all possible columns in the MySQL database, the researcher may ask the server administrator to grant him or her ALTER privileges for 10 min only. In this interval, the researcher can fill out all input fields on all pages of the questionnaire with practice data and submit it
. (3) The researcher can set up his or her own server and grant him- or herself the needed privileges.

4. The fourth mode uses the Generic HTML Form Processor with a multiple-page HTML questionnaire on a server to which you have access. First, put the script on your server and, if desired, customize it. You will need to alter your HTML forms as described with Mode 2 of usage.

5. You are free to further customize the Generic script to your particular needs, for example, by implementing a more sophisticated input validation. Learning PHP will allow you to completely customize your study.
In summary, our versatile PHP script Generic HTML Form Processor can assist researchers and students in quickly setting up surveys and experiments that can be administered via the Web. The script accomplishes the tasks of CGI scripting for coding and storing Web-collected data in a database. The strengths of the Generic HTML Form Processor are its universality and simplicity of use. It processes any HTML form input data and saves them into a dynamically created open-source database. The script allows for further customization of the processing and recording of the data. Researchers with access to a PHP-enabled Web server with MySQL can use the Generic HTML Form Processor on their own server. Researchers who do not have access to a server can use the Generic HTML Form Processor and a database on our server. Use of the script is free for academic purposes.

References

Birnbaum, M. H. (1999). Testing critical properties of decision making on the Internet. Psychological Science, 10, 399-407.
Birnbaum, M. H. (2000). SurveyWiz and FactorWiz: JavaScript Web pages that make HTML forms for research on the Internet. Behavior Research Methods, Instruments, & Computers, 32, 339-346.

Birnbaum, M. H. (2001). Introduction to Behavioral Research on the Internet. Upper Saddle River, NJ: Prentice Hall.
Birnbaum, M. H. (2004a). Human research and data collection via the Internet. Annual Review of Psychology, 55, 803-832.

Birnbaum, M. H. (2004b). Methodological and ethical issues in conducting social psychology research via the Internet. In C. Sansone, C. C. Morf, & A. T. Panter (Eds.), Handbook of Methods in Social Psychology (pp. 359-382). Thousand Oaks, CA: Sage.

Birnbaum, M. H., & Reips, U.-D. (in press). Behavioral research and data collection via the Internet. In R. W. Proctor & K.-P. L. Vu (Eds.), The handbook of human factors in Web design. Mahwah, NJ: Erlbaum.

Birnbaum, M. H., & Wakcher, S. V. (2002). Web-based experiments controlled by JavaScript: An example from probability learning. Behavior Research Methods, Instruments, & Computers, 34, 189-199.
Göritz, A. S., & Schumacher, J. (2000). The WWW as a research medium: An illustrative survey on paranormal belief. Perceptual and Motor Skills, 90, 1195-1206.

Krantz, J. H., Ballard, J., & Scher, J. (1997). Comparing the results of laboratory and world-wide Web samples on the determinants of female attractiveness. Behavior Research Methods, Instruments & Computers, 29, 264-269.

Kraut R., Olson J., Banaji M., Bruckman A., Cohen J., & Couper M. P. (2004). Psychological Research Online. American Psychologist, 59, 105–117.

McGraw, K. O., Tew, M. D., & Williams, J. E. (2000). The integrity of Web-delivered experiments: Can you trust the data? Psychological Science, 11, 502-506.

Reips, U.-D. (2002). Internet-based psychological experimenting: Five dos and five don'ts. Social Science Computer Review, 20, 241-249.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for generating and visualizing experimental designs and procedures. Behavior Research Methods, Instruments, and Computers, 34, 234-240.

Schmidt, W. C. (1997). World-Wide Web survey research: Benefits, potential problems, and solutions. Behavior Research Methods, Instruments & Computers, 29, 274-279.

Schmidt, W. C. (2000). The server-side of psychology web experiments. In M. H. Birnbaum (Ed.), Psychological Experiments on the Internet (pp. 285-310). San Diego, CA: Academic Press.

Schmidt, W. C., Hoffman, R., & MacDonald, J. (1997). Operate your own World-Wide Web server. Behavior Research Methods, Instruments, & Computers, 29, 189-193.

Listing 1: sample.htm

<html><head><title>Survey</title></head><body>

Please answer the following questions:

<form method="post" action="http://www.goeritz.net/brmic/generic.php">
How old are you? <input type="text" name="age" size="2" maxlength="3">

What is your sex?

<input type="radio" name="sex" value="1">female

<input type="radio" name="sex" value="2">male

What is the highest level of education you have completed?

<select name="education">

<option value="0" selected>Choose from this list

<option value="1"> Less than 12 years

<option value="2"> Graduated High School (12 years education)

<option value="3"> Some College (13-15 years education)

<option value="4"> Graduated from College (Bachelor's degree)

<option value="5"> Master's degree

<option value="6"> Doctoral Degree (Ph.D., M.D., J.D., etc.)

</select>

Enter your comments here:

<textarea name="comment" cols="21" rows="4"></textarea>

<input type="submit" value="Submit Questionnaire">

</form></body></html>
Listing 2: sample1.htm

<html><head><title>Survey Page 1</title></head><body>

Please answer the following questions:

<form method="post" action="http://www.goeritz.net/brmic/generic.php">

<input type="hidden" name="next_page" value="sample2.htm">

How old are you? <input type="text" name="age" size="2" maxlength="3">

What is your sex?

<input type="radio" name="sex" value="1">female

<input type="radio" name="sex" value="2">male

<input type="submit" value="Go to next page">

</form></body></html>
Listing 3: sample2.htm

<html><head><title>Survey Page 2</title></head><body>

<form method="post" action="http://www.goeritz.net/brmic/generic.php">

<input type="hidden" name="next_page" value="sample3.htm">

<script language="JavaScript" type="text/javascript">

var qs = location.search.substring(1);

var nv = qs.split('&');

var url = new Object();

for(i = 0; i < nv.length; i++)

{eq = nv[i].indexOf('=');

url[nv[i].substring(0,eq).toLowerCase()] = unescape(nv[i].substring(eq
+ 1)); }

document.write("<INPUT TYPE=hidden NAME=identification
VALUE="+url['op56']+"><INPUT TYPE=hidden NAME=counter
VALUE="+url['nr93']+">");

</script>

What is the highest level of education you have completed?

<select name="education">

<option value="0" selected>Choose from this list

<option value="1"> Less than 12 years

<option value="2"> Graduated High School (12 years education)

<option value="3"> Some College (13-15 years education)

<option value="4"> Graduated from College (Bachelor's degree)

<option value="5"> Master's degree

<option value="6"> Doctoral Degree (Ph.D., M.D., J.D., etc.)

</select>

<input type="submit" value="Go to last page">

</form></body></html>

Listing 4: sample3.htm

<html><head><title>Survey Page 3</title></head><body>

<form method="post" action="http://www.goeritz.net/brmic/generic.php">

<script language="JavaScript" type="text/javascript">

var qs = location.search.substring(1);

var nv = qs.split('&');

var url = new Object();

for(i = 0; i < nv.length; i++)

{eq = nv[i].indexOf('=');

url[nv[i].substring(0,eq).toLowerCase()] = unescape(nv[i].substring(eq
+ 1)); }

document.write("<INPUT TYPE=hidden NAME=identification
VALUE="+url['op56']+"><INPUT TYPE=hidden NAME=counter
VALUE="+url['nr93']+">");

</script>

Enter your comments here:

<textarea name="comment" cols="21" rows="4"></textarea>

<input type="submit" value="Submit questionnaire">

</form></body></html>

Listing 5: sample1a.htm

<html><head><title>Survey Page 1</title>

<script language="JavaScript" type="text/javascript">

function branch()

{document.form1.next_page.value = 'sampleextra.htm';}

</script>

</head>

<body>Please answer the following questions:

<form name="form1" method="post"
action="http://www.goeritz.net/brmic/generic.php">

<input type="hidden" name="next_page" value="sample2.htm">

How old are you? <input type="text" name="age" size="2" maxlength="3">

What is your sex?

<input type="radio" name="sex" value="1" onClick="branch()">female

<input type="radio" name="sex" value="2">male

<input type="submit" value="Go to next page">

</form></body></html>
Figure Captions

Figure 1. Browser view of example one-page HTML form sample.htm.

Figure 2. Browser view of example HTML form sample1.htm.

Figure 3. Browser view of example HTML form sample2.htm.

Figure 4. Browser view of example HTML form sample3.htm.

Figure 5. Example table with results from three-page survey.

Figure 1.

[image: image1.png]~18lx|

Fe E Vow Favomes Tods teb [
P [T —— =l

Please answer the following questions

How old are you?

What is your sex?
© female
€ male

What i the highest level of education you have completed?

Choose from this list -

Enter your comments here

!

Submit Questionnaire

Figure 2.

[image: image2.png]=lolx|

A survey Page 1
Fie ek vew Favortes Took relp

s [. otz et frmczampes. i

Please answer the following questions

How old are you?

What is your sex?
© female
€ male

Go tonext page

Figure 3.

[image: image3.png]=10

Tt Ven Fovates Tods reb |

L T —— =l

What i the highest level of education you have completed?

Choose from this list <]
Goto last page

Figure 4.

[image: image4.png]Bl

Fle Edt View Favortes Took Help

s [t otz e i =

Enter your comments here

|
Subrrit questionnaire -

Figure 5.

[image: image5.png](B MySqL Control Center 0.9.4-beta =lofx|
Console Options HotKeys Window Help

ide| pagel| patic| tio_submil] ip| bio] page2| og] sd paged] time_submi2| ed] _time submi3| cona
1 [e OGS TT505 T ol gonen2l 2 [T [goreies 12802 T [T0% fmocar
| 2w st 1783 SHET Mo g0 78 [T lgeneicn 17283 5 (172383 Temiy
S| 3 e S0608 92552 GHS ol g0 67 |2 lgenericn 152855 |1 (192857
| e i SE0k08 2030Ts LMo gee2f |1 gereics 21302 (3 (213028
.
R T

TJhaperanz paged

[kariers time_submi2

| kariers2004 oducalion

1 lerevaluation time_subi3

lehrevaluston_minecia

o conment

Emy‘w\

KT

= |4 [Lehrevaluation] Querying MySGL Server for Database Information.
J | [Lehrevaluation] Queying MySOL Server for Table information in database: generic
‘

Footnotes
� JavaScript is a client-side scripting language. Details on JavaScript randomisation are beyond the scope of this article; more information can be found at http://psych.fullerton.edu/mbirnbaum/brmic/. In addition, there are plenty of free JavaScript snippets for this purpose available for download on the WWW.

� If a participant alters bits of the query string in "opt56=XY&nr93=XY" by hand he or she can neither access other participants' data nor is the functioning of the script impaired. The reason being that the JavaScript snippet in the called up page extracts the information from the query string before any participant might fumble with it.

� If a respondent has JavaScript disabled, for each page of a multiple-page study, a new record is added to the database, rather than the respondent's entire session written in only one line. With the help of the data that supplement each record (i.e., URL of the survey page, date, time, IP address, and browser) a researcher can re-construct these sessions after data collection is over, that is, he or she can manually merge the different lines for the same person into one line. Most of the (somewhat varying) statistics on JavaScript support indicate that 1 to 10% of Web users have JavaScript disabled.

� This procedure has to be repeated for each new survey project, as the HTML input fields used are probably different.

