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In recent years, investigators studying decision making have reached a con-
sensus that Subjective Expected Utility (SEU) theory (Savage, 1954) is not
descriptive of empirical choices, and that a generalization of the SEU model
is required to account for human behavior (Birnbaum, 1992; Edwards, 1992;
Luce, 1992; Lopes, 1990; Stevenson, Busemeyer, & Naylor, 1991; Tversky &
Kahneman, 1992). Several models have been proposed in which the weight of
an outcome depends (at least in part) on the rank of the outcome among the
other possible outcomes of a gamble, as well as the outcome’s probability.
Although these new theories can make the same predictions in certain experi-
ments, they are distinct and make different predictions in experiments crafted
to test between them.

This paper examines two properties of decision behavior and analyzes them
with respect to different models of decision making. The first property is a
weaker form of Savage’s “sure thing” axiom called branch independence. The
second property, distribution independence, is implied by the configural weight
model of Birnbaum and Mclntosh (1996) and original prospect theory (Kahne-
man & Tversky, 1979), but can be violated in cumulative prospect theory (Tver-
sky & Kahneman, 1992; Luce & Fishburn, 1991, 1995) and Birnbaum and
Stegner’s (1979) configural weight model.

Recent experiments with judgments and choices among three-outcome gam-
bles found evidence of systematic violations of branch independence. Let (X, p;
Y, q; z, r) represent a three-outcome gamble, in which the probabilities of
receivingx,y,orzarep,q,andr =1 — p — g, respectively. Branch independence
requires that (x, p; v, q; z, r) is preferred to (X', p'; y', 4'; z, r) if and only if (x,
p, Y, q;z', r)is preferred to (x', p’,y', d’; Z', r). Figure 1 illustrates the property

FIG. 1. Branch independence in three-outcome gambles: S is preferred to R if and only if S’
is preferred to R’. Note that removing the common branch (z, r) or (z’, r) leaves the same contrast
in both cases.
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of branch independence, S > R if and only if S’ > R’, where > is the preference
relation. Figure 1 illustrates that the outcome (z) on the common branch (z, r)
can be changed to (z’, r) without changing the preference order.

Birnbaum and Mclntosh (1996) found systematic violations of branch inde-
pendence in choices between gambles with three equally likely outcomes, de-
noted (X, y, z). Birnbaum and Mclntosh (1996) found that the majority of people
chose ($2, $40, $44) over ($2, $10, $98); however, the majority chose ($10, $98,
$108) over ($40, $44, $108). This pattern of violation of branch independence
was repeated with other sets of outcomes, it was representative of the results
with different outcome values, and it was descriptive of individual judges’ data
as well as group proportions.

Because branch independence is weaker than Savage’s “sure thing” axiom,
violations observed by Birnbaum and Mclntosh (1996) also violate Savage’s
(1954) axiom. Violations indicate that choices are not consistent with Expected
Utility theory (EU), or Subjective Expected Utility (SEU) theory (Savage, 1954).
They also are inconsistent with Subjectively Weighted Utility (SWU) theories
(Edwards, 1954; Karmarkar, 1978; Viscusi, 1989). For example, suppose SWU
=2 S(p;)u(x;). SWU implies branch independence for three outcome gambles,
as in Figure 1, when all of the outcomes are distinct. Proof: SWU(S) > SWU(R)
if and only if S(p)u(x) + S(q)u(y) + S(Nu(z) > S(p ) u(x’) + S(@Huly’) + S(Nu(z);
subtracting S(r)u(z) from both sides and adding S(r)u(z’) to both sides, we have,
S(p)u(x) + S(q)uly) + S(Nu(z’) > S(pHu(x’) + S(qHu(y’) + S(rNu(z"); this relation
holds if and only if SWU(S') > SWU(R’).

Systematic violations of branch independence in Birnbaum and Mclntosh
(1996) are also inconsistent with the theory that judges consistently cancel
common components when choosing between gambles (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992). If common branches were “trimmed,” before
comparison, there should be no systematic violations of independence. Note
that in Fig. 1, removing the common branches leaves the same comparison in
both cases.

The pattern of violations observed in these studies is opposite that implied by
the inverse-S decumulative weighting function used by Tversky and Kahneman
(1992) to fit certainty equivalents of binary gambles. Wu and Gonzalez (1996)
concluded that cumulative prospect theory implies an inverse-S decumulative
weighting function to explain choices between two- and three-outcome gambles.
Whereas Tversky and Kahneman (1992) had used parametric assumptions to fit
their cumulative weighting function, the technique of Wu and Gonzalez (1996)
estimates the curvature of the weighting function without such assumptions.

Similar violations of branch independence were obtained with judgments of
buying prices and selling prices of gambles composed of two, three, and four
equally likely outcomes (Birnbaum & Beeghley, 1997; Birnbaum & Veira, in
press). These results were fit by the theory that the utility function is invariant
of task (judgment versus choice), and that configural weights depend on the
task and the judge’s point of view (Birnbaum, 1997; Birnbaum, Coffey, Mel-
lers, & Weiss, 1992; Birnbaum & Sutton, 1992). Point of view refers to instruc-
tions, such as those to identify with the buyer or seller, that asymmetrically
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affect the costs of judgment or decision errors (Birnbaum and Stegner, 1979).
The fact that the same pattern of violations of branch independence is observed
in both judgment and choice suggests that violations are not due to a process,
such as editing, that would be specific to choice and not judgment.

The experiments of Birnbaum and Mclntosh (1996), Birnbaum and Beeghley
(1997) and Birnbaum and Veira (in press), which showed substantial violations
of branch independence, all used gambles in which the outcomes are equally
likely, and probability was not explicitly stated on each trial. Experiments
by Wakker et al. (1994) and Weber and Kirsner (1997), which found smaller
violations, used gambles in which the probabilities were made explicit.

Itis possible that with explicitly stated probabilities, judges might conform to
branch independence or to violate it in the manner consistent with the inverse-
S cumulative weighting function. Therefore, this study replicates and extends
previous research by investigating violations of branch independence with three-
and four-outcome gambles in which probabilities are explicitly displayed.

This study also investigates a previously untested implication of the
weighting function used in cumulative prospect theory for a paradigm in which
judges choose between pairs of gambles in which two intermediate outcomes
have fixed probability, but the probabilities of extreme outcomes are changed, in
order to vary the decumulative probabilities of the outcomes. This distribution
independence paradigm, described in a later section, allows us to test whether
the configural weight of an outcome depends purely on the rank of the value of
that outcome and that outcome’s probability, or if it depends on the cumulative
probability of the outcome, as postulated by cumulative prospect theory.

In the next section, we analyze violations of branch independence in four-
outcome gambles; in a following section, we analyze our new distribution inde-
pendence paradigm. Two main theories are contrasted, Cumulative Prospect
Theory (with various special cases of weighting functions), and the configural
weight models of Birnbaum and Mclntosh (1996) and Birnbaum and Stegner
(1979). An experiment is presented to test branch independence and distribu-
tion independence.

THEORETICAL ANALYSIS

It is useful to analyze the present experiment with respect to a generic, rank-
dependent configural weight model, of which the models to be compared are
(in this experiment) special cases. This generic model allows the weight of an
outcome to depend on the outcome’s probability, the outcome’s rank, and the
distribution of probabilities in the gamble. It will be assumed that when the
number of distinct outcomes and the probability distributions are the same
in two gambles being compared, that common branches with common ranks
(comonotonic, probability-event-outcome combinations) will have the same
value in both gambles and can therefore be subtracted off of both sides of
a comparison and replaced with another common branch of the same rank
and probability.
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Let(X,p;V.q;z,r;v,1—p — g — r) represent a four-outcome gamble with
nonzero probabilitiesof p,q,r,and 1 — p — q — rtowin x, y, z, or v, respectively.
In this experiment, the probability mechanism is described to the judges as
follows: There is an urn containing 100 slips of paper, which are otherwise
identical, except 100p of the slips have the value of x printed on them; 100q
have y; 100r have z; and the rest have v printed on them. The slips will be
thoroughly mixed, and the prize will be determined by the amount written on
the slip drawn randomly from the urn.

Branch Independence

Let > represent a preference relation between gambles. The property of
branch independence that will be tested in this experiment is defined as follows:

xpy,gzrvl-p-q-nN>KX,piy,dizrnvl-p —q —r)
if and only if Q)
xpygz,nv,1-p-q-n>Kx,piy,q:z,nv,1-p' —q —r),

where p + q = p’ + g'. This property assumes that the trade-off between (x,
p; ¥, q) and (X', p’; y', q') should be independent of the outcomes of branches
common to both gambles being compared, which have the same probabilities
in all cases.

In this study, we test branch independence with four-outcome gambles with
four equal probabilitiess(p=p'=q=q9'=r=1-p —q — r = 1/4), and we
also test it with three-outcome gambles, combining the outcomes z and v(p =
p' =q=q' = 1/4, r = 1/2). Figure 2 illustrates a test of branch independence
with four-outcome gambles. Note that the two lowest outcomes are changed
from lowest (z, v) to highest (z’, v’), and if these branches were removed, the
contrast between the gambles would be the same [(X, y) versus (X', y')].
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FIG. 2. Atestof branch independence with four equally likely outcomes. Bars depict probabili-
ties of outcomes; common outcomes are shown as shaded bars.
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Generic Rank-Dependent Utility

The Generic Rank-Dependent Utility (U(G)) for such four-outcome gambles
can be written as follows:

U(x, .25;y, .25; z', .25; v', .25) =

WLU(X) + Wy u(y) + wypu(z') + wyu(v') 2

where 0 < x <y <z’ < V’; u(x) is the utility function; wy, Wy, Wy, and wy
are the relative, configural weights of the Lowest, Medium-Low, Medium-High,
and Highest outcomes (at equal probabilities of 4), respectively, which are
assumed to be non-negative. We term Eq. (2) generic because it imposes no
other restrictions on the weights, and thus does not distinguish configural
weight models from cumulative prospect models.

Variations of this generic model have been analyzed in a number of papers
(Birnbaum, 1974, 1982, 1992, 1997; Birnbaum & Jou, 1990; Birnbaum & Steg-
ner, 1979, 1981; Birnbaum & Sotoodeh, 1991; Birnbaum & Zimmermann, sub-
mitted; Champagne & Stevenson, 1994; Lopes, 1990; Luce, 1992, 1996; Luce &
Fishburn, 1991, 1995; Miyamoto, 1989; Quiggin, 1982; Starmer & Sugden,
1989; Tversky & Kahneman, 1992; Wakker, Erev, & Weber, 1994; Wakker &
Tversky, 1993; Weber, 1994; Wu & Gonzalez, 1996). This experiment will com-
pare some of these models that make different predictions for tests of branch
independence and distribution independence.

In a choice between two of such gambles, assume that the judge chooses the
gamble with the higher U(G). For example, consider the following preference re-
lation,

S’ = (x, .25y, .25; z’, .25; v', .25) > R' = (X, .25; V', .25; 7/, .25; V', .25).
This relation (S’ > R’) holds if and only if
u(x, .25;y, .25; z/, .25; v’, .25) > U(x’, .25;y’, .25; z’, .25; v, .25).
From Eg. (2), this is equivalent to

wiu(x) + wyuy) + wynu(z') + wyu(v') >
wiu(x") + wpu(y’) + wppu(z') + whu(v').
Because the ranks of z' and v’ and the probability distributions are the same
on both sides of the inequality, we assume that terms for the common branches
can be subtracted from both sides, leaving,

WLU(X) + Wy u(y) > wiu(x') + wyu(y’).

Rearranging, S’ > R’ according to Eqg. (2) implies:
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WL u(y’) — u(y)
Wne  U(x) — u(x’)

By repeating the above derivations for different cases, it can be shown that
Equation 2 allows violations of branch independence (Birnbaum & Mclntosh,
1996). Select outcomes suchthat 0 <z <v <X <x<y <y <z <V, as
illustrated in Fig. 2. Gambles containing the small range pair (x, y) will be
referred to as S or S’ and gambles containing the wide range pair (x', y’) will
be termed R or R’. Equation (2) implies the following, SR’, pattern of violations
of branch independence,

(x, .25;y, .25; z, .25;v, .25) = S > R = (x/, .25;¥’, .25; z, .25; v, .25)
and (3a)
(x, .25;y, .25; z', .25; v', .25) = S' < R’ = (x/, .25; ¥, .25; Z/, .25; V', .25)

if and only if

Wpn uy’) —u(y) . W
Wi UG — U)W (3)

The opposite pattern of violations of branch independence, RS’,

(x, .25;y, .25; z, .25; v, .25) = S < R = (x/, .25;y’, .25; z, .25; v, .25)
and (4a)
(x, .25;y, .25; z', .25; v’ .25) = S' > R’ = (X', .25;¥’, .25; 2, .25; V', .25)

occurs if and only if

WpH _ u(y’) —uly) _ W
W u(x) — u(x’)  ww

(4b)

Expressions (3b) and (4b) show that if the ratios of weights were equal, there
would be no violations of branch independence when common outcomes are
changed from lowest to highest. Because EU, SEU, and SWU theories assume
thatweightsare independentof rank, these ratioswill all be 1 when the probabili-
ties of these distinct outcomes are all equal, and therefore, such nonconfigural
theories imply no violations of branch independence in this experiment.

The experimental tactic introduced by Birnbaum and Mclntosh (1996) is to
vary both the values of the contrast, (x, y) versus (x’, y'), and the common
outcomes, creating a factorial “fishnet” in which violations implied by Expres-
sions (3b) and (4b) might be “caught.” To observe a violation in a finite experi-
ment, it is necessary to use values of the outcomes such that the ratio of
differences of utility is “straddled” by the ratios of weights, as in Expressions
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(3b) or (4b). Table 1 lists the values of (X, y) and (X', y') used in the present
experiment. Four examples of utility functions are also listed in Table 1 to
illustrate the impact of u(x) on the predictions.

Cumulative Prospect Model: Predicted Violations of Branch Independence

The cumulative prospect theory (CPT) of Tversky and Kahneman (1992) is
a rank- and sign-dependent utility theory, whose representation is the same
as that of Luce and Fishburn (1991, 1995). Wakker and Tversky (1993) derived
the CPT representation from the assumption of comonotonic independence,
whereas Luce and Fishburn (1991, 1995) derived the same representation from
a theory of joint receipts. Starmer and Sugden (1989) had noted that the rank-
dependent approach of Quiggin (1982) could be generalized and incorporated
into the original prospect theory of Kahneman and Tversky (1979), which is
what is done in CPT.

In CPT, outcomes are ranked in decreasing value, X; > X, > Xz > ..., S0 i
is the decumulative rank of the outcome; weights of the outcomes are then
assumed to follow the expression,

w(i) = W(Pi) — W(Pi-1), (5a)

where w(i) is the weight of outcome, x;; P; is the (decumulative) probability
that an outcome is greater than or equal to x; given the gamble, and P;_; is
the probability that the outcome is strictly greater than x; (probability that
the outcome is = to the next higher value, x;_;). W(P) is a strictly increasing
monotonic function such that W(0) = 0 and W(1) = 1.

TABLE 1
Generic Analysis of Violations of Branch Independence and Distribution
Independence
Contrast S versus R Utility function
Row %, y) ',y u) = x u(x) = x u(x) = x*° u(x) = log x
1 (52, 56) (11, 97) 1.00 .89 .61 .35
2 (50, 54) (10, 98) 1.10 .97 .65 .37
3 (45, 49) (11, 97) 141 1.25 .84 48
4 (40, 44) (10, 98) 1.80 1.58 1.03 .58
5 (35, 39) (11, 97) 2.42 212 1.39 79
6 (30, 34) (12, 96) 3.44 3.01 197 1.13

Note. Entries in the last four columns show ratios of differences in utility: [u(y’) — u(y)l/
[u(x) — u(x")]. According to Eq. (2), branch independence will be violated between the cases in
which (z, v) are smallest or largest when the ratios of successive weights “straddle” the ratios
specified by the experiment and the utility function. For example, if u(x) = x, then S = (z, v, $40,
$44) will be preferred over R = (z, v, $10, $98), when z, v < $10 and S’ = ($10, $98, z’, v') will
be preferred over R’ = ($40, $44, z’, v') when z’, v/ > $100 if w /wy, < 1.8 < wyn/wy. The inverse-
S weighting function assumes that extreme stimuli have greater weight, so w /wy, > 1 > wyy/
Wy, therefore, it implies the opposite pattern of violations of branch independence.
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For four-outcome gambles, the inverse-S cumulative prospect model is a
special case of Eq. (2) constrained to follow Eq. (5a) and also assumed to follow
a particular weighting function. The decumulative weighting function fit by
Tversky and Kahneman (1992) in their model is as follows:

pY
[P + (1 — Py

W(P) = (5b)

where v is the parameter of the weighting function, estimated to be .61. This
model implies an inverse-S relationship between W(P) and P, when y < 1, as
shown by the curve in Fig. 3.

In this paper, we will refer to Eq. (5b) as part of the cumulative prospect
model, to maintain a distinction between such a weighting function and the
more general cumulative prospect theory, which allows any strictly increasing
W(P) function in Eq. (5a) where W(0) = 0 and W(1) = 1.

For the general version with any W(P), the highest of four equally likely
positive outcomes has a weight, wy = W(1/4). For the medium-high outcome
in this set, wyy = W(2/4) — W(1/4); the weight of the medium-low outcome is
Wy = W(3/4) — W(2/4); the lowest outcome has a weight of w, = 1 — W(3/4).

For the function illustrated in Fig. 3, with y = .61, the weights of four equally
likely outcomes according to Eqgs. (5a) and (5b) (the vertical gaps in Fig. 3),
are .43, .15, .13, and .29, for wi, Wy, Wny, and wy, respectively, giving ratios
of w /wpy = 2.93 > wyu/wy = .45. These ratios straddle the ratios of differences
in utility in Table 1 for the utility function fit by Tversky and Kahneman
(1992), u(x) = x®8, in all rows except the last. Therefore, judges should prefer
the wide range pair R = (X', y’) over the narrow range pair S = (x, y) when
the common outcomes are lowest, and they should have the opposite preference
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_ i Weights of Outcomes
‘3:, 0.8 WL, ]
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g i
= 0.6 -
Q
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FIG. 3. Weighting function used in the inverse-S model of cumulative prospect theory. Weights
are given by vertical differences between values of W(P), where P is the decumulative probability
that the outcome is x or higher. Weights of four equally likely outcomes (each with probability =
1/4) have the property that w_ > wy,and wy > wyy; therefore, wi /wy > 1 > wyu/wy.
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when the common outcomes are the highest (i.e., S" > R’), as in Expressions
(4a) and (4b), in the first five rows of Table 1. They should prefer R > S and
R’ > S’ in the last row.

Other forms for W(P) have been suggested. Luce and Fishburn (1995) sug-
gested a power function for W(P), which follows from their theory of joint
receipts and the assumption that a gamble with more than two outcomes can
be thought of as a binary gamble with one outcome as one consequence and a
re-normalized gamble on the other outcomes as the other consequence. This
implication also follows from any separable theory in which a compound of two
independent binary gambles can be represented with the (“rational”) product
of the probabilities [i.e., suppose U(x, p, 0) = W(p)u(x) and U{(x, p, 0) g, 0} ~
U(x, pg, 0)]. The term Power-Cumulative Prospect Theory (P-CPT) refers to the
assumptions of Eq. (2), Eq. (5a), and the following weighting function:

W(P) = P, (5¢)

where v is the exponent of the power function. This P-CPT requires that the
weights of equally likely outcomes should be a monotonic function of their
ranks. It can imply SR’ or RS’ patterns of violation, Expressions (3a—b) or
(4a-b), when v > 1 or y < 1, respectively.

A two-parameter form for W(P) that can describe a family of S and inverse-
S shapes can be written as follows:

cPY

VO =T ey

(5d)

where c is a constant that reflects the relative weight of higher versus lower-
valued outcomes, and vy characterizes the shape of the W(P) curve. When ¢ =
1, W(P) has an inverse-S shape for y < 1, is linear for y = 1, and has an S
shape when y > 1.

The parameter, c, can be interpreted as an index of risk seeking versus risk
aversion. Note that W(1/2) = c/(c + 1) for any v, so c translates directly into
the weight of a higher outcome of probability 1/2. When ¢ = 1, W(1/2) = 1/2;
whenc < 1lorc>1, W(1/2) < 1/2 or W(1/2) > 1/2, respectively. [It is important
to distinguish the explanation of “risk aversion” as due to weights as opposed
to “risk aversion” due to curvature of the utility function. This issue is explored
in greater detail in Birnbaum and Sutton (1992) and Birnbaum et al. (1992).]

We use the term Inverse-S Cumulative Prospect Theory to refer to Eq. (5a),
with any weighting function, such as that in Fig. 3, that is “flatter in the
middle,” such that wy, < w; and wyy < wy. It follows that, w, /wy,_ > 1, and
1 > wyn/wy; therefore, such a function implies the preference order RS’, by
Expressions (4a—b). Tversky and Wakker (1995) and Tversky and Fox (1995)
used the term “S-shaped” for the function in Fig. 3, which we call “inverse-S”;
apparently, they did not consider the possibility that data would soon require
a distinction between the “S” and “inverse-S” forms.

Thus, the implications of the particular inverse-S curve of Eq. (5b) also holds
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for other equations (such as Eq. (5d) with y < 1) with these same properties
(e.g., Tversky & Fox, 1995; Tversky & Wakker, 1995; Prelec, 1995; Wu &
Gonzalez, 1996). The term, Inverse-S Cumulative Prospect Theory (IS-CPT)
refers to Eq. (2), Eq. (5a) and the assumptions that wy, < w, and wyy < Wy.
The term, S-Cumulative Prospect Theory (S-CPT) refers to Eq. (2), Eq. (5a),
and the opposite shape weighting function, such that wy,. > w_ and wyy >
wy. Expression (5d) with v > 1 can follow such an S shape.

Birnbaum and Mclntosh (1996) found the opposite pattern from that pre-
dicted by IS-CPT. Birnbaum and Mclntosh (1996) also showed that the empiri-
cal inverse-S relationship between certainty equivalents of two-outcome gam-
bles and probability (the data used by Tversky and Kahneman, 1992, to fit
their W(P) curve) can be interpreted as a consequence of a configural weighting
function that does not obey Eq. (5a).

With binary gambles, as used by Tversky and Kahneman (1992), Eq. (5b)
can be fit if u(x) is known, but Eq. (5a) remains untested. Wu and Gonzalez
(1996) confirmed the inverse-S weighting function using a procedure that allows
estimation of the weighting function without assuming the form of u(x). How-
ever, their procedure also assumes but does not test Eq. (5a).

Thus, the data and theory of Birnbaum and Mclntosh (1996) are inconsistent
with the weighting function of Tversky and Kahneman (1992); on the other hand,
the model of Birnbaum and Mclntosh can fit the data of Tversky and Kahneman
(1992) as well as the data of Wu and Gonzalez (1996), which had been interpreted
as consistent with the inverse-S cumulative weighting function.

Configural Weight Model: Opposite Violations of Branch Independence

Birnbaum and Mclntosh (1996) noted that the following model yields predic-
tions that are nearly identical to those of Tversky and Kahneman (1992) for
binary gambles (x >y = 0):

Ux, p; Y, 1 — p) = wnu(x) + wiu(y) (6a)
where
_ ayS(p)
T ars(p) + asT - p) (©0)
and
a Sl —p) -1 - wy (6¢)

W =
Y auS(p) + a S — p)

where a, = (1 — ay) = .63; u(x) = x for 0 = x = $150; and S(p) = p®. Note
that Expression 6a is simply a weighted average of the utilities in which the
relative weights (in Expression 6b and 6¢) sum to 1. The relative weights in
Egs. (6b) and (6¢) include a transformation of probability and a configural
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weight parameter, a,, (that depends on the judge’s point of view, as postulated
by Birnbaum and Stegner (1979; see also Birnbaum et al., 1992). For three or
more outcomes, the S(p) function is assumed to be invariant, and only the
configural weights differ. Each relative weight is always the ratio of the product
of a configural weight and S(p), divided by the sum of these products for all
outcomes in the gamble.

Equations (6a—c) can be derived from the assumption that judges minimize
an asymmetric loss function (Birnbaum et al., 1992, Eq. (6)), allowing also a
nonlinear psychophysical function for probability, S(p) and S(1 — p). Note also
that Eq. (5d) is a special case of Eq. (6b), where S(p) is a power function. The
value of a_ = .63 agrees with two other studies of binary gambles: “neutral’s”
prices for two positive outcomes (Birnbaum et al., 1992) and judged strengths
of preference between gambles composed of two equally likely positive outcomes
(Birnbaum, Thompson, & Bean, 1997), as well as the median certainty equiva-
lents reported in Tversky and Kahneman (1992).

Birnbaum and Mclntosh (1996) estimated configural weight parameters for
three equally likely outcomes in the equation, U(X, y, z) = w, u(X) + wpyu(y) +
whu(z), where 0 < x <y < z. The configural weights were .51, .33, and .16 for
a,, au, and ay, respectively, for lowest, middle, and highest, which are the
same as the relative weights in the case of equally likely outcomes. These
values have ratios close to the ranks of the outcomes (3:2:1 with 1 = highest
rank and 3 = lowest), so extrapolating to four outcomes, one might conjecture
that relative weights of four equally likely outcomes would be .4, .3, .2, and .1,
respectively, proportional to their ranks.

The configural-weight model of Birnbaum and Mclntosh (1996) yields predic-
tions for two-outcome gambles that are virtually identical to those of Tversky and
Kahneman (1992). It also describes the pattern of results observed by Wu and
Gonzalez (1996). However, the configural weight model makes quite different
predictions for violations of branch independence and distribution independence
in three- and four-outcome gambles. For branch independence, weights with ratios
4:3:2:1 imply Expressions 3a and 3b, opposite the predictions of the IS-CPT. The
Birnbaum and Mclntosh (1996) model also implies distribution independence,
unlike cumulative prospect theory, as shown in the next section.

Distribution Independence

The property of distribution independence that will be tested in this experi-
ment can be defined as follows:

S=xp;yaz,rnv,1-p—-g-nN>R=,py,.q;zrvl—-p—qg-—r
if and only if @)
S=pyagzrvli-p-q-r)>R =X,py,qzr;v,1-p-q-r')

As distinguished from branch independence, distribution independence asserts
that the trade-off between (x, p; y, q) and (X', p; y’, q) should be independent
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of the probability distribution of the common branches (r versus r’), though it
would certainly depend on p and q.

Figure 4 illustrates distribution independence. Note that the outcomes on
the common branches are the same, but their probabilities differ in the two
choices; whereas in branch independence (Fig. 2) the probabilities of the com-
mon outcomes are the same, and the outcome values differ. In this paper,
we will test distribution independence with equal probabilities, p = q = .2,
sandwiched between two common components that vary in their probabilities,
as depicted in Fig. 4.

For this test, we select outcomes suchthat 0 <z <x' <x <y <y <y, as
illustrated in Fig. 4. The gambles compared will be of the form:

S=(zrnX%.2,y,.2;v,.6 —r)versusR = (z, r; X', .2, ¥y, .2;V,.6 — 1),

where S contains the small range pair (X, y), and R contains the large range
pair (x', y'); furthermore, r = .59, .55, .05, or .01. According to the generic rank-
dependent model, for example,
(z, .B5; %, .2;y,.2;v,.05) =S >R = (z, .55; X/, .2; ¥y, .2; v, .05)
if and only if (8a)

wu(z) + wyu(X) + wynu(y) + wyu(v) >
WLU(Z) + Wy u(X') + wypu(y') + wyu(v),

where wi, Wy, Wy, and wy, are the relative, configural weights of the Lowest,
Medium-Low, Medium-High, and Highest outcomes at probabilities of .55, .2,
.2, and .05, respectively (note that these weights will not have the same values
as in Eq. (2) with equal probabilities). Because the distributions of probability
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FIG. 4. A test of distribution independence: S is preferred to R if and only if S’ is preferred
to R’. Bars represent probabilities of outcomes; note that probabilities of common outcomes (z, v)
are the same within each comparison but are different between comparisons of S versus R and
S’ versus R'. Stripping away the common outcomes (shown with shaded probabilities) would leave
the same contrast in both cases, between (x, y) and (X', y’).
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and the ranks of common outcomes are the same on both sides, it is assumed
that we can subtract the products for the common branches, leaving,
WnLU(X) + Wynu(y) > Wy u(X') + wnu(y’)

which implies

Wi u(y’) — u(y)
Wyn  U(X) — u(x’)

(8b)

Expression (8b) indicates that if the ratio of weights of the two components
(whose probabilities are fixed) is independent of the distribution, and if the
utilities are also independent of the distribution, then the preference will be
independent of the distribution. However, if wy,, and wy, depend on the config-
uration of probabilities in the common branches (r or r’), then the ratio on the
left could change, which can change the direction of preference for some values
of (x, y) and (X', y’').

Cumulative Prospect Theory Implies Violations of Distribution
Independence

The weighting function of Tversky and Kahneman (1992) implies changes
in weights as a function of the distribution of probabilities on the common
branches, as illustrated in Figs. 5 and 6; therefore, it predicts violations of
distribution independence. Figure 5 shows that when the lowest outcome has
a probability of .55, (as in the S versus R comparison in Fig. 4), the medium-
high outcome will have more weight than the medium low, wyy > Wy ; however,

1.0 TT T T [T T T T [TRATT T[T TTT
R Weights of
& 08K Outcomes
= WMH > WML
g
= 0.6
Q
=
= L
S#
on 04 ..... —
20 0.
s L 7 ] WML i
20
%’ 02 WMH -
2 2 .55 ]
OO L1 F I A T

0.00 0.25 0.50 0.75 1.00

Decumulative Probability, P

FIG. 5. According to inverse-S weighting function of CPT, the weights of two equally-probable,
intermediate outcomes depend on the distribution of extreme outcomes. This figure illustrates the
weights for gambles of the form (z, .55; x, .2; y, .2; v, .05), including S and R of Fig. 4; in this case,
Wun > Wy The same relation holds for gambles of the form (z, .59; x, .2; vy, .2; v, .01).
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when the lowest outcome has a probability of .05, (as in the S’ versus R’
comparison in Fig. 4), Figure 6 illustrates how the weights change rank order,
wun < Wy Changes in preference order (violations of distribution indepen-
dence) are predicted whenever the change in the ratio of weights in Expression
8b causes them to “straddle” the ratio of differences in utility, as in Table 1.

For the particular parameters given in Tversky and Kahneman (y = .61,
u(x) = x®), the weights in Fig. 5 are .605, .105, .159, and .132 for w,, WL,
wwmh, and wy, respectively, corresponding to probabilities of .55, .2, .2, .05.
In Fig. 6, the weights are .207, .225, .121, and .447 for probabilities of .05,
.2, .2, .55, for w, Wm, Wwn, and wyy, respectively. Thus the ratio, wy /Wy,
changes from .66 in Fig. 5 to 1.86 in Fig. 6. These ratios straddle the ratios
of differences in utility in the first four rows of Table 1, assuming u(x) =
x88. The inverse-S CPT model therefore implies that judges should prefer
the riskier, wide range gamble (R) when the lowest outcome has the greatest
probability (either .55 or .59), and the judge should prefer the safer, small
range gamble (S’) when the lowest outcome has a small probability (when
the lowest outcome has probability .05 or .01), in the first four rows of
Table 1. In other words, IS-CPT implies the RS’ pattern of violations of
distribution independence, as follows:

(z, .55; %, .2y, .2;v,.05) =S <R = (z, .55, x, .2y, .2; v, .05)
and 9)
(z, .05; x, .2;y,.2; v, .55) = S' > R' = (z, .05; X', .2; ¥, .2; v, .55)

Thus, the cumulative assumption (Eg. (5a)) implies that the preference order
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=
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0.00 0.25 0.50 0.75 1.00
Decumulative Probability, P

FIG.6. According to the inverse-S weighting function, the weights of the intermediate outcomes
will have the opposite order from Fig. 5, wyy < Wy, in gambles of the form (z, .05; x, .2;y, .2; v,
.55). The same relation is implied for gambles of the form (z, .01; x, .2; y, .2; v, .59). Figs. 5 and 6
show that the inverse-S weighting function implies violations of the pattern, R > Sand S’ > R,
for tests such as that illustrated in Fig. 4.
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can be changed by changing the position of fixed outcomes in the cumulative
distribution, which is done by changing the probability distribution of the com-
mon outcomes. The opposite pattern of violations would be implied by Eq. (5a),
if the W(P) function followed an S-shape instead of the inverse-S function.

If judges edited the gambles being compared and cancelled common compo-
nents (Tversky, 1972; Kahneman & Tversky, 1979; Tversky & Kahneman,
1992), then there would be no systematic violations of either branch indepen-
dence or distribution independence. Note that in either Fig. 2 or Fig. 4, “trim-
ming” the common branches between S and R and between S’ and R’ leaves
the same comparison.

Birnbaum and MclIntosh Model: No Violations of Distribution Independence

The configural weight model of Birnbaum and Mclntosh (1996) implies no
violations of distribution independence (Birnbaum, 1997). [The “revised” config-
ural weight model of Birnbaum and Stegner (1979, Eq. 10) violates distribution
independence. This older model will be taken up in the next section.] In the
Birnbaum and Mclntosh (1996) model, absolute weights depend entirely on
the ranks of the outcomes and their probabilities. Although relative weights
depend on the probability distribution (affecting strengths of preference), ratios
of relative weights (as in Expression(8b)) will be independent of the probability
distribution. Therefore, the direction of preference should not be affected by
the distribution of probabilities of the common outcomes.

Distribution independence also holds for a more general configural weight
model in which the weight of an outcome is any positive-valued function of the
outcome’s probability and the rank of the outcome, w(i) = f(p;, k;), where f is the
function, p; is the probability and k; is the rank of outcome x;. In this model, the
rank of an outcome (k;) does not refer to its cumulative distribution value, but
instead to the rank of the outcome’s value among the distinct values within the
gamble, independent of their probabilities. For four-outcome gambles, these
wouldbe rank = 1, for the lowest outcome, up to rank = 4 for the highest. Suppose,

S=(@zZrx .2,y,.2,v,6 —rnN>R=(r;x,.2,y,.2,v,.6 —r) (10a)

This preference relation holds according to this configural weight model if and
only if

f(r, Du(z) + (.2, 2)u(x) + (.2, 3u(y) + f(.6 — r, Hu(v) <
f(r, 1) + f(.2,2) + f(.2,3) + f(6 — 1, 4)
f(r, Du(z) + (.2, 2ux’) + (.2, )u(y’) + (.6 — r, 4)u(v)
f(r,1) + f(.2,2) + f(.2,3) + f(6 — 1, 4)

(10b)

because the gambles have the same probability distribution, the denominators
on both sides are the same, and it is assumed that we can multiply both sides
by this common factor. Next, because the common terms hold the same ranks
in both gambles, we can subtract the common terms, f(r, 1)u(z) and f(.6 — r,
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A)u(v), from both sides. Then, add new common terms to both sides, f(r’, 1)u(z)
and f(.6 — r’, 4)u(v). We can divide both sides by the same factor, f(r’, 1) +
f(.2, 2) + (.2, 3) + f(.6 — r’, 4). The result then holds if and only if

S'=(@z1r;%.2,%,.2;v,6 —r)>R" =(z,r';X,.2,y,.2;v,.6 — 1),
(10c)

which shows that this configural weight model implies distribution indepen-
dence. The model of Birnbaum and Mclntosh (1996) is a special case of this
model in which the function, f, is the product of a function of probability and
a configural-weight parameter that depends on the outcome’s rank and point
of view, i.e., f(p;, ki) = ay(k;)S(p). Point of view is assumed to be fixed within
a given task and instructional set. Therefore, the Birnbaum and Mclntosh
(1996) model implies distribution independence in this experiment.

Original prospect theory (Kahneman & Tversky, 1979) was not explicated
for the case of four-outcome gambles, but its representation can be extended
along the lines suggested in Tversky and Kahneman (1986) to make an implica-
tion for the present experiment. The original theory differs from cumulative
prospect theory in that weights of outcomes are presumed to be a function of
the probabilities of the outcomes rather than computed from the functional of
Expression (5a). Extending the original prospect model to four-outcome gam-
bles (by assuming utility of a gamble to be the sum of weighted products of a
function of probability of the outcomes and a function of the outcomes), this
extension of original prospect theory would also imply no violations of distribu-
tion independence, because the common terms can be subtracted off both sides
and replaced by new common terms. Tversky and Kahneman (1986) also pro-
posed that judges will edit and cancel common terms, and this principle provides
a separate argument that also implies distribution independence. EU and SWU
theories also imply distribution independence.

Birnbaum and Stegner (1979) Model: Violations of Distribution
Independence

Birnbaum and Stegner (1979, Eq. 10) proposed a “revised” configural weight
model in which configural weights are transferred in proportion to the absolute
weight of the stimulus that loses weight. Consider gambles of the form, G =
(X1, P15 X2, P25+« - Xjy Pjs -+ - 5 Xiy Pis - + - 5 Xn, Pn), Where the outcomes are ordered
such that x; < x, < ==+ < x; < -+ X < **» < X,, and = p; = 1. This model can
be written as follows:

n n i-1
2 S(piu(xi) + 22 J;l (u(xi) — ul)e(i, j, G)

U@G) ="
] S(pi)

(11)

=]

where U(G) is the utility of the gamble, S(p) is a function of probability, u(x)
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is the utility function of money, and (i, j, G) is the configural transfer of weight
between outcomes x; and x;. Note that x; > x;, so if the configural term is
negative, then the higher-valued outcome loses weight and the lower valued
outcome gains this same weight.

Birnbaum and Stegner (1979) compared two versions of the above model,
one in which the configural weight transfer is independent of the sources’
absolute weights, and another in which the weight transferred is proportional
to the absolute weight of the stimulus losing weight (Birnbaum & Stegner, Eq.
10). These different versions of configural weighting are not distinguishable
for an experiment such as Birnbaum and Mclntosh (1996), where the outcomes
are equally likely, but they can be differentiated in the present experiment,
which varies the probabilities of the outcomes.

The latter model, where configural weight transferred is proportional to
the absolute weight of the stimulus losing weight, can be simplified by the
following assumption,

(i, j, G) = S(paw(j, n), if w(j, n) =0 (12a)
(i, j, G) = S(pyw(j, n), if w(j, n) >0, (12b)

where w(j, n) is a function of the rank of the item gaining weight (j) and the
number of distinct outcomes (n) in gamble, G; and w(j, n) < 0. Simplifying
further, if w(j, n) = —1/(n + 1), then the weights of two, three, and four equally
likely outcomes would be &, 3), € 4 3), and (.4, .3, .2, .1), for lowest to highest
outcomes, respectively, the same pattern as postulated above for the Birnbaum
and MclIntosh (1996) model. Equations (11) and (12) can be distinguished from
that model in the tests for violations of distribution independence, however.

For example, if S(p) = p, u(x) = x, and letting w(j, n) = —1/(n + 1), Equations
(11) and (12) imply the choice pattern SR’ for a test of distribution independence
in Row 3 of Table 1, as follows:

S = ($2, .55; $45, .2; $49, .2; $108, .05) > R = ($2, .55; $10, .2; $98, .2; $108, .05)
and
S’ = ($2, .05; $45, .2; $49, .2; $108, .55) < R’ = ($2, .05; $10, .2; $98, .2; $108, .55).

The values of utility in this case are U(S) = 13.8 > U(R) = 13.0 and U(S’) =
53.5 < U(R’) = 54.9. In this example, the weights of the outcomes, wi, Wy,
W, and wy, would be .64, .21, .13, and .01 for probabilities of .55, .2, .2, and
.05; and .24, .31, .27, and .22 for .05, .2, .2, and .55, respectively. Note that
Wy /Wywn = 1.61 in the first distribution (S versus R), and 1.15 in the second
(S’ versus R’), straddling the value in Table 1 for the third row, assuming
u(x) = x. Thus, this model implies the SR’ pattern with parameters that also
account for the SR’ pattern of violations of branch independence.

This model also violates asymptotic independence (Birnbaum, 1997), a prop-
erty that also distinguishes it from the differential weight averaging model
(Birnbaum, 1973; Riskey & Birnbaum, 1974).
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Summary of Predictions

Table 2 Summarizes the predictions of the various models. Except for EU
and SWU theories and the theory that judges edit and eliminate common
components from gambles before comparison, all of the theories considered
here can account for violations of branch independence. However, different
weighting functions imply different patterns of violations. The inverse-S
weighting function of CPT implies the opposite pattern from that predicted by
the parameters and model of Birnbaum and Mclntosh (1996) or comparable
parameters in the Birnbaum and Stegner (1979) model.

Distribution independence is implied by the Birnbaum and Mclntosh (1996)
model and the extension of original prospect theory (Kahneman & Tversky;,
1979). However, distribution independence should be violated in a fashion
predicted by the cumulative weighting function according to cumulative pros-
pect models. According to the cumulative prospect models, the pattern of viola-
tions of distribution independence follow from the cumulative weighting func-
tion and should be compatible with the pattern of violations of branch
independence. A similar connection is implied in the configural weight model
of Birnbaum and Stegner (1979).

METHOD

Instructions

Judges received printed instructions, which were also read aloud to them.
Instructions read (in part) as follows:

TABLE 2

Summary of Predictions of Models

Property tested

Model Branch independence Distribution independence
EU, SWU No violations No violations
Editing No violations No violations
OPT without editing Violations (?) No violations
Birnbaum-Mclntosh SR’ violations No violations
IS-CPT RS’ violations RS’ violations
P-CPT Violations depend on vy Violations depend on vy
S-CPT SR’ violations SR’ violations
Birnbaum-Stegner SR’ violations SR’ violations

Note. EU and SWU refer to Expected Utility theory and Subjectively Weighted Utility theory,
respectively. Editing refers to the theory that judges edit and eliminate common components prior
to comparison (Kahneman & Tversky, 1979). Original Prospect Theory (OPT), extended to four
outcomes, implies distribution independence; it is unclear how extended OPT violates branch
independence. Birnbaum—Mclntosh refers to Birnbaum and Mclntosh (1996) configural weight
model. IS-CPT refers to Inverse-S cumulative prospect theory; S-CPT refers to Cumulative Prospect
theory using an S-shaped W(P) function; P-CPT refers to cumulative prospect theory with a power
function for W(P); Birnbaum-Stegner refers to the “revised” configural weight model of Birnbaum
and Stegner (1979).
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... Oneach trial, you will be offered a comparison between two gambles. Your task is to decide
which of the two gambles you would prefer to play and to judge how much you would pay to
play your preferred gamble rather than the other gamble. . . .

Choices were presented as in the following example:

.34 .33 .33 .20 .25 .55

802 $5 $25 $100 $20 $40 $60

Would you prefer the gamble on the left (34 chances out of 100 to get $5, 33 chances to get
$25, and 33 chances to get $100) or the gamble on the right (20 chances to get $20, 25 chances
to get $40, and 55 chances to get $60)? .. ..

For each gamble, you can think of a can containing 100 identical slips of paper with different
amounts written on them. Since the slips are equally likely and one will be chosen at random,
the probability of each outcome is the number of slips with that outcome, divided by 100.
Each trial displays the probabilities and values of all possible outcomes for each gamble.
Probabilities will always sum to 1 in each gamble.

Judges circled the gamble they would prefer to play and then judged the
amount they would be willing to pay to receive their preferred gamble rather
than the other gamble. For purposes of data analysis, a negative sign was
associated with choice of the gamble on the left.

Designs

Branch independence design. The first subdesign consisted of 12 compari-
sons of the form (z, .25; v, .25; X, .25, v, .25) versus (z, .25; v, .25; X', .25;y’, .25),
constructed from a 6 by 2, (x, y) versus (X', y') by (z, v) or (z', v') factorial design,
as illustrated in Fig. 2. The six levels of (x, y) versus (x’, y') were as listed in
Table 1: ($52, $56) versus ($11, $97), ($50, $54) versus ($10, $98), ($45, $49)
versus ($11, $97), ($40, $44) versus ($10, $98), ($35, $39) versus ($11, $97),
($30, $34) versus ($12, $96), and the 2 levels of (z, v) or (z/, V') for the six
contrasts were ($2, $3) or ($108, $113), ($3, $4) or ($109, $112), ($2, $5) or
($110, $116), ($2, $3) or ($108, $119), ($4, $6) or ($107, $113), and ($5, $6) or
($111, $118), respectively.

Subdesign 2, testing branch independence with three-outcome gambles, con-
sisted of 12 comparisons of the form (z, .5; x, .25; vy, .25) versus (z, .5; X, .25;
y’, .25); constructed from a 6 by 2 (x, y) versus (x', y') by (z or z') factorial
design. The six levels of (X, y) versus (x’, y') were the same as in Subdesign 1,
and the 2 levels of z(z or z') for the six contrasts were ($2 or $108), ($4 or $107),
($3 or $109), ($5 or $111), ($6 or $113), ($4 or $108), respectively.

Distribution independence design. Subdesigns 3 and 4 consisted of 24
choices of two forms, S = (z, r; x, .2;y, .2;V, .6 —r)versusR = (z, r; X', .2; ¥y,
2;v,.6—r,andS =(z,.6 —r;x.2,y,.2;v,r)versus R = (z, .6 —r; X', .2;
y’', .2; v, r), constructed from a, 6 by 2 by 2, (x, y) versus (x’, y') by (z, v) by
comparison (S versus R or S’ versus R’), factorial design, where r = .59 or .55
in Subdesigns 3 and 4, respectively. The six levels of contrast, (X, y) versus
(x’, y"), were the same as in the branch independence designs, and the values
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of (z, v) for the contrasts were ($2, $108), ($3, $109), ($4, $110), ($5, $108), ($2,
$107), ($3, $111), respectively.

Filler design. There were 60 “filler” trials with choices between two-outcome
gambles in which there were no common branches, outcomes, or probabilities.
These trials were of the form (x, q; y, 1 — q) versus (X', p; y', 1 — p). Subdesign
5 consisted of 36 comparisons of the form ($55, .25; $59, .75) versus ($12, 1 —
p; $96, p), ($50, .35; $54, .65) versus ($10, 1 — p; $98, p), ($45, .45; $49, .55)
versus ($11, 1 — p; $97, p), ($40, .55; $44, .45) versus ($10, 1 — p; $98, p), ($35,
.65; $39, .35) versus ($11, 1 — p; $97, p), or ($30, .75; $34, .25) versus ($12,
1 — p; $96, p), constructed from a 6 by 6, Comparison by (p), factorial design.
The six levels of p for each comparison were .20, .30, .40, .50, .60, and .70.
Subdesign 6 included 18 comparisons of the form ($75, .25; $79, .75) versus
($12, 1 — p; $96, p), ($70, .35; $74, .65) versus ($10, 1 — p; $98, p), ($65, .45;
$69, .55) versus ($11, 1 — p; $97, p), ($60, .55; $64, .45) versus ($10, 1 — p;
$98, p), ($55, .25; $59, .75) versus ($11, 1 — p; $97, p), or ($50, .35; $54, .65)
versus ($12, 1 — p; $96, p), constructed from a 6 by 3 (x, y) versus (x’, y') by
(p) design. The three levels of p for each comparison were .80, .90, and .95.
Subdesign 7 included 6 comparisons as follows: ($75, .25; $79, .75) versus ($0,
.05; $96, .95), ($70, .35; $74, .65) versus ($0, .05; $96, .95), ($65, .45; $69, .55)
versus ($0, .05; $96, .95), ($60, .55; $64, .45) versus ($0, .05; $96, .95), ($55,
.25; $59, .75) versus ($0, .05; $96, .95), ($50, .35; $54, .65) versus ($0, .05; $96,
.95). There were 10 additional “filler” choices between three-outcome gambles,
using probabilities of (.33, .34, .33) and (.30, .40, .30).

Check design. The “check” design consisted of 12 comparisons with trans-
parent dominance, in which both gambles were the same, except one outcome
of one gamble was higher, or the probability of a higher outcome was greater
in one gamble. There were 3 comparisons of the form (x, .25; vy, .25; $50, .5)
versus (X, .25; y; .25; $90, .5), in which the 3 levels of (x, y) were ($2, $4), ($2,
$108), ($108, $111); 3 comparisons of the form: (x, .1; y, .1; $92, .8) versus
(x, .1; y; .1; $42, .8), in which the 3 levels of (x, y) were ($3, $5), ($3, $109),
($109, $112); 3 trials as follows: ($5, .6; $50, .2; $90, .2) versus ($5, .2; $50, .6;
$90, .2), ($5, .2; $50, .6; $90, .2) versus ($5, .2; $50, .2; $90, .6) and ($5, .6; $50,
.2; $90, .2) versus ($5, .2; $50, .2; $90, .6); 3 trials as follows: ($4, .1; $40, .8;
$93, .1) versus ($4, .8; $40, .1; $93, .1), ($4, .1; $40, .1; $93, .8) versus ($4, .1;
$40, .8; $93, .1), and ($4, .1; $40, .1; $93, .8) versus ($4, .8; $40, .1; $93, .1).
Half of these required the judge to choose the gamble on the left, and half on
the right.

Procedure

The 130 choices from all eight subdesigns were intermixed and printed in
booklets in pseudo random order with the restrictions that successive trials
did not repeat outcome values, and no two successive trials came from the
same subdesign. Each booklet contained 3 pages of instructions with example
trials, 10 warm-up trials, followed by 5 unlabeled practice trials and 130 experi-
mental trials.



182 BIRNBAUM AND CHAVEZ

The experimenter checked the responses to the first 10 warm-up trials. Initial
examples were very simple, such as the choices in the “check” design, and
when judges violated transparent dominance in such trials, the experimenter
would ask the judge to explain the choice, directing the judge to reread the
instructions as needed. When the warm-ups satisfied transparent dominance,
judges were directed to proceed to the experimental trials.

Judges completed the experiment within 1 h, working at their own paces.

Research Participants

The judges were 100 undergraduates enrolled in Introductory Psychology
who made one or fewer violations of transparent dominance on the 12 “check”
trials (27 of these had one violation). Additional judges were tested who violated
transparent dominance two or more times and were excluded from the analysis.

RESULTS

Violations of Branch Independence

Table 3 presents the number of judges who exhibited each pattern of prefer-
ences in the branch independence designs. Judges could respond in each of
four ways for each combination of outcomes, shown as rows in the table. SS’
indicates that judges preferred the gamble containing the small range, S =
(%, y), outcomes over the gamble containing the wider range outcomes, R =
(x', y"), for both values of z, v. RR' indicates R > S and R’ > S’. SR’ indicates

TABLE 3

Tests of Branch Independence with Four- and Three-Outcome Gambles

Gamble type
Four outcomes Three outcomes
(z, .25; v, .25; X, .25; Yy, .25) (z, .5; x, .25;y, .25)

S (X, Y) R (X', y") SS’ SR’ RS’ RR’ SS’ SR’ RS’ RR’
($52, $56) ($11, $97) 33 34* 10 23 45 27* 6 22
($50, $54) ($10, $98) 37 29* 10 24 44 22* 5 29
($45, $49) (%112, $97) 26 30* 13 31 37 24 15 24
(%40, $44) (%10, $98) 22 28 16 34 31 29* 7 33
($35, $39) (%11, $97) 11 21 18 50 22 27* 7 44
($30, $34) ($12, $96) 13 28* 11 48 14 32* 11 43

Note. Each entry is the number (of 100) judges with each preference pattern in Subdesigns 1
and 2. SS’ indicates preference for the smaller range, S = (z, .25; v, .25; X, .25;y, .25) > R =
(z, .25; v, .25; X/, .25;y’, .25) when z, v < $10 and S’ > R’ when z’, v’ > $100; SR’ indicates the
preference pattern of Expression 3a, i.e., S > R (when z, v < $10) and R’ > S’ (when z’, v/ >
$100); RS’ indicates the opposite R > S and S’ > R’, predicted by IS-CPT (Expression 4a); and
RR’ indicates preference for R and R’ in both cases. Asterisks indicate cases in which the violations
of branch independence are significantly different; in all cases, they are more numerous for SR’
(shown in bold type) than for RS’'.



THEORIES OF DECISION MAKING 183

the pattern of violations predicted by Expression (3a) namely S > R when the
common outcome(s) are lowest (z, v < $10) and R’ > S’ when the common
outcome(s) are highest (z’, v/ > $100). RS’ indicates the opposite pattern,
predicted by inverse-S cumulative prospect theory (Expression (4a)). The first
four columns of data show the results for gambles composed of four equally
likely outcomes. The last four columns of data show the results for three-
outcome gambles of Subdesign 2, in which r = .50.

If the data in Table 3 were perfectly consistent with branch independence,
the entries under SR’ and RS’ would all be zero. If violations of branch indepen-
dence were due to random errors, frequencies of SR’ and RS’ should not differ
systematically from each other. Instead, in all six rows of both designs, the
pattern SR’ (shown in bold type) is more frequent than the pattern RS’. The
probability of obtaining 12 contrasts in the same direction by chance, if viola-
tions of branch independence were unsystematic, is (1/2)? = .0002, which is
significant (the term, “significant” refers to « = .05 throughout). The two types
of violations, SR’ versus RS’, were also tested separately in each row against
the null hypothesis that their frequencies resulted from a binomial process
with p = .5; asterisks in Table 3 show that 9 of 12 cases deviate significantly
from the null hypothesis.

The predominant pattern of violations is consistent with Expression (3a)
and the pattern observed in previous choice experiments with three-outcome
gambles (Birnbaum & Mclntosh, 1996, submitted; Weber & Kirsner, 1997).

The pattern of violations is opposite that implied by the inverse-S weighting
function of the cumulative prospect model of Tversky and Kahneman (1992).
Because medium outcomes are supposed to have lower weight in that model,
judges should have had the RS’ pattern in the first four rows of Table 3,
contrary to the data.

Asimilar pattern of violations was observed in the mean and median strength
of preference judgments of Subdesigns 1 and 2. (Note that Table 3 only analyzes
the choice relation, and not the judgment of strength of preference). Analysis
of variance of strength of preference judgments showed significant effects of
the common outcomes in four-outcome gambles, F(1, 99) = 7.08, and in three-
outcome gambles, F(1, 99) = 5.84. On the average, judges offered to pay $1.18
for the lower range, four-outcome gamble when z, v < $10 (i.e., to receive S
instead of R), but offer to pay $3.79 for the wide range pair when z, v > $100
(i.e., to receive R’ instead of S’). For three-outcome gambles, the corresponding
values were $2.54 to buy the narrow range pair when z, v < $10, and $1.33
for the wide range pair, when z, v > $100. Effect of rows was also significant
in both analyses, F(5, 495) = 11.91 and 13.97.

Violations of Distribution Independence

Table 4 shows the percentage of choices in each pattern for the distribution
independence design, with a separate set of four columns for each distribution of
probabilities of the extreme outcomes. According to distribution independence,
preferences should not change as a function of the probabilities of the common
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TABLE 4

Tests of Distribution Independence

(z, .59; %, .2y, .2; v, .01) (z, .55; %, .2y, .2; v, .05)

S(x,y) R (X', y") SS’ SR’ RS’ RR’ SS’ SR’ RS’ RR’
($52, $56) ($11, $97) 54 20 10 16 47 22 14 17
($50, $54) ($10, $98) 49 14 11 26 47 19* 7 27
($45, $49) (11, $97) 43 23* 6 28 41 19 10 30
(%40, $44) ($10, $98) 37 21 11 31 38 22* 10 30
($35, $39) (%11, $97) 34 15 10 41 31 23* 6 40
($30, $34) ($12, $96) 23 30* 5 42 26 26* 8 40

Note. Each entry is the number of judges who exhibited each preference pattern in Subdesigns
3 and 4. S indicates preference for S = (z, r; x, .20; Y, .20; v, .6 — r) over R = (z, r; X', .20; y’, .20;
Vv, .6 — r) when r = .59 and S’ indicates preference for S’ = (z, r’; X, .20; y, .20; v, .6 — r’) over
R' = (z,r'; X', .20;y’, .20; v, .6 — r') when r’ = .01; RS’ indicates the preference pattern predicted
by IS-CPT, R > S and S’ > R’; SR’ indicates the opposite preference pattern, S > R and R’' >
S’; and RR’ indicates consistent preference for the wide range gamble in both distributions. The
last four columns involve choices in which r = .55 and r’ = .05. Asterisks indicate significant
asymmetry in violations. In all choices in both subdesigns, there are more SR’ (bold type) violations
than RS’, opposite the preidctions of I1S-CPT.

outcomes, so except for error, all choices should be either SS’ or RR’. If the
violations, SR’ and RS’, were unsystematic, then they should split equally in
either direction. Instead, in all 12 cases (all six in the first four columns and
all six cases in the second four columns, shown in bold type), SR’ is more
frequent than RS'. This pattern is opposite the pattern predicted by the inverse-
S weighting function of the cumulative prospect model (Expression (9)). System-
atic violations are also inconsistent with the configural weight model of Birn-
baum and Mclntosh (1996).

Analysis of variance of the strength of preference judgments corresponding
to Table 4 showed significant effects of the distribution, F(1, 99) = 14.33 and
F(1, 99) = 15.66, for r = .59 or .01 and for r = .55 or .05, respectively. The
effects of rows were significant in both cases, and the interactions were not.

Analyses of Individual Data

If individual judges have different utility functions but the same weights,
then they would be expected to violate branch independence in different rows
of Table 1. For example, if u(x) = x, and if a judge had the pattern of weights
estimated from the group data of Birnbaum and Mclntosh (with ratios of 3:2:1),
then that judge should show exactly one SR’ violation of branch independence
in the three-outcome test in Table 3, in the fourth row. The first three rows
should be SS’ and the last two should show RR’. Another judge with the same
weights and u(x) = x*® would show one SR’ violation in Row 6 of the design,
with the first five rows showing SS’. Similarly, if judges have different weights,
they could also show different patterns. As a further complication, empirical
choices may contain variability due to error.

For each judge in each subdesign, we calculated the difference between
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the frequencies of the two patterns of violations of branch independence and
distribution independence, SR’ versus RS’, summing over rows in the design.
For Subdesign 1 (four-outcome gambles), there were 51 judges with more SR’
violations, 24 with more RS’ violations, and 25 with no difference, including
9 who never violated branch independence (in all 9 of these cases the judge
chose S or R in every row). For three-outcome gambles (Subdesign 2), there
were 58 judges who showed more violations of the type SR’ against 16 who
showed more RS’ violations, with 26 judges having no difference (among these
26, there were 20 who satisfied distribution independence in this design, of
whom 19 consistently chose either SS’ or RR’ on all six choices).

In Subdesign 3, testing distribution independence (r = .59, r’ = .01), testing
violations of distribution independence, there were 55 judges showing more
SR’ violations, only 14 showing the pattern predicted by inverse-S function
(RS’), and 31 who showed no difference, including 20 with no violations, of
whom 19 consistently chose R or S in all six rows. In Subdesign 4 (r = .55,
r' = .05), there were 49 judges who had more SR’ violations, 14 with more
RS’ violations, and 37 with no difference, including 20 who never violated
distribution independence, of whom 19 consistently chose R or S in all rows.

It is interesting that among those judges who changed preferences between
rows [as (X, y) is decreased], no more than one judge consistently satisfied
branch independence or distribution independence in any subdesign; every
other judge who changed preferences also showed at least one violation.

The counts of individual data reinforce the group analyses, showing that the
pattern SR’ is characteristic of more judges in all four subdesigns than the
opposite pattern, RS’.

These four contrasts for each judge should be interrelated if they are due to
real individual differences, rather than to error. For example, if the judge has
more violations of SR’ in Subdesign 1 with four-outcome gambles, the same
judge should also have more SR’ in Subdesign 2, with three-outcome gambles,
if the violations are due to the judge's weighting pattern rather than chance.
(Note that comparison of these subdesigns also provides an indirect test of a
coalescing equivalence that assumes that when two outcomes are equal, the
two outcomes can be coalesced by adding their probabilities.)

We cross-tabulated the patterns of violation for all six pairs of the Subdesigns
1-4. These six cross-tabulations are shown as rows of Table 5.

The columns of Table 5 show the nine possible combinations of patterns of
violations (more RS’, = equal split or none, more SR’) in two subdesigns. The
entry of 44 in the first row, last column shows that of the 51 judges who showed
more SR’ violations in Subdesign 1, 44 (86%) also showed more SR’ violations
in Subdesign 2. The entry of 8 in the first row, first column shows by contrast
that of the 24 judges who showed more RS’ violations in Subdesign 1, 8 (33%)
also showed more RS’ violations in Subdesign 2. Similar results were observed
in the cross-tabulations between other pairs of designs. Asterisks indicate
significant differences; in all cases, there are more judges showing the pattern
of Expression(3a) (SR’) in two subdesigns (rightmost column, in bold type)
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TABLE 5

Cross-Tabulation of Violations of Branch Independence and Distribution
Independence between Subdesigns

Combination of modal preferences

Designs RS’&RS’ RS'&= RS'&SR’ =&RS’' =&= =&SR’ SR’'&RS’' SR'&= SR'&SR’
lby2 8 10 6 6 11 8 2 5 44>
lby3 6 8 10 0 15 10 8 8 35*
lby4 7 9 8 2 13 10 5 15 31*
2by3 4 4 8 2 12 12 8 15 35*
2by4 6 4 6 2 16 8 6 17 35*
3by4 4 6 4 6 12 13 4 19 32*

Note. Each judge is classified by the more frequent pattern of violations of branch independence
and distribution independence over rows. For example, the 6 in the first row under the column
labeled RS’ & SR’, indicates that six judges showed more RS’ violations in Subdesign 1 and more
SR’ violations in Subdesign 2. “=" indicates that the judge showed an equal split of violations
(including 0 violations).

than showing the pattern of Expression (4a) (RS’) in two subdesigns (left-
most column).

According to cumulative prospect theory (Expression (5a)), violations in Sub-
designs 1 and 2 should be correlated with violations in Subdesigns 3 and 4.
Although the predominant pattern of the data is opposite the pattern predicted
by inverse-S weighting functions (including Expression (5b)), the data are
consistent with the connection implied by Expression (5a). The two types of
violations appear related in the manner that would be consistent with an S-
shaped cumulative weighting function for Expression (5a), rather than an
inverse-S. The pattern is also consistent with the “revised” configural weight
model (Expressions (11) and (12)).

TABLE 6

Median Parameter Estimates and Indices of Fit of CPT Models

Parameters Indices of Fit
Model Y B c a b SUM —log(ITP)
S-CPT (5) 1.59 .82 .31 0.26 1.30 17495 52.0
S-CPT (4) 1.41 (2.0) .29 0.08 0.49 19514 52.7
P-CPT (4) 1.84 1.07 — 0.06 0.41 19305 53.4
ux) = x#
P-CPT (4) 1.37 0.02 — 17.29 102.41 20014 60.4

ux) =1 — e(—Bx)

Note. Each entry is the median parameter estimate or median sub-index of fit. SUM refers to
sum of squared deviations between judged strength of preference and predictions of model. —log(I1P)
refers to negative logarithm of the product of probabilities of choices given the model. In S-CPT(4),
B is fixed to 1.
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Fit of Models to Individual Data

To fit the data for individuals according to the S-CPT models, judgments of
strength of preference and choices were fit by the following model:

D(R, L) = a[U(R) — U(L)] (13)

P(R, L) = F[b(U(R) — U(L))] (14)

U(R) = Zu(x)[W(P;) — W(P;i-1)] (15)
cPY

W) = v+ @ = Py (16)

u(x) = xb @an

where D(R, L) is the predicted judgment of the amount to be paid to receive
gamble R over gamble L (including the sign indicating the direction of choice);
P(R, L) is the predicted probability of choosing R over L; U(R) and U(L) are
the utilities of the gambles; a and b are constants; the outcomes have been
ordered from highest to lowest, x; > x, > --- X,; the probabilities, P;, are
decumulative probability that the outcome is greater than or equal to x;; u(x)
is the utility of outcome, x; W(P) is a cumulative weighting function, character-
ized by two constants, ¢ and v, F is the logistic function, F[b(U(R) — U(L))] =
1U[1 + exp(—b(U(R) — U(L))], where b is the spread parameter. There are five
parameters to estimate: a, b, c, y, and .
To fit the P-CPT models, Eg. (16) was replaced with the following:

W(P) = P¥ (18)

Two variations of P-CPT were fit, one using the power function of Equation 17
and the other using an exponential function for the utility function, as follows:

u(x) = c(1 — exp(—Bx) (19)

where ¢ and B are constants. In this case, the constant ¢ will be absorbed in
a and b, so it can be set to 1 without loss of generality.

Models were fit to the 108 judgments (and choices) of nondominated gambles
to minimize the following compromise of two criteria:

108 108

B=h ;1 (D; — D)2 — (1 — h) Iog[il]l P(Ci] (20)

where D; and D; the observed and predicted judgment for each choice, which
can be either positive or negative, depending on the direction of choice; C; is
the observed choice (gamble on the right or left), P(C;) is the probability of that
choice given the model [i.e.,, P(R, L) or 1 — P(R, L) from Equation 14]. The
term, SUM = 3% (D, — D;)?, is the familiar sum of squared deviations between



188 BIRNBAUM AND CHAVEZ

observed and predicted judgments, and the term, —log[I1{% P(C;)], is the (nega-
tive log) likelihood of the observed choices given the model; h is the weight
given the two criteria. This compromise loss function requires the model to
account for both the strength of preference judgments and choices using the
same parameters. S-CPT and P-CPT models were fit using special programs,
SUBFIT and LUCEFIT, which utilized Chandler’s (1969) subroutine, STEPIT,
to accomplish the minimizations. Similar results were obtained using BLACK-
BOX instead of STEPIT, and similar results were also obtained when the value
of h was set to different values between 0 and 1. The programs appeared to
converge faster and perform better with h set to intermediate values than
when h was set to zero or one. The values reported are for h = .01.

Median values of estimated parameters and the two sub-indices of fit are
listed in Table 6. The best-fitting CPT model is S-CPT, with a power function
for the utility function. Of 100 judges, 79 had estimated values of y > 1, opposite
the prediction of the inverse-S function, which would assume y < 1. Of the
100 judges, 85 had estimates of ¢ < 1, indicating greater weighting in 50-50
gambles for the lower outcome. The median value of the sum of squared devia-
tions, SUM = 17,495, corresponds to a root mean squared deviation of $12.73.
The median negative log likelihood is 52.0, which is better than the value of
74.9 for the null model that sets all choice probabilities to 1/2. Of 100 judges,
60 had values of B < 1; fixing B = 1 made both indices of fit slightly worse,
but this simplified S-CPT fit as well or better than both P-CPT models.

The simplified S-CPT model (with B fixed to 1) uses four parameters, the
same as the P-CPT models. The P-CPT model with u(x) = x* fit slightly better
than the simplified S-CPT model on the sum of squared deviations, but it
was slightly worse predicting choices. Replacing the power function with the
exponential utility function made the fit of the P-CPT model worse. This model
fit worse than the simplified S-CPT model for 53 judges on both subindices,
compared with only 19 who fit the P-CPT model with exponential utility func-
tion better on both subindices, and the other judges split on the two subindices.
Both versions of P-CPT yield median estimates of v > 1.

We also used the same procedures to fit a simplified version of the Birnbaum
and Stegner (1979) model, using Equations 11 and 12 instead of 15 and 16
above, and fitting only one configural parameter in Equation 12, using the
following simplification: w(j, n) = o/(n + 1), where o is the single configural
parameter, and n is the number of outcomes in the gamble. This model was
fit using S(p) = p*, and with u(x) = x#, and it also used Equations 13, 14, and
Equation 20. Like the S-CPT model, this model also has 5 parameters. The
median estimates are as follows: y = 1.21, B = .61, ® = —.45, a = .53, and
b = 2.41. The median sum of squared deviations was 16,446, slightly better
than the best-fitting CPT model, and 53.6 for the negative log likelihood,
slightly worse. When B was fixed to 1, the median subindices of fit were 18,864
and 57.0, comparable to the fits of the corresponding 4-parameter, CPT models.
With B fixed to 1, the median estimates are y = 1.28, ® = —.69, a = .075, and
b = .50. This model could be improved by using different values of w(j, n), but
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that would complicate the comparison of fit by allowing additional parameters
to one model but not the others.

DISCUSSION

The results of this experiment show systematic violations of branch indepen-
dence and distribution independence. Violations of branch independence and
distribution independence are inconsistent with EU, SEU, and SWU theories.

Systematic violations of branch independence and distribution independence
are also inconsistent with the theory that judges consistently edit and eliminate
common components prior to choosing between gambles (Kahneman & Tversky,
1979). While some judges might use such a strategy on some occasions, the
theory that they do so consistently can be rejected.

The violations of branch independence and distribution independence ob-
served are opposite the predictions of the inverse-S weighting function of cumu-
lative prospect theory. The violations of branch independence show the same
pattern as those obtained in previous studies of judgments and choices of
gambles consisting of three and four equally likely outcomes (Birnbaum &
Mclntosh, 1996, submitted; Birnbaum & Beeghley, 1997; Birnbaum & Veira,
in press; Weber & Kirsner, 1997). The present experiment used gambles with
specified and varied levels of probability, so the present data indicate that the
use of equally likely outcomes was not crucial to the previously observed pattern
of results. All of these studies found evidence that weights have the opposite
pattern from that of inverse-S cumulative prospect theory.

Wakker, Erev, and Weber (1994) failed to find systematic evidence of viola-
tions of branch independence predicted by rank-dependent models. Their study
did not use “filler” gambles presented to judges on the notion that such trials
would prevent the judge from learning that on every trial there is a common
component that could be edited out.

However, Birnbaum and Mclntosh (submitted) tested the idea that judges
might learn to edit and cancel common outcomes if all of the experimental
trials would permit such a cancellation. Birnbaum and Mclntosh (submitted)
removed the “filler” trials that had been used in their earlier studies, and found
that violations of branch independence were reduced slightly, but they were
similar to their previously obtained results. Thus, the lack of “fillers” does not
completely explain the null finding of Wakker et al. (1994). Weber and Kirsner
(1997) used a variant of the design of Wakker et al. and found small, but
significant violations in the same direction as observed by Birnbaum and McIn-
tosh (1996). The Wakker, et al. study did not use the systematic variation of
the terms in Egs. (3b) and (4b), as in the designs of Birnbaum and Mclntosh
(1996; submitted), or as in Table 1; consequently, the earlier design of Wakker
et al. (1994) may have “missed” finding outcomes for which the weights would
straddle the ratio of differences in utility for most judges.

The violations of distribution independence observed here are a new result,
and these violations are inconsistent with the model of Birnbaum and Mclntosh
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(1996), which implies that there should be no violations of this property. Viola-
tions of distribution independence are also inconsistent with the extension of
original prospect theory (Kahneman & Tversky, 1979) to gambles with four out-
comes.

Both patterns of violations are consistent with cumulative prospect theory,
assuming a cumulative weighting function that is S-shaped, rather than in-
verse-S shaped. Other weighting functions satisfying the property of Expres-
sion (3b) can also be retained, as long as they can also account for the violations
of distribution independence. The power function (Expression (5c)) can have
this property when v > 1, but P-CPT did not fit the data of the majority of
individual judges as well as S-CPT. P-CPT requires weights of different rank
positions to be a monotonic function of rank (for equally likely outcomes, as in
Subdesign 1). The better fit of the S-CPT model may be due to its flexibility
to allow weights of medium outcomes to be greater than weights of extreme
outcomes. Birnbaum and Beeghley (1997) and Birnbaum and Veira (in press)
concluded that medium level outcomes have greater weights than extremes
in the seller’'s point of view, if the utility function is assumed to be linear.
Nevertheless, it is possible that with some other utility function besides the
power function or exponential, P-CPT might achieve a better fit, so this theory
cannot be rejected based on the present data alone.

The present data contradict the inverse-S weighting function observed in
experiments by Tversky and Kahneman (1992) and Wu and Gonzalez (1996).
There are two ways to explain this apparent contradiction: (1) one could assume
that CPT is correct and conclude that the contradiction between the S and
inverse-S weighting functions is evidence that the weighting function induced
by the context in this experiment is different from that induced in certain other
experiments, or (2) one could take the contradiction as evidence against CPT
theory. As noted by Birnbaum (1997) and Birnbaum and Mclntosh (1996; sub-
mitted), configural weight theories can explain both sets of data with the
same parameters, whereas CPT requires that the weighting function change
to account for the data of both Birnbaum and Mclntosh (1996) and Wu and
Gonzalez (1996). We favor the second interpretation, that CPT is flawed, based
on simplicity (one weighting function instead of two) and converging evidence
from recent experiments testing stochastic dominance and cumulative indepen-
dence (Birnbaum & Navarrete, submitted), described below.

Although the Birnbaum and Mclntosh (1996) model is refuted by systematic
violations of distribution independence, the “revised” configural weight model
of Birnbaum and Stegner (1979) remains consistent with the present results,
as does the minimum loss function theory of Birnbaum, et al. (1992; see also
Birnbaum & Mclntosh, 1996). The simplified configural model fit here, like
the P-CPT model, assumes that equally likely outcomes will have their weights
monotonically related to ranks. In order to account for the effects of viewpoint
in judgment studies, however, it may be necessary to allow the configural
weight parameters to follow a more complex form than that imposed here on
Eq. (12). Properties that can distinguish Cumulative Prospect theories (as a
class) from the Configural weight models and from minimum loss theory have



THEORIES OF DECISION MAKING 191

been discussed by Birnbaum (1997). Three of these properties are comonotonic
branch independence, stochastic dominance, and cumulative independence.

This experiment did not test comonotonic independence (a requirement of
the generic rank-dependent, configural weight model used here). All versions
of CPT and the configural weight models of both Birnbaum and Mcintosh
(1996) and Birnbaum and Stegner (1979) imply comontonic independence when
the number of outcomes is held constant. Minimum loss theory, however, can
lead to a configural weight model that can violate comonotonic independence
(Birnbaum & MclIntosh, 1996, Appendix A). In the loss theory model, weights
not only vary as a function of the rank of the outcomes, but they also depend
on the spacing of the outcomes, which allows minimum loss theory to violate
global comonotonic independence, though it satisfies comonotonic indepen-
dence in local regions.

Birnbaum (1997) noted that configural weighting models can violate stochas-
tic dominance, whereas all versions of CPT must satisfy this property. Stochas-
tic dominance requires that if P(x > tIA) = P(x > tIB) for all t, then gamble B
should be not be preferred to gamble A. Birnbaum and Navarette (submitted)
found that stochastic dominance was systematically violated in cases predicted
by the Birnbaum and Mclntosh (1996) model and parameters. For example,
73 out of 100 individuals tested chose B = ($12, .10; $90, .05; $96, .85) over
A = ($12, .05; $14, .05; $96, .90), even though A stochastically dominates B.
The mean judgment of the amount offerred to receive B instead of A, with
positive numbers reflecting violations of dominance and negative numbers
representing satisfaction of dominance, was $9.40! Similar results were ob-
served for other choices, constructed from the same recipe.

There are two cumulative independence conditions that put the apparent
contradiction in weighting functions between Wu and Gonzalez (1996) and
Birnbaum and Mclntosh (1996) into a single experiment. As shown in Birnbaum
(1997), cumulative independence is a combination of comonotonic branch inde-
pendence, monotonicity, transitivity, and coalescing equivalences. Coalescing
is the assumption that a three-outcome gamble in which two outcomes are
equal is equivalent to the two-outcome gamble in which the probabilities of the
two equal outcomes are added. Cumulative prospect theory implies coalescing,
whereas the configural weight theories do not. Birnbaum and Navarrete (sub-
mitted) found systematic violations of cumulative independence, violating any
version of the CPT models, but predicted by the Birnbaum and Mclntosh
(1996) model.

Violations of stochastic dominance and cumulative independence suggest
that the apparent contradiction between the S and inverse-S weighting func-
tions in different experiments is due to a flaw in CPT, rather than a changing
weighting function between studies, because CPT with any weighting function
must satisfy stochastic dominance and cumulative independence.

The Birnbaum and Stegner (1979) model violates asymptotic independence,
unlike the Birnbaum and Mclntosh (1996) model. In a two-outcome gamble,
as the probability of the higher outcome approaches one, the value of the gamble
may not asymptote at the same level, independent of the value of the lowest
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outcome. Such violations of asymptotic independence were observed in morality
judgment by Birnbaum (1973) and Riskey and Birnbaum (1974): Given a person
has done one very bad deed, the person will be judged “immoral” no matter
how many good deeds the person has also done. For decision making, the most
direct analog is to insurance. Given a chance of a bad outcome, there may be
no value of the probability that makes the utility of the gamble asymptote to
the value it would if the worst outcome could be changed into a good outcome.
From the viewpoint of the Birnbaum and Stegner (1979) model, the purpose
of insurance is to change the value of the worst outcome.

In conclusion, choices between three- and four-outcome gambles are inconsis-
tent with EU, SEU, SWU, and the theory that judges consistently edit and
eliminate common components. Violations of branch independence and distri-
bution independence are opposite the predictions of the inverse-S weighting
function of the Tversky and Kahneman (1992) cumulative prospect model.
Violations of distribution independence are not consistent with either the model
of Birnbaum and Mclntosh (1996) or an extension of original prospect theory
to four-outcome gambles. Data remain consistent with cumulative prospect
theory if the weighting function satisfies Expression (3b), rather than Expres-
sion (4b). Data were better fit by the S-shaped cumulative weighting function
than by a power weighting function, but the power weighting function is not
qualitatively eliminated. Data also remain consistent with two other theories
that can violate distribution independence and branch independence: Birn-
baum and Stegner’s (1979) revised configural weighting model and minimum
loss theory.
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