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The purpose of this chapter is to present new approaches to an old problem in
psychophysics: the apparent contradiction between so-called “ratio’’ and “inter-
val” techniques for scaling. The quote marks are used to remind the reader that
the numbers obtained when subjects are instructed to judge “ratios” or “differ-
ences” need not obey the mathematical properties of the ratio or subtractive
models.

The chapter begins with a brief discussion of “direct” scaling, the so-called
new psychophysics that was to replace the scaling methods of Fechner and Thur-
stone. One major problem with this approach is that the empirical contradiction
in scales cannot, in principle, be resolved within the unifactor framework typi-
cally used in “direct” scaling, which does not allow tests of the theories of
measurement.

Newer approaches of psychological measurement that use factorial stimulus
designs and algebraic models to assess the data are discussed. It is shown that
the additional criterion of scale convergence, the premise that stimulus scales
are independent of instructions, can add the extra constraint needed to resolve
certain indeterminacies in the measurement approach.

Results of recent research using factorial designs with “ratio” and *‘difference”
tasks illustrate the evidence that for a variety of perceptual continua, instruc-
tions to judge “ratios” or “intervals” lead to the same ordering of stimulus pairs,
consistent with the interpretation that there is but one comparison operation—
which could be either a ratio or difference—for both tasks.

A framework is presented in which ratio and subtractive theories make dif-
ferent ordinal predictions for more complex judgment tasks in which subjects
make quantitative comparisons of stimulus pairs. Two experiments are then
reviewed in which “ratios” and “differences” of stimulus intervals satisfy predic-
tions of both ratio and subtractive models, yielding a ratio scale of intervals. This
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scale of intervals is then used to resolve the ratio versus subtractive interpreta—
tions for simple “ratios” and “differences” of two stimuli. Data from the two
experiments support the contention that the basic operation by which subjects
compare two stimuli is best represented by subtraction.

“DIRECT” SCALING

One proposal to obtain a scale of psychological magnitude was to ask subjects
to report numbers that “directly” represent the strengths of sensations. The
term “direct” was used to emphasize the distinction between this technique and
the Fechner-Thurstone approach of “indirectly” inferring psychological differ-
ences from measures of discriminability (Stevens, 1957).

An outline of “direct” scaling is shown in Fig. 1. In the outline, &; is the phy -
sical measurement of stimulus level 4, s; is the corresponding sensation, and R; is
the overt numerical response. The function relating sensations to physical values
is termed the psychophysical function, s; = H (®;). The function relating respon -
ses to subjective values is called the judgment function, R; = J (s;). A plot of
responses against the physical values represents the composition R; =J [H (<I>l.)] .

Examples of ‘‘Direct’’ Scaling

The bottom of Fig. 2 shows seven squares containing dot patterns that were used
as stimuli in an experiment to illustrate typical results obtained with “direct’
scaling methods. Subjectively, how “dark” are the dot patterns? Two “direct™
methods have been used in attempts to answer this question. The first is to ask
subjects to produce numbers that represent subjective intervals using the method
of category rating. A second procedure is to ask subjects to report numbers that
are “directly proportional to their sensations,” a technique called magnitude
estimation. The numbers obtained by these two ‘“direct” methods constitute
two operational definitions of “sensation.”

FIG.1 Outline of “direct” scal-
ing. Physical values of the stimuli
(®)) are related to psychological
scale values (s;) by the psycho-
physical function, 5; = H ().
Overt responses, R;, are related
to subjective values by the judg-
ment function, Ri= J (s,-), assumed
to be strictly monotonic. Since
the data observed in a typical
unifactor “direct” scaling study

Qutline of Direct Scaling are the confounded composition,
. R; =J (H (@), it is not possible
Physical _,,__ Scale __,  Overt to separate theories of subjective
Value Value Response value, comparison processes, or
¢i —>; - R/ judgmental processes in this frame-

work.
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One group of subjects was instructed to make magnitude estimations of
“ratios.” They were asked to call the fourth pattern (the standard) “100” and
to assign numbers to the other pattemns so that the ratio of the two numerical
responses would equal the ratio of the subjective darknesses of the two stimuli.
They were instructed, if it seemed half as dark, to say “50,” if it seemed twice
as dark, to say “200,” etc.

A second group was asked to make ratings that would represent “intervals.”
They were told to call the lightest pattern “1,” the darkest “20,” and to judge
each square so that the differences in response would be proportional to subjec-
tive intervals of darkness.

Assuming that the subjects follow these instructions, we theorize that the
magnitude estimation of “ratio” should be given by the equation:

ME, = 100 (i—;—) (1)

where s, is the subjective darkness of stimulus 4 (the standard), S; is the sensa-
tion for stimulus Z, and ME; is the overt magnitude estimation.
Similarly, the category Judgments should be given by the equation:

5i— 81
Cl; =19 +1, @
§7-951

where CJ, is the category judgment, and 5, and s, are the two extreme stimuli to
be ]udged “1” and “20,” respectively.

Equations (1) and (2) represent theories of the judgment function, J, al-
though they involve deeper assumptions about comparison processes which are
discussed later. Equation (1) asserts that magnitude estimation responses are
directly proportional to subjective values; Eq. (2) asserts that category ratings
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are linearly related to subjective values. If the subjective values (s; in both equa-
tions) are the same, solving Eq. (1) for s; and substituting in Eq. (2) shows that
category ratings should be linearly related to magnitude estimations:

Cl. = 19 4 ME + 1
f S7 — 8§ 100( ) = 81 )
Equation (3) expresses the idea of the convergence of two operational defini-
tions of sensation. If two procedures for defining the same construct were to
agree, there would be no evidence for concern. However, when two procedures
do not agree, an explanation is required.

An Empirical Contradiction

Figure 2 plots both magnitude estimations (“ratios™) and category ratings (“In-
tervals™) as a function of the number of dots in the squares, spaced in equal log
steps on the abscissa. It should be apparent that the two procedures yield scales
that are not linearly related. These results are typical of the results obtained in a
large number of experiments for a variety of psychophysical and social judgment
dimensions (Stevens & Galanter, 1957; Stevens, 1966). Instead of a linear func-
tion, magnitude estimations are often approximately exponentially related to
category ratings.

This violation of converging operations, though it caused some consternation,
had good effects for the study of psychological scaling. It caused psychologists
to argue about methods, theories, and data, and it caused them to doubt the
meaningfulness of the entire enterprise of psychological scaling based on opera-
tional definitions (Treisman, 1964; Savage, 1966). Theories were proposed to
account for the glaring discrepancy between the two methods. Unfortunately,
the theories were untestable in the traditional framework of “direct” scaling.

Theories of the Discrepancy

Three general theories were proposed to account for the finding that the “inter-
val” scaling techniques gave results that were nonlinearly related to the “ratio”
techniques: (1) the judgment function, J, depends on the response procedure
and is nonlinear for at least one of the methods; (2) there is some bias in the
comparison process, C, so that subjects cannot compute both ratios and dif-
ferences properly; and (3) the subjective values of the stimuli, s, change value,
depending on the task.

The first theory is that at least one of the procedures contains a nonlinear
judgment bias. Thus this theory rejects the assumptions [of Eqgs. (1) and (2)] that
J is a linear function in the case of ratings and J is a similarity transformation in
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the case of magnitude estimation. Just because the subjects have been instructed
to report a number that is directly proportional to their sensation does not mean
that they can use numbers in this way. Attneave (1962) proposed that subjective
magnitude of numerals could be a nonlinear power function of objective numeri-
cal magnitude, suggesting that the subject selects a magnitude estimation number
whose subjective value is equal to the subjective value of the stimulus. Rule,
Curtis, and their associates have pursued Attneave’s suggestion that the inverse
of J is the psychophysical function for numerals (see Rule & Curtis, 1973).
Treisman (1964) and Ekman and Sjoberg (1965) have discussed the possibility
of a logarithmic psychophysical function for numerals, which would produce an
exponential function for J. Poulton (1968) attributed the nonlinearity of J
to context effects in the experiments, since the results of ‘“direct” scaling studies
using magnitude estimation depended on the stimulus range, frequency distribu-
tion, value of the standard, and a variety of other experimental details.

The second type of theory contends that at least one computation is erron-
eous. Stevens (1971) argued, for example, that subjects can estimate ratios but
cannot compute subjective intervals. Rather than argue for a computation error
in one of the operations, Torgerson (1961) advanced the conjecture that sub-
jects do not distinguish between “ratios™ and “differences,” perceiving instead
only one quantitative comparison between a pair of stimuli. Subjects (and the
experimenters) are willing to call this single relationship either a “ratio” or a
“difference.”

A third possibility is that the sensation depends on the task. This position
contends that we should take the responses in Fig. 2 at face value and conclude
that there are at least two kinds of sensations that are nonlinearly related. Marks
(1974) has argued that there are two different scales of sensory magnitude, one
for “intervals” and one for “ratios,” related by the square root function.

Problems with ““Direct’’ Scaling

The major problem with the traditional method of “direct” scaling is that the
€xperimental designs do not provide sufficient ordinal constraints to test the
theories of stimulus comparison (Krantz & Tversky, 1971; Birnbaum & Veit,
1974a; Anderson, 1974; Veit, 1974; Shepard, 1976). “Ratios” and ““differences”
May or may not be consistent with the metric or ordinal predictions of ratio and
subtractive models.] However, with a unifactor design, it would not be possible
to reject a ratio or difference model.

1 . . . ¢ . : *
~ "Quotation marks are used throughout to indicate “ratio” and *‘difference” tasks or
Judgments. Quotation marks are not used for actual (computed) ratios and differences or for
Models and theoretical statements.
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With unifactor designs, used in ““direct” scaling research (e.g., Stevens & Gal-
anter, 1957; Torgerson, 1960), “ratios” and “intervals” are necessarily mono-
tonically related. Since the standard (divisor) is fixed, ME; = J (s]-/c), where ¢
is the standard, and Jp is the judgment function for magnitude estimation. For

“interval” judgments,
¢l =Jp (%) ’
7 1

Where s, is the smallest stimulus, S4 is the largest, and J}; is the judgment func-
tion for ratings. Hence, since ME. and CJ. are both monotonic functions of s,
ME. is monotonically related to éJ . whetﬁer the subject computes a difference
or a ratio. Therefore, unifactor designs do not permit ordinal tests of theories,
such as Torgerson’s (1961), that there is only one comparison operation. How-
ever, ratios and differences are not monotonically related in general (e.g., 2/1
> 7/5, but 2-1 < 7-5). With factorial designs it becomes possible to test theories
of comparison processes. '

Poulton (1968) has noted that the results of direct scaling studies depend on
contextual details of experimental procedure. If the responses are taken at face
value, it means that the scale of sensation depends on the stimulus context.
But with the direct scaling approach, there is no way to test the alternative
theory that the context affects only the judgment, not the sensation.

Basically, since observed data are of the form R =J [H (®)], it is clear that
for any reasonable theory of H, it is possible to find a function J such that the
composition matches the data in a unifactor design. There is no way to test
whether the computation operation can be represented by a difference or a
ratio or whether J is linear. There is no way to test whether context affects H or
J. The use of factorial designs in the framework of algebraic measurement theor-
ies comes close to solving these problems. Certain difficulties still remain but be-
come resolvable with additional constraints. The following section explains how
the additional ordinal constraints produced by factorial designs permit tests of
algebraic theories of judgment, which allow for distinction between the stimulus
scale, s = H (®), and the response transformation, R =J (¥).

PSYCHOLOGICAL MEASUREMENT APPROACH

Figure 3 shows an outline of psychological measurement that facilitates discus-
sion of theories of stimulus comparison. In the outline the comparison operation
is represented by the function, \III.]. =C(s; s;), where . is the subjective impres-
sion of a difference or ratio, $; and 5; are the subjective scale values of the stimuli,
and C is a model of the comparison (integration) process that describes how two
stimuli combine to produce the impression of the pair relationship. The judgment
function, R;; = J (\I’i}.), represents the transformation from impression, ¥, to
overt numerical response.
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FIG.3 Outline of psychological
measurement. Subjective scale val-
ues of the stimuli are combined
by the comparison function, \Il,-]-
= C (s, sj), and transformed to
an overt response by the strictly
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of C permits estimation of J and 95/__"’5/ /
the scale values, s.

In this framework it is possible in principle to test (i.e., reject) models of the
comparison process. Conjoint measurement analysis (Krantz et al., 1971; Krantz
& Tversky, 1971) attempts to specify the ordinal relationships that ideal data
must satisfy in order to be consistent with particular theories of C. The approach
of functional measurement (Anderson, 1970, 1974) has been to attempt to spe-
cify theories that reproduce the metric information in the numerical data that
are obtained.

Iustrative Factorial Experiments

Figure 4 represents a factorial stimulus design that is used to convey several ideas
of psychological measurement. The reader is invited to make two copies of Fig.
4 and to particpate as a psychophysical observer. For one unfamiliar with this area
of research, in order to gain a better grasp of the results that follow, it will be
helpful to carry out the analyses described below on a set of data. Although
these dot experiments are intended for illustrative purposes, they are convenient
and reliable demonstrations of results obtained in more formal experimental set-
tings with other psychophysical continua.?

Two experiments illustrate important points of the present chapter. For the
“ratio” task, judge the ratio of the darkness of each column square to the dark-
ness of every row square. The estimations should be written in the appropriate
matrix locations. Judgments should be consistent with the following scheme:

12.5 = column is 1/8 as dark as row

25 = columnis 1/4 as dark

50 = columnis 1/2 as dark
100 = column equals row
200 = column is 2 times as dark
400 = column is 4 times as dark
800 = column is 8 times as dark

2 . . ) .
In factorial B X A designs, B refers to rows, indexed by i; 4 refers to columns, indexed
by j. The tasks always specify A — B or A/B, and the data are always plotted against factor
A, with a separate curve for each level of B.
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FIG.4 Representation of factorial experiment. The reader is encouraged to make two cop-
ies of this figure and replicate the experiments. For the “ratio” task, judge the ratio of the
darkness of the column square to that of the row using a modulus of 100. For the “differ-
ence” task, judge the algebraic difference, column minus row, calling the largest difference
‘100,” a zero difference *0,” and using negative numbers when the row stimulus is darker.

Any numbers consistent with this scheme may be used to represent the ratios
of subjective, psychological darkness of the dot patterns.

For the “difference” task, the instructions are to judge the difference between
the darkness of the column stimulus and the row stimulus. The greatest differ-
ence (column-row) is to be called “100.” When the column equals the row dark-
ness, the difference would be *“0.” Negative numbers would be used to express
negative differences (i.e., when the row stimulus seems darker than the column
stimulus).

The two experiments produce two matrices of numbers that correspond to
differential instructions to judge “ratios” and “differences.” The following sub-
sections show how the measurement approach permits one to test corresponding
ratio and subtractive models and to estimate scale values from the data without
using the physical measurements of the stimuli.

Ratio and Subtractive Models

Ratio model. The ratio model can be written:

R, =Jg (sifs), 4)
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where R, is the numerical estimation of the “ratio” of the jth column stimulus
to the ith row stimulus (divisor), having subjective scale values s. and $;» Tespec-
tively, and JR is the judgmental transformation that relates overt numerical es-
timations to subjective ratios.

Subtractive model. The subtractive model can be written;
D;;= Ip (s]. ~$,), %)

where Dl.]. is the rated difference between the stimulus of column j and the
stimulus of row i, $; and s; are the scale values, and J, represents the judgment
function that relates overt ratings of differences to subjective intervals.

Metric Implications of the Models

It is useful to initially examine the metric (i.e., numerical) implications of the
ratio and subtractive models under the special assumption that the judgment
functions, Ji and Jp, are linear. More complex cases that do not restrict the
form of the judgmental transformations are discussed later.

Figure 5 shows computed ratios and differences for a 7 X 7 design, as in Fig.
4. The scale values for the seven rows and columns are assumed to be successive
integers from 1 to 7 (i.e., let $; =1, and s; = j), and the judgment functions are
assumed to be identity functions. Hence }21.. = j[i, and Di]. = j —i. Although for
simplicity the scale values and judgment functions have been assumed to be
known in this example, the measurement approach allows them to be estimated
from the data.

Ratio model. The left-hand panel of Fig. 5 plots ratios, Ri” as a function of
the column scale value (s, = j), with a separate curve for each row stimulus. The
highest curve represents the first row of the matrix, R T j/1. The lowest curve
represents the last row of the matrix, R, = j/7. Each curve is a linear function of
the scale value of the column stimulus, with the same (zero) intercept. The
slopes are inversely proportional to the scale values of the row stimuli. This sort
of diverging fan of straight lines that intersect at a common point is termed a
bilinear fan, since the interaction in the matrix is located entirely in the bilinear
component. Each entry in the matrix could be produced from the equation,

R, =R, R,IR., ©6)

where R; and R ; are the row and column totals respectively, and R _ is the
grand total of the matrix. [This equation is analogous to the method for com-
puting predictions under the hypothesis of independence (multiplicative proba-
bilities) for a chi-square table.]
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FIG. 5 Predicted ratios and differences assuming two operations on one scale of sensation.
The computations have been made using successive integers from 1 to 7 as scale values. Left:
Plots ratios A/B as a function of the column value (dividend—4) with a separate curve for
each row stimulus (divisor—B). Center: Shows the ratios rescaled to parallelism by a logar-
ithmic transformation (lines connecting panels). Right: Plot differences (4 — B) as a func-
tion of column scale value (minuend), with a separate curve for each row stimulus (sub-
trahend). Note that ratios and differences are not monotonically related. Dashed lines
connect differences of 1 and corresponding log ratios.

Equation (6) provides a means for estimating scale values when they are
unknown. If there are » rows and k& columns, and if Ri]. = sj/si, then

n 1
i=1 "t
Hence the marginal sum, marginal mean (Anderson, 1970), or R ,/VR__ are all
proportional to the scale value, s.. [The last expression may be recognized as the
equation for the first centroid factor of a correlation matrix; it is also presented
by Ekman (1958).]

If Jp were alinear function, R, = as./sl. + ¢, the value of the additive constant,
¢, could be determined from the projection of the point of intersection onto the
ordinate. If J, were of the form, Rij =a(s ./sl.) b + ¢, the data would still plot as
a bilinear fan, since one could define new scale values, s’ = s? , against which the
curves would be linear. Scales derived from a ratio model are unique to a power
transformation, s’ = asb, where @ and b are arbitrary (Krantz et al., 1971). [The
letters a, b, and c¢ are used throughout this chapter for arbitrary constants, with
no carryover from equation to equation.]
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Some confusion was created by the assertion that marginal means are an “in-
terval scale” of the stimuli in the ratio model. The term “interval scale™ has two
meanings. Assuming a linear judgment function, the marginal means are linearly
related to (and hence an “interval scale” of) the scale values for the ratio model
(Anderson, 1970). The concept of “interval scale” has another meaning in terms
of ordinal uniqueness. The ratio model does not define an interval scale of the
stimuli in the ordinal uniqueness sense, since any power transformation of the
scale values would yield scales that would reproduce the rank order of the data.
That is, substituting s’ = as? for s in Eq. (4), R;; = Jg (s /s?) = Jx [(s;/5:)°]-
Since the composition of Jp and a power function is a monotonic function, the
rank order of R;; is preserved by any power transformation of the scale values.

In summary, the ratio model predicts a bilinear fan of curves that intersect
at a common point. This Erediction depends on the judgment function being
of the form: R ij=a (sj/sl.) + ¢. When the pattern of bilinearity is observed, it
is possible to estimate scale values for the ratio model from marginal sums or
means. The scales thus defined are unique to a power transformation.

Subtractive model, The right-hand panel of Fig. 5 shows the computed dif-
ferences, D;=j - i, plotted in the same fashion as the ratios in the left-hand
panel. Again, the curves are linearly related to the column scale value. In the case
of the subtractive model, however, the curves are parallel. If D,. = a (s}. - si) +c,
then Dl.]. —-Dk ;=a (sk — sl.) for all j. Hence the difference between any two rows,
say i and k, is independent of the column ;.

The parallelism implied by the subtractive model is equivalent to the condi-
tion of no row X column interaction in the analysis of variance. Under these

conditions, each entry in the matrix can be reproduced by the equation,
Djj=Dj.+D.j_D..a (7)

where D; and D, are the marginal means, and D _is the grand mean in the matrix.

Equation (7) provides a means of estimating scale values, since D.=a [s]. -
Z (s;/r)] + c. Therefore, when the data fit the model, the curves are parallel and
the marginal means are linearly related to the subtractive model scale values.

If J were a linear function, D;; = a (s]. - si) + ¢, the curves would remain
parallef.) The scale values for the subtractive model are unique to an interval scale,
since any linear transformation of the scale values, s’ =as + b, would reproduce
the rank order of the matrix entries (Krantz et al., 1971).

In summary, the subtractive model predicts no interaction between row and
column stimuli, assuming the judgment function is linear. The data should plot
as parallel lines. The marginal means can be used to estimate scale values, which
are unique to a linear transformation. However, if the judgment function is non-
linear, the model only predicts that it should be possible to rescale the data to
parallelism.
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Ordinal Indeterminacy

When the overt responses are only considered an ordinal scale (ie., if J in Fig.
3 is only assumed to be strictly monotonic), it becomes more difficult to test
models (Birnbaum, 1974a, 1974b; Birnbaum & Veit, 1974a, 1974b). If the data
show ordinal violations of the theory, it is agreed that the model should be rejec-
ted. The difficulty occurs when the data are ordinally consistent with the model
but metrically (numerically) inconsistent. When is it appropriate to transform
data to fit the model and then conclude that the model fits? If the data can be
transformed to fit the model, the scale values can be derived from the trans-
formed data, and the inverse transformation could be interpreted as the judg-
ment function (Birnbaum, 1974a, 1974b). However, such transformation may
be theoretically inappropriate; the numerical deviations may represent “true’’
violations of the theory that should not be scaled away. For more extensive
discussion of this problem including methods for dealing with it, see Birnbaum
(1974a).

The case of ratio and subtractive models is an example of this problem. The
ordinal requirements of the subtractive model and the ratio model are equivalent.
Hence it is not possible to discriminate these models on the basis of ordinal in-
formation in a single experiment without some extra constraint. Data that are
numerically consistent with the ratio model can be transformed to fit the sub-
tractive model because log(R, ) = log(sl./si) = log 5. — log s;- The center panel of
Fig. 5 shows the results of a {ogarithmic transformation of the ratios in the left-
hand panel of Fig. 5. Data that are consistent with the subtractive model can be
exponentially transformed to fit the ratio model. For a single set of data, s =
exp(s*), where s is the scale value based on the ratio representation, and s* is the
scale for the subtractive representation.

If we assume that J is linear, then ratio and subtractive models can be distin-
guished on the basis of the metric properties of the raw (untransformed) data.
However, if we do not assume that the judgment function is more than mono-
tonic, we are forced to select a representation on the basis of some arbitrary
criterion such as the task given the subjects or convenience. However, additional
criteria can be specified to help resolve some of the indeterminancy.

SCALE CONVERGENCE CRITERION

By postulating that scales should be independent of the task, additional con-
straints are provided that limit the number of permissible transformations of
the data. According to the stimulus scale convergence criterion, transformations
of the data are deemed appropriate if they simultaneously fit models to data and
lead to scales that agree. In this framework the scale attains greater status in that
it becomes an intervening construct that can be used to account parsimoniously
for an otherwise complicated set of relationships (Garner, Hake, & Eriksen,
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1956; Krantz, 1972;Krantz et al., 1971; Anderson, 1972; Cliff, 1973; Birnbaum,
1974a; Bimbaum & Veit, 1974a; Shepard, 1976).

Although a single matrix of ordinally consistent data could be rescaled to fit
either a ratio model or a subtractive model, Fig. S shows that two matrices with
the assumption of scale invariance provide greater constraint: Ratios and dif-
ferences of the same scale values are not monotonically related. For example,
75 >2—1but7/5<2/1. The dashed linesin Fig. 5 connect pairs with equal
differences of 1. Note that the ratios 2/1, 3/2, 4/3 are not equal but approach 1
as the constant interval (2-1, 3-2, 4-3) is moved up the scale (dashed curve in
middle of Fig. 5). If there are both ratio and subtractive operations, then there
will be two different rank orderings in the matrices. Since the scale that repro-
duces the order of the ratios is unique to a power function, and the subtractive
scale is unique to a linear function, it follows that the common scale that repro-
duces the two different orders is unique to a similarity transformation. Thus, if
the two orders are consistent with the models and interlocked by a common
scale, the scale values constitute a ratio scale (Krantz et al., 1971).

On the other hand, if there is only one operation for both “ratios” and “dif-
ferences,” then both instructions will generate the same ordering of the pairs
(Bimbaum & Veit, 1974a). If R..=J, (s, 0 5,) and D,, = J, (s; o s.), where o

. ij "R \j i R —ID J i _
represents the comparison operation, then s, o s$; =Jp (Di.); hence, R;; =
Jr [.ID'1 (Di.)] . Since Jg and Jp, are strictly monotonic, it follows that kij
will be monotonically related to D, if there is only one operation.

In summary, there are two simple possibilities: (1) the two rank orders will
be distinct, consistent with the respective models and appropriately interlocked
by a common scale; (2) the rank order of the data in both matrices will be the
Same, consistent with the hypothesis that subjects perceive only a single com-
Parison between a pair of stimuli. It is also possible that the data would be in-
consistent with both of these alternatives, calling the models and/or the scale
convergence criterion itself into question.

Empirical Evidence: One Operation

Figure 6 plots mean estimations of “ratios” of darkness, mean ratings of “dif-
ferences,” and rescaled values. The stimuli were those of Fig. 4, which were
administered to 44 undergraduates at the University of Illinois. Half the subjects
performed either task first, with no evidence of task order effects.

The left-hand panel of Fig. 6 shows mean “ratio” estimations plotted against
Marginal means for the column stimulus. The mean estimations (open circles)
tome very close to the bilinear pattern (lines) predicted by the ratio model.

The right-hand panel plots the mean “difference” estimations against the
column marginal means. The data appear nearly parallel, as predicted by the
:Wbtractive model. Considering the fit of the raw numerical data to the models
Implied by the tasks, it would be tempting to conclude that subjects are actually
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FIG. 6 Mean “ratios” and “‘differences” of darkness of stimuli in Fig. 4, plotted as in Fig.
S. Although “ratio” task data fit ratio model, and “difference” task data fit subtractive
model, both sets of data have equivalent rank orders. Center panel shows data rescaled to
parallelism. Transformations are represented by lines connecting panels. Note that the data
are not like the predictions shown in Fig. 5, since both sets of rescaled values coincide.
(From Birnbaum and Stegner, 1976.)

computing ratios for “ratios” and differences for “differences.” It is shown later,
however, that this interpretation leads to contradiction of the scale convergence
criterion.

The center panel shows the results of separate rescalings of both sets of data
to parallelism via MONANOVA (Kruskal & Carmone, 1969), a computer pro-
gram that seeks a monotonic transformation to reduce interactions in analysis
of variance. Both the “ratio” task data (open circles) and the “difference” task
data (solid points) appear to coincide after transformation. The two tasks seem
to generate a single order that can be represented by either a ratio model, or a
subtractive model, but not both.

It may seem surprising that subjects given two different tasks provide num-
bers for the respective matrices that do not obey the ordinal requirements of
two operations on one scale. If the subjects had covertly assigned numbers to
the stimuli and then calculated ratios and differences on these covert numbers,
the results would have been quite different, because the two matrices would
have obeyed the predictions of two models on a common scale. Instead, if we
accept the premise that the scale values of darkness are independent of the task,
it appears that the comparison process is also independent of the task to judge
“ratios” or “differences.”
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More Evidence

The results of this demonstration experiment are typical of results obtained with
judgments of the heaviness of lifted weights (Birnbaum & Veit, 1974a), numeri-
cal magnitude (Rose & Birnbaum, 1975; Birnbaum, 1974b), shades of gray
(Veit, 1974), likeableness of adjectives (Hagerty & Birnbaum, 1976), and loud-
ness (Birnbaum & Elmasian, 1977).

Birnbaum and Elmasian (1977) presented pairs of 1000-Hz tones varying in
sound pressure level and asked subjects to compare the loudness of the two
tones. The pairs were constructed froma 5 X 9, B X A, factorial design in which
the first tone (B) varied from 42- to 90-dB SPL in 12-dB steps; the second tone
(A) covered the same range in 6-dB steps. Each subject served in four daily
sessions, two for “ratios” and two for “differences,” completing 10 replications
of the design per session. Separate analyses, performed on the data for each sub-
ject-day, led to the conclusion that estimates of “ratios” and ratings of “dif-
ferences” are each roughly numerically consistent with their respective models.
The mean “ratio” estimations, shown in Fig. 7, plotted as in Fig. 6, are nearly
bilinear. The mean “difference” ratings (9-point scale), shown in Fig. 8, are near-
ly parallel. However, the two orders for each subject are approximately the same
for both tasks and can therefore be represented by a single comparison operation.

The data for both tasks were transformed to parallelism. Figure 9(A) shows
the predicted results for the transformed scores, based on the theory that the
subjects can compute both ratios and differences of loudness. In both panels,
solid points connected by straight lines represent rescaled ‘“differences,” open

LLLLELL T L 1

o]

3
I
1

g
|
|

400}- _

300F -

200+ —

Mean "Ratio" Estimation

100~ —

F.IG. 7 Mean estimation of *‘ra-
Ho” of loudness, plotted as in
left panel of Fig. 6. Modulus was
190- (From Birnbaum and Elm- g '“10'10' '256 300 400
asian, 1977.) Marginal Mean "Rotio




Mean Rating of "Difference"

Predicted Orders

T T T

M.M."Ratio’

S S W R S SR WU | i

4 A. Predictions Based 5]

3 /s
rd

S 6 7 8
Marginal Mean "Difference”

F1G.8 Mean rating of “differ~
ence,” as in the right panel of
Fig. 6 (solid points). Open circles
plot marginal mean “ratios” as a
function of marginal mean “dif-
ferences.” Open squares plot mar-
ginal mean log (‘“ratio”) against
marginal mean *‘difference.” Mean
“ratios” and log “ratios” are to
be read against far-right and right
ordinates, respectively. Linearity
of open squares agrees with the
theory that one operation under-
lies both tasks and that magni-
tude estimations are an approxi-
mately exponential function of
ratings. (From Birnbaum and
Elmasian, 1977.)

I 1 L | | I i | 1

on Two Operations -

Mean Transformed Response

)
(€]

D

W

N

—

o

)
s

U
N

]
D

- B. Empirical

| T 1 I | 4 1 T

—

L 1 L
45 48 54 60 66 72 78 834 90

R T R R S S
42 48 54 60 66 72 78 84 90

Sound Pressure Level in Decibels
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baum and Elmasian, 1977.)
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circles represent rescaled ‘“‘ratios.” Although the particular hypothetical predic-
tions shown in Fig. 9(A) were computed using scale values for both tasks that
were power functions of physical intensity, the general relationship between the
solid and dashed curves would remain the same for other scale values (transform-
ation of the abscissa). Figure 9(A) shows the relationship between transformed
ratios and differences, showing again how different the results should be if sub-
jects actually used two operations.

Figure 9(B) shows the actual mean transformed scores, plotted as a function
of sound pressure level for the second stimulus (A) with a separate curve for
each level of the first stimulus (B). The mean transformed scores are representa-
tive of the single subject data presented by Birnbaum and Elmasian (1977).
Each set of rescaled data is nearly parallel, and the two sets are nearly identical.
The similarity of the orders can be seen by the coincidence of circles (represent-
ing rescaled “ratios™) and lines (connecting rescaled ‘‘differences’). These results
are consistent with the hypothesis that there is but one loudness comparison for
“ratios” and “differences.”

The broken curves in Fig. 9(B) connect pairs w1th equal physical ratios. As-
suming a ratio model, the power function (s = adb ) implies that equal phys1ca1
ratios should receive equal “ratio” judgments, since R =Jr (s 1) =Jg (d) /

b) IR [(@ 12 )b ] . Instead, the broken curves of Flg 9(B) show that equal
physxcal ratlos recelve more extreme judgments at the upper end of the scale.
Scale values for the ratio model are inconsistent with a power function for
loudness as a function of physical intensity.

Theories We Can Reject

The finding that instructions to judge “differences” and “ratios” lead to the
same ordering of stimulus pairs allows us to reject the theory that subjects use
two operations on a common scale. That is, for the continua and conditions
studied in our experiments, we reject the theory that can be explicated in the
following four premises:

P, (independence): The scale value of a stimulus is independent of
the stimulus with which it is compared.

P, (scale convergence): s* = s; the scale value of a stimulus is indepen-
dent of instructions to judge “ratios” or *‘differ-
ences ”

P, (ratio model): 11 =Jg (s /s )

P (subtractive model): D;; = /D (s —5;%)

The first premise explicitly assumes that the scale value of row or column stim-
ulus js independent of the stimulus with which it is paired. The scale values are
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assumed to be independent of the task in premise P2. In premises P3 and P,,
which state the models, /p and Jp, are any monotonic functions.

The finding that both models fit the data seems inconsistent with previous
hypotheses that the reason that “ratio” and “interval” techniques yield different
scales is due to a computation error. For example, Stevens (1971) contended
that “the human being, despite his great versatility, has a limited ability to effect
linear partitions on prothetic continua.” The contention that subjects make a
miscalculation in computing differences leads to violations of the subtractive
model. The present data show that whatever subjects are doing for “‘intervals,”
they order the pairs in the same way for “ratios.” There seems no evidence to
support the contention of two operations with a distortion or bias in one com-
putation, since both sets of data satisfy the ordinal requirements of the subtrac-
tive (or ratio) model of comparison.

The data do not support the theory that there are two operations with two
scales of sensation, one for “ratios” and another for “intervals,” both of which
are power functions of physical intensity (Marks, 1974; Stevens, 1971). If
s = &% and s* = ©°, then s* = /0, Therefore, the two scales would be related
by a power function. This theory turns out to be equivalent in its ordinal predic-
tions to the theory that there are two operations on one scale. In fact, premise
P2 could be replaced by s* = as B+ 7, and the theory would still predict different
orders for the two tasks.

The data do not require more complicated theories, for example, that there is
one operation with two scales of sensation or that neither model could provide
a representation of either set of data.

Theories We Can Entertain

It would be possible to retain the previous premises P,,P;,and P, on the basis
of the present data if the scale convergence premise (Pz) were replaced with the
premise, s = exp (s*). However, to retain the scale convergence criterion requires
that the other premises be modified, because the entire theory (Pl — P,) cannot
account for the data. There are two simple theories that retain scale convergence
and “save the phenomena” (reproduce the data of these experiments).

1. Ratio theory:
P,: (independence)

P,: (scale convergence): s* =
P,: (rat?o model): Rij =Jr (sj/sl.)
P.: (ratio model): Dl.].= Jp (s]. /5;*)
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This theory asserts that subjects compare stimuli by computing ratios,
irrespective of the instructed task. The data for the darkness of the dot
patterns (Fig. 6) imply that J is at least of the form R =a(s /s) +c,
since the data are very nearly bilinear. The judgment functlon fé)r ratings
of “differences,” J,, would have to be approximately logarithmic to
account for the near-parallelism of the “difference” ratings.

According to the ratio theory, scale values estimated from the column
marginal means, R, are 50, 67, 92, 122, 167, 223, and 287 for the seven
levels of darkness. lI‘hese scale values can be well approximated as a power
function of the number of dots, s = & 72 Since scale values defined by
the ratio model are unique only to a power scale, the exponent would have
little meaning unless it were assumed that J, were linear.

2. Subtractive theory: This theory asserts that the basic comparison is a dif-
ference, irrespective of task.

(independence)

(scale convergence): s* =s

: (subtractive): R;; =Jg (s; — s,)

: (subtractive): D,; i =Jp (s 5;%)

Accordmg to subtractlon theory, the data for the darkness example
imply that Jp must be nearly exponential, since the *“‘ratio”-estimations
(left panel of Fig. 6) are nearly bilinear. If R,; = exp(s; — 5; ;), it follows that
a subtractive operation would lead to data satxsfymg the predlctlons of the
ratio model, because exp(s]. —s;) =exp(s;)/exp(s;).

The scale values for the subtractive model, estimated after transforming
the data for both tasks to parallelism, are: —1.48, —1.00, —.50, —.02,
.50, 1.02, and 1.50. These scale values are very nearly equally spaced, as
are the logarithms of the number of dots, indicating that the scale val-
ues could be well approximated by a logarithmic psychophysical func-
tion of the number of dots, s = log .

-;UO:U Nhu u--:-U

Summary and conclusions. The data are compatible with the theory that the
same comparison operation applies for both tasks, since the two orderings are
equivalent. If the operation is represented by a ratio model, then the scale values
for darkness can be fit as a power function of number of dots. Furthermore, the
ratio interpretation implies that the judgmental transformation for magnitude
estimation must be at least a power function and perhaps even linear. To explain
the near-parallelism for the difference task would require that the J., function
be approximately logarithmic. If the operation is represented by a subtractive
model, however, then the judgmental transformation for “ratios,” Jp, would
be exponential, and J,, would be approximately linear. The psychophysical
function would be well approximated by a logarithmic function. Hence the con-
clusions for the stimulus and response scales derived from the data depend on the
model or theory that is assumed.
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The simplest interpretation appears to be that there is only one comparison
operation, only one psychophysical scale, and two different judgmental trans-
formations depending on whether the response is a category rating or magnitude
estimation. This interpretation is consistent with Torgerson’s (1961) theory
and is consistent with the data of numerous experiments using factorial designs
in which subtractive and ratio models can be evaluated in tandem. If the opera-
tion is a ratio, the Jp transformation for magnitude estimation would receive
support from the fact that the data are numerically consistent with the model,
but the J, transformation for ratings would be near-logarithmic. On the other
hand, if the operation is subtraction, Jp would be nearly linear and Jg exponen-
tial.

The inferred psychophysical scales, s, psychophysical function, H, and judg-
mental transformations, J, all depend on the assumed representation. Does it
make sense to ask which operation is “really” correct? Torgerson (1961) noted
that this question can not be resolved in the two-stimulus case. The next section
discusses a nonmetric four-stimulus approach in which this question becomes
meaningful in the sense that experiments could refute one theory or the other.

Scale and Theory Dependence

A simplistic view of functional measurement maintains that the metric fit of a
model simultaneously “validates” the model and the response scale. Had the
data for only one task (either the “difference” or “ratio”) been obtained, it
might have been tempting to conclude that the fit of the model “validates” both
model and scale. However, the scale convergence criterion combined with the
data for the two tasks implies, in spite of the metric fit of both models to the
raw data, that at least one of the models and one of the scales must be rejected.
The present findings show that extreme caution must be used in interpreting the
metric fit of a model as evidence for “validity.”

Birnbaum and Veit (1974b) introduced the term scale-dependent to refer to
research in which the determination of the “appropriate” model depends on the
arbitrary choice of the “valid” dependent variable, and the “validity” of the
response procedure circularly depends on the arbitrary choice of model. For ex-
ample, if the validity of ratings were assumed for “difference” judgments, the
subtractive model would be chosen; the ratio model and magnitude estimation
would be rejected. On the other hand, if the validity of magnitude estimations
were assumed, then the ratio model would be preferred, and it would be con-
cluded that ratings and the subtractive model are not valid. Thus the choice of
model depends on the choice of dependent variable and vice versa.

In scale-dependent tests of the size-weight illusion, Anderson (1972) fit an
additive model to rating data; however, J. C. Stevens and Rubin (1970) and Sjo-
berg (1969) fit ratio models using magnitude estimations. Sarris and Heineken
(1976) replicated these results for the size-weight illusion in a single experiment
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in which only the change of dependent variable sufficed to change the data from
parallel to bilinear. Weiss (1972) found that ratings of average darkness of a pair
of gray chips were almost consistent with a constant-weight averaging model
(additive), whereas magnitude estimations were nearly consistent with a geometric
averaging model (multiplicative). Birnbaum and Veit (1974b) have noted that if
the response procedure only affects the judgment function, J, and if magnitude
estimations are exponentially related to ratings, it follows that if ratings fit an
additive (or subtractive) model, magnitude estimations would be expected to fit
a multiplicative (or ratio) model.

These scale-dependent experiments, when analyzed in conjunction with the
scale-convergence criterion, appear consistent with the proposition that the op-
erations are unaffected by the response procedure, but the judgmental transfor-
mation depends on whether category ratings or magnitude estimations are used
as the dependent variable. These experiments also illustrate that tests of internal
consistency and certain types of “cross-task validation” (e.g., Anderson, 1972),
in which the same model is applied for both tasks, are not diagnostic tests of
the “validity” of the models, scales, or response procedures, since choice of a
different ‘dependent variable can alter the apparent form of both models while
still retaining cross-task scale convergence.

SCALE-FREE TESTS

The scale-free approach requires only the ordinal information in the data, plus
some theoretical assumptions, to test models with far greater constraint than has
been achieved in the past. The scale-free approach was developed by Birnbaum
(1974a, experiment IV) to test the additive and constant-weight averaging models
of impression formation. Birnbaum and Veit (1974b) have applied it to the size-
weight illusion, and Veit (1974) has employed a novel application of the tech-
nique to the ratio-difference problem. The following subsections expand on the
work of Veit (1974, in press) and describe a recent experiment by Hagerty and
Birnbaum (1976) that illustrates the scale-free approach for the ratio-difference
problem.

Quantitative Relations for Pairs

Suppose for the moment that the “true” operation is subtraction. This could be
so for two distinct reasons: (1) it may be that for some reason subjects have only
one operation for comparing two stimuli—perhaps, metaphorically, they do not
have the neural circuitry to do anything else; and (2) on the other hand, it may
be that the operation employed depends on the internal stimulus representation.
Perhaps the sensation values should be represented by points on a line with ar-
bitrary origin (i.e., places, not lengths). In such a representation, distances or
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differences are sensible, but ratios are not. Thus, when asked to judge “ratios,”
the subject may actually judge differences (Birnbaum & Veit, 1974a).

If the second interpretation were correct, then intervals (differences) would
have a well-defined zero point even if the stimulus values did not. Hence subjects
might be able to judge both ratios and differences of pair intervals, even if they
could not judge both ratios and differences of stimulus magnitudes (Veit, 1974).
On the other hand, if the interpretation that there is only one operation for such
judgments were the case, then only one operation would be observed for com-
parisons of pairs.

In order to achieve tests of these possibilities, it is necessary to employ tasks
in which the subject receives four stimuli on each trial and is asked to compare
two pair relations. The four tasks discussed below are “ratio of ratios,” “ratio
of differences,” “difference of ratios,” and “difference of differences.” The
next subsection outlines four models corresponding to these four tasks.

Four Models of Comparison of Pairs

Ratio of ratios model. This model can be written:

RRyji; = Jrr [(si/sp) | (s1/s)] (8)

where RR ; is the “ratio of ratios” estimation of the ratio of stimulus levels
j toi, relatlve to the ratio of stimulus levels ! to k; Jp p is the monotonic judg-
mental transformation from impressions to overt responses; s,, Sp 8 and s, are
the scale values of the four stimuli, factors 4, B, C, and D, respectlvely, ina four-
way factorial design.

Predictions for the ratio of ratios model are shown in Fig. 10, where the cal-
culations are based on scale values of successive integers from 1 to 7. The experi-
mental design portrayed in the upper left of Fig. 10is a 7 X 7 X 3 design in which
the numerator pair is composed of a 7 X 7, A X B, factorial design, and there
are three levels of the divisor ratio, C/D, as shown in the figure.

The model predicts a trilinear interaction, in which the bilinear 4 X B interac-
tion is multiplied by the effect of the divisor ratio. Hence, each 4 X B interaction
should be similar, w1th greater divergence for smaller divisor ratlos It should be
noted that since J" RR (RRI x) = (s 1s;) | (s,/s,), log [J (RRl,k,)]

S; = log s; — log 5; +log St hence this model is ordinally add1t1ve in form.

Ratio of differences model,  This model can be written:

RDyjp = Jrp (55— [ (57— 53], )]
where RDI %1 1s the judged “ratio of differences” of the difference between stim-
uli 5; and s; relative to the difference between s; and sz, Jgp is the judgmental
transtormatlon

Metric predictions for this model are shown in the lower left panel of Fig. 10.
Since the numerator contains a subtractive model, the curves for the levels of
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FIG. 10 Predictions for four polynomial theories of comparison of pairs. Successive inte-
gers from 1 to 7 are used as scale values for factors 4 and B. Separate fans of curves are
shown for the three divisor or subtrahend pairs (open circles). The two *‘difference” tasks
show predictions only for upper triangular design, in which 4-B differences are positive.

A X B factors {s — §;) are parallel, indicating no interaction between 4 and B.
However, the rec1procal of the divisor difference multiplies this numerator dif-
ference. Hence the smaller the divisor difference, the larger the vertical spreads
and slopes of the curves. Therefore, the model predicts a bilinear interaction
between the numerator and divisor difference. This model is a type of distribu-
tive model (Krantz & Tversky, 1971), in which the two dividend factors (4 X
B) are jointly independent of the divisor (i.e., the ordering in the A X B matrix
for each level of CD is the same), but the other pairs of factors are not (i.e., the
ordering of the 4 X Divisor matrix depends on the level of B). Hence this model
can be distinguished from the others on the basis of ordinal properties of the
data. For more detailed discussion of diagnostic analyses for the ratio of differ-
ences model, see Veit (1974). Conjoint measurement analyses of general classes
E’f polynomials are discussed by Krantz et al. (1971) and Krantz and Tversky
1971).

Difference of ratios model, This model can be written:

DRukI DR [(S 18.) — (5,181, (10)

where DR 47 is the rating of the “difference between two ratios,” and Jpp
is the JUdgmental transformation for this task.

Predictions for this model are shown in the upper right panel of Fig. 10 for
the positive triangle of the 7 X 7 design (where S; =S > 0), with a separate plot
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for each subtrahend ratio (s/s, ). The predicted pattern is a bilinear A X B fan
for each subtrahend. The bilinear fans for different subtrahends should be con-
gruent, differing only by an additive constant. Thus there is a bilinear interac-
tion between factors 4 and B, but factors 4 and B should not interact with the
subtrahend pair (CD). This model is a dual-distributive polynomial that can be
distinguished from the others on the basis of ordinal information in the data
(Krantz & Tversky, 1971).

Difference of differences. This model can be written:

DDijkl=JDD [(s].—sl.)—(sl -5, - (11)
where DD, ., , is the rating of the “difference between two differences,” and JDD
is the judgmental transformation.

The lower right panel of Fig. 10 shows predictions for the positive upper
triangle of the 7 X 7 design (where Sj— 8= 0). The predicted pattern is one of
three-way additivity. Each set of curves is parallel, differing only in an additive
constant for each subtrahend pair. Note that although this model is also formally
additive and therefore equivalent in an ordinal sense to the ratio of ratios model,
scale convergence provides an additional constraint that implies different order-
ings when the data for the two tasks are compared.

Possible Outcomes

The constraints of the four-stimulus models are such that data can be diagnosed
as additive, distributive, or dual-distributive [Eqs. (8) and (11), (9), or (10),
respectively] on the basis of the ordinal properties of the data. Scale convergence
among the four sets of data (and with the scales from the two-stimulus experi-
ments) provides additional constraints on possible solutions so that different
potential outcomes can be distinguished on the basis of the data. Five of these
possible outcomes deserve closer attention.

One operation. One simple possibility is that there is but one operation by
which either a pair of stimuli are compared or a pair of stimulus pairs are com-
pared. If this were the case, then the data for all of the four-stimulus tasks could
be rescaled to fit either the ratio of ratios model or the difference of differences
model. If all of the four-stimulus tasks resulted in the same ordering, the single
comparison operation would remain indeterminate.

Subtraction theory. A second possibility is that the basic operation by
which two stimuli are compared is subtraction (Bimbaum & Veit, 1974a; Veit,
1974). This could occur if the subjective stimulus representation is an interval
scale, like points along a line with undefined origin. The apparent fit of the ratio
model for the “ratio” task would be accounted for by postulating that the judg-
mental transformation for magnitude estimation of “ratios” is exponential. This
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theory suggests that subjects could judge ratios of intervals, since differences
have a well-defined zero point even when the stimuli do not. Data for the other
four-stimulus tasks might be expected to be consistent with the difference of
differences model. The “ratio of ratios™ tasks would be expected to require a
logarithmic transformation to be fit to the difference of differences model, since
the dependent variable, magnitude estimation, is presumed to be an exponential
function of subjective value. The scales derived from these models would then
agree with the subtractive theory of the pair tasks.

Ratio theory. The basic operation could be a ratio, upon which either dif-
ferences or ratios could be judged. If this theory were the case, than all of the
data could be fit to the ratio and ratio of ratios models, except for the “differ-
ence of ratios” task; this task should fit the difference of ratios model, defining
scales that agree with the ratio interpretation of the other tasks.

Comparison of pairs validity. 1t may be that the data for all of the four-
stimulus tasks fit their respective models with a single underlying scale as in Fig.
10. If this outcome were obtained, the common scale could be used to decide
between the ratio and subtractive theories for the two-stimulus tasks.

Two worlds. Perhaps there are two subjective “worlds,” one for each opera-
tion, with an exponential relationship between the scales. Perhaps the “ratio,”
“ratio of ratios,” and “difference of ratios” data would fit their respective
models with one scale. But suppose the “difference,” “difference of differences,”
and “ratio of differences” tasks could be fit to their respective models with an-
other scale that differed from the first. This “impossible figure” outcome, which
would look consistent within each realm but inconsistent between realms, could
come about if the subject assigned numbers to each pair and computed on the
numbers to compare pairs.

Evidence for Subtraction Theory

Shades of gray. Veit (1974, Experiment I) found that ratings of “differences”
and estimations of “ratios” of darkness of gray papers were monotonically re-
lated, consistent with the theory that one operation applies to both tasks. In a
second experiment, she found that magnitude estimations of “differences” gen-
erate the same ordering of pairs as magnitude estimations of ‘“ratios” and cate-
gory ratings of “intervals.” However, magnitude estimations of “differences”
showed a divergent interaction that required rescaling (interpreted as J"]) to
render the curves parallel. This finding is consistent with the interpretation that
the comparison operation and scales are independent of the response procedure
but that the choice of response procedure affects the judgmental transformation.
Beck and Shaw (1967) reached similar conclusions for magnitude estimations
of loudness intervals.
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In her third experiment, Veit (1974) introduced the ratio of differences model
as a test of the subtractive representation. Figure 11 plots the magnitude estima-
tions of “‘ratios of differences” as in the lower left of Fig. 10, except that larger
divisor differences are on the right. The data clearly show the pattern predicted
by the ratio of differences model. Consistent with the model, Fig. 12 shows that
the small A X B interactions seen in Fig. 11 can be removed by separate trans-
formation of the data for each divisor difference. It was also possible to fit the
ratio model to the numerator/demoninator [(4 — B) / (C — D)] comparisons.
However, as predicted by the ratio of differences model, it was not possible to
eliminate interactions between 4 or B and the divisor difference. Tests of joint
independence (see Krantz et al., 1971) for individual subjects were consistent
with the interpretation of the ratio of differences model and inconsistent with
the other simple models.

The scale values for the seven levels of reflectance derived from the ratio of
differences model were used to evaluate alternative theories for the two-stimulus
judgments. These scale values were consistent with the subtractive representation
of the simple “difference” and ‘‘ratio” tasks. The ratio theory implies scale
values that contradict the ratio of differences model. Veit (1974, in press) noted
that this finding makes the ratio interpretation implausible. In order to represent
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FIG. 11 Mean estimations of “ratios of differences.” Each panel shows results for a dif-
ferent divisor difference (C-D), labeled ‘‘standard” in the figure. Curve parameters are re-
flectance values for subtrahend (factor B); abscissa spacing represents estimated scale values
for minuend stimulus (factor A). (From Veit, 1974.)
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the numerator “difference” with a ratio model and preserve scale convergence,
exponential transformation of Eq. (9) represents “ratios of differences” by the
model,

RDijkI = ‘Sij Jrp {exp [(sj - S,')/(Sl - Sk)]} (12)
6;iJrD {[exp(sj — 511 61 = sp)}

hence

RDyjry = 8,5 p 4(s%/s,491 161 = s} (13)

where s* = exp(s), and 6, is the sign of 5. — s;. The ratio interpretation requires
two different models for “‘differences,” sj*/s,-* and s; — 5 (for numerator and
denominator “differences,” respectively), with two different scales, s* and s.
Furthermore, an instructed “ratio” would be represented by two different
models: a ratio model for “ratios” of two stimuli and an exponential-power
function for “ratios of differences.”

Because of these complexities, Veit (1974) rejected the ratio theory as a
Visble alternative. Scale values derived from the subtractive representation of
Magnitude estimations of “ratios,” ratings of “differences,” magnitude estima-
tions of *differences” and “ratios of differences” were all in close agreement,
Consistent with the simpler interpretation of the subtractive theory (Veit, 1974,
In press).

The possibility remains, however, that the difference of ratios model would
fit data obtained in a “difference of ratios” task, yielding scales that would agree
With the ratio interpretation of the “ratio” and difference,” two-stimulus tasks.
This “two worlds” potentiality and others were checked by employing all of the
four-stimulus tasks in an experiment by Hagerty and Birnbaum (1976.)
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Likeableness of adjectives. Hagerty and Birnbaum (1976) studied judg-
ments of the likeableness of hypothetical persons described by adjectives. For
example, how much more would you like someone who is sincere than someone
who is mean? Six tasks were employed, including both of the two-stimulus tasks
and all of the four-stimulus tasks. The same subjects performed several tasks the
first day for practice, then returned for two more days to complete all of the
tasks. Adjectives were chosen on the basis of normative ratings to represent seven
levels of likeableness, for example: cruel, irritating, clumsy, hesitant, thrifty,
capable, and sincere.

Data for the ““ratio” and “difference” tasks are shown in Fig. 13. The factor-
ial stimulus design was a 4 X 7, B X A, using different adjectives for the two
factors. In the left panel of Fig. 13, the “ratio” estimations (with a modulus of
100) show the approximate bilinear form of diverging curves when plotted
against the marginal means. The right panel of Fig. 13 shows that the “differ-
ence’ ratings (on a 9-point scale) are approximately parallel. Both tasks yield
data that can be rescaled to approximate parallelism as shown in the center panel
of Fig. 13. The rescaled “ratios” (circles) and “differences” (points) are nearly
identical, consistent with previous results and the interpretation that one com-
parison operation underlies both tasks.

The assumption of the ratio model and the linearity of magnitude estimations
would imply that the marginal means (abscissa spacing of Fig. 13) represent a
scale of likeableness of the adjectives. The interval between the lowest and
middle adjectives hesitant-cruel is less than the interval between the two highest
adjectives sincere-capable. The subtractive representation (abscissa spacing in
center panel) leads to the opposite conclusion: The hesistant-cruel interval is
the larger.
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FIG. 13 *“Ratios” and “differences” in likeableness of adjectives, plotted as in Fig. 6. Left:
Shows median “ratios.” Center: Shows that rank orders for both tasks are nearly identical
and that rescaled data are roughly parallel. Assuming a subtractive model for both tasks, the
transformations to overt responses (arrows) represent judgmental functions. Right: Shows
median “differences.” (From Hagerty and Birnbaum, 1976.)
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For the four-stimulus tasks, the 4 X 7 design was combined with three divisor
or subtrahend pairs (truthful-phony, truthful-listless, and practical-listless).

Figure 14 presents the results for the “ratio of differences” task plotted as
in Figs. 10 and 11. Data for the largest divisor difference (truthful-phony) are
on the left. The curves in Fig. 14 show the form predicted by the ratio of dif-
ferences model (lower-left of Fig. 10): The smaller the divisor difference, the
larger the slopes of the curves and vertical spreads between the curves. The lower
panels plot transformed medians, showing that for each divisor, the data can be
separately rescaled to parallelism. Other ordinal tests also indicated that the
data could be represented by Eq. (9), and that monotonic transformation could
not fit the data to any of the other models.

In sum, the “ratios of differences” in likeableness are consistent with the
ratio of differences model, in agreement with the findings of Veit (1974).

Results for the “ratio of ratios” task are shown in Fig. 15, plotted as in Fig.
10. The median estimations, plotted in the upper panel as a function of marginal
means, show the approximate trilinear divergent interactions anticipated by the
ratio of ratios model. The lower panels show the rescaled medians (following
monotonic transformation to fit the difference of differences model). Parallel-
ism, linearity, and congruence of the three sets of curves would be evidence that
a difference of differences (or ratio of ratios) model is ordinally compatible with
the data. In spite of some deviations, the data appear in approximate agreement
with the model.
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Figure 16 shows median ratings of “difference of differences” in likeableness
for that portion of the 4 X 7 design in which the column adjective was rated on
the average more likeable than the row adjective. Data have been rescaled to fit
the difference of differences model; rescaled medians are plotted against estima-
ted scale values in the lower panels. The near-linearity, -parallelism, and -con-
gruence of the sets of curves is consistent with the predictions (Fig. 10) of the
difference of differences model.

Median ratings of “‘difference of ratios” are shown in Fig. 17, plotted as in
Fig. 16. The data do not conform to the predictions of the difference of ratios
model (see Fig. 10), which predicts diverging fans for each set of curves, nor could
the data be transformed to fit the difference of ratios model. Instead, the data
are very similar to the data for “difference of differences” (Fig. 16) and can be
rescaled to fit the same model, yielding transformed values (lower panel of Fig.
17) that are nearly congruent with transformed values in Fig. 16. It thus appears
that the complicated “two worlds” outcome did not materialize, since the “dif-
ference of ratios” task can be represented by a difference of differences model.

The scale convergence criterion can be used to select a set of representations
for all of the tasks that give a unified picture of these data. Figure 18 provides
a summary of tests of scale convergence for the simplest interpretation of the
data.
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placed .5 units on the ordinate. Linear agreement of the scales is consistent with the theory
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The most attractive description of all of the data is that the subtractive model
applies to “ratios” and ‘‘differences” and that the difference of differences
model represents not only “differences of differences” but also “ratios of ratios”
and “differences of ratios.” There is only one ratio operation in all of the models,
for “ratios of differences,” where the ratio of differences model is applicable.
Figure 18 shows the scale values for the seven column adjectives estimated from
these models, plotted as a function of the average of the scale value estimates.
Each set of scale values has been shifted .5 units on the ordinate;identity lines
have been drawn in to aid the examination of linearity.

The two lowest curves show that when the subtractive model is used to de-
rive scales from simple “ratios” and “‘differences,” the scale values are in close
agreement with scales derived from the other tasks. The top two curves show
that “differences of ratios” and “‘differences of differences” yield scales that
are nearly linearly related to the others when fit to the difference of differences
model. The third curve from the top shows that “ratio of ratios” judgments,
even though they require drastic (approximate logarithmic) transformation,
yield scales in approximate agreement with the others when the data are fit to
the difference of differences model. If the subjects were truly computing ratios
of ratios using common scale values, the plotted scale values (for the difference
of difference model) would have been a logarithmic function of the other scale
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values. The “ratio of differences” task is the one that really specifies the system.
Scale values derived from this model agree with the subtractive theory of all of
the other tasks. To replace the subtractive operations in the models with ratios
while retaining scale convergence would require that the ratio of differences
model be replaced with the complex model of Eq. (13), in which there are two
different scales and two different comparison processes for “differences,” and in
which “ratio” is modeled by a power equal to the reciprocal of a difference.
Therefore, the subtractive theory (the set of models shown in Fig. 18) appears to
give the simplest and most coherent account of all of the data in terms of a
unified scale of likeableness for the adjectives.

TENTATIVE THEORETICAL CONCLUSIONS

The data reviewed here form a simple, consistent picture that justifies discussion
of a rather different set of theoretical propositions from those of certain currently
popular views. It would be helpful to see replications of the four-stimulus experi-
ments such as those of Veit (1974, in press) and Hagerty and Birnbaum (1976)
using other stimuli. If the results of these experimentshold up in further research,
they go a long way toward explaining the long-standing controversy of “ratio”
versus “interval” scales, clarifying the issues of stimulus comparison, stimulus
representation, and judgment.

Comparison Processes

Torgerson’s (1961) theory that subjects perceive only a single perceptual com-
parison between two stimuli was based in part on the approximately logarithmic
relationship between category ratings and magnitude estimations (Torgerson
1960). It was also based on Garner’s (1954) finding that subjects tended to make
the same settings when instructed to adjust a tone to either “bisect” a loudness
interval or to establish equal “ratios.” Stronger evidence for the idea that there is
only one operation is provided by results of factorial experiments in which dif-
ferent theories make different ordinal predictions for the data. In factorial ex-
periments with loudness, darkness, likeableness, and heaviness judgments, it
appears that judgments of “differences” and “ratios” of two stimuli are mono-
tonically related, consistent with Torgerson’s hypothesis that the comparison
process is independent of the task (Birnbaum & Veit, 1974a; Birnbaum & El-
masian, 1977; Hagerty & Birnbaum, 1976; Rose & Birnbaum, 1975; Veit, 1974,
see also Schneider et al., 1976).

Torgerson (1961) contended that if the subject appreciates only a single
relationship between a pair of stimuli, it would not be possible to test empiri-
cally between distance and ratio interpretations of this relation. Some have con-
cluded that it would never be meaningful to ask which representation was the
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“correct” one, since for a single two-factor design, ratio and subtractive models
cannot be differentiated on the basis of ordinal tests. However, the scale-free
tests possible with four-stimulus tasks, together with the criterion of scale con-
vergence, provide the leverage to differentiate alternative theories of stimulus
comparison. Instructions to judge “ratios” and “differences” do lead to two dis-
tinct judgment orders when the objects of judgment are stimulus differences.
Scales values defined by the subtractive model for both two-stimulus tasks
agree with those derived from the ratio of differences model applied to judg-
ments of “ratios of differences” and they agree with scales derived from a dif-
ference of differences model applied to the other four-stimulus tasks. Since the
results of the four-stimulus experiments interlock with the two-stimulus results,
it appears that the process by which two stimuli are compared can best be
represented by the subtractive model.
In summary, the following premises are consistent with the data:

P, (independence): The scale value of a stimulus is independent
of the stimuli with which it is compared.
P, (scale convergence): The scale value of a stimulus is independent
of tasks to judge “ratios,” “differences,”
“ratios of ratios,” “ratios of differences,”
“differences of ratios,” or “differences of
differences.”
P, (magnitude estimation): ME =Jy ;)
P, (category judgments): CJ =Je (s
Pg: R =Jg (s -5;)
Pg: D /2 J (s] $;)
Py: DRy = DR [(s = 8) = (5, - 5)]
Pg: DDijkI DD [(s =)= (5= 5]
Po: RR.)= R [(S = 8) = (5= ;)]
Pro: RDyy =Jgrp [(s = sI(s; = 8]

The first premise extends the independence assumption to the four-
stimulus tasks. Premise P, extends the criterion of scale convergence to
include all of the comparlson tasks considered here; thus the values of s
are assumed to be the same for all of the models. Premises P3 and P,
assert that magnitude estimations and category ratings of single stimuli
are monotonic functions of subjective value. Premises P, and P, represent
judgments of both “ratios” and “differences” of two st1mu11 w1th the sub-
tractive model. Premises P7 P8 and P represent the processes underlying
three tasks, “differences of ratios,” “dlfferences of differences,” and

“ratios of ratios” with the difference of differences model. Premise 10 re-
presents “ratios of differences” with a ratio of differences model. The
judgment functions, JD, JR, JDR, JDD, etc., are assumed to be strictly
monotonic.
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One could ask the question, “Can a ratio theory be saved by replacing the
operation of subtraction with division throughout?” The answer is that an ex-
ponential transformation of all of the models would yield a set of equations that
would reproduce all of the data equally well. However, the “ratios of differen-
ces” task would be represented by the complex model of Eq. (13). This modified
ratio theory seems too complicated to be seriously considered. Equation (13)
not only violates the scale convergence criterion within itself, requiring two dif-
ferent scales, s and s*, it suggests that two different models apply for “differen-
ces” within the same task. This theory represents “ratios” with either a ratio
model (for *“‘ratios”) or an exponential-power model (for “ratios of differences”).
Modified ratio theory also implies that the judgment functions for magnitude
estimation are sometimes power functions (for “ratio” judgments) and some-
times logarithmic, since approximate parallelism in the left and right panels of
Fig. 11 requires that Jp, 1, be logarithmic for “ratios of differences.” This theory
seems as complicated as Tycho Brahe’s geocentric theory of the solar system,
which could give as good an account of the heavenly phenomena as Kepler’s
heliocentric theory if the laws of physics governing celestial events are allowed
to be different from the laws describing earthly events. The argument that the
earth revolves around the sun is based on simplicity, an assumed coherence be-
tween celestial mechanics and mechanics in the physics lab. In the same sense
that Brahe’s geocentric theory remains consistent with the data, so too does the
complicated ratio theory.

It is helpful to show how another line of reasoning also leads to the subtrac-
tive theory. “Ratios” and “differences” of two stimuli can be expressed as
Ri]. =Jp (\I'i].) and Dl.]. =J5 (‘Ill.].), where the comparisons, ¥,.., are the same, but
the monotonic judgment funciions, J, and Jy, are different. Ordinal analysis
of the judgments indicates that the \I'l.]. form a group; consequently, one can
write ¥,. = s, © 5;, where o is an unspecified operation. On the basis of two-
stimulus judgments alone, Torgerson (1961) was correct in his assertion that the
decision to represent o with division or subtraction is “only a decision, not a
discovery.” However, results of four-stimulus experiments provide an empirical
basis for testing between theories of the comparison operation. “Ratios of dif-
ferences” and “differences of differences” demonstrate the appropriate ordinal
requirements of ratio and difference operations on a common scale:

RD = Jpp [¥;/¥,] (14)

DDy =Jpp [¥; = ¥l (15)

where the W, values are the same in both equations and the judgment functions,
JRD and JDD’ are only assumed to be strictly monotonic. Without assuming
anything about the comparison process, o, it is possible to use Eqgs. (14) and (15)
to derive values of V... These values will be unique to a ratio scale because they

I
must reproduce both differences and ratios; hence the derived values cannot be
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subjected to nonlinear transformation. The ¥ values thus derived are mono-
tonically related to R;; and D, indicating that the same comparison operation,
o, can be used to represent both two- and four-stimulus judgments. The nature
of this operation can be “discovered” by noting that the ¥ values derived from
Egs. (14) and (15) are parallel (not bilinear) when plotted against the column
values with a separate curve for each row. The parallelism implies that the opera-
tion by which two stimuli are combined is subtraction, \Ill.. =3, — S It is con-
ceivable that this plot could have been bilinear, which would have been consistent
with ratio theory and inconsistent with subtractive theory. Thus the choice of
the subtractive model is based on an empirical test and is not an a priori *“‘de-
cision.”

Stimulus Representation

Since “ratios of differences” can be represented by a ratio of differences model,
the failure of the ratio model for simple “ratio” judgments cannot be explained
by asserting that subjects do not possess the “mental capacity” for two opera-
tions. Instead, the stimulus representation may be inherently no more than an
interval scale, like points along a line in a subjective space (Veit, 1974). In this
case, intervals are meaningful but ratios are not. For example, what is the ratio
of the “easterliness” of New York to that of Denver? Without a well-defined
zero point, the question does not make sense except in terms of distances. The
following question does make sense: “What is the ratio of the distance from New
York to Denver, relative to the distance from New York to San Francisco?” It
may be that the subject thinks of degrees of darkness or likeableness in the same
way that one thinks of locations on a map.3 When instructed to judge “ratios,”
the subject cannot make sense of the task and reverts to computing differences.
Only when there is a well-defined zero point, as in the case of “ratios of differ-
ences,” does the subject actually compute ratios.

For certain continua, magnitude estimations and category ratings of single
stimuli seem to agree. These continua were named “metathetic” to contrast
them with the “prothetic” continua for which the two scales were nonlinearly
related (Stevens & Galanter, 1957). A more fundamental distinction would be
between continua for which “ratios” and “differences” generate only one or two
distinct orderings, suggesting one or two comparison operations. Since stimulus
intervals obey this criterion having two orders, one might expect that visual
length, which can be thought of as a distance between points, might also allow
two operations. Parker, Schneider, & Kanow (1975) represented “ratios” and

3In a recent experiment, done in collaboration with Barbara Mellers, subjects were in-
deed asked to make judgments of “ratios” and “differences” of easterliness and westerliness
of U.S. cities. The results were consistent with the interpretation that the subtractive opera-
tion underlies all four tasks, with estimations of *“ratios” exponentially related to subjective
intervals.
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“differences” of length with two operations, so length may indeed have a well-
defined zero point. However, for loudness, likeableness, heaviness, and darkness,
it appears that the stimulus representation may be inherently no more than an
interval scale.

If subjects compute differences instead of ratios, why do the raw data for
“ratios” fit a ratio model? The answer to this question requires a theory of the
judgmental transformation.

Judgmental Processes

Premises P, through P,, account for the ordinal properties of the data. To
account for the actual numerical judgments requires additional premises about
the nature of the judgmental (J) functions. Although P, through P, can be
used to estimate these functions from the data, it seems useful to discuss poten-
tial explanations of judgment from which the J functions could be predicted.

Category ratings. Parducci’s range-frequency theory has been successful in
describing ratings of stimuli presented in varying stimulus distributions. (Par-
ducci, 1974; Parducci & Perrett, 1971; Birnbaum 1974b). The theory assumes
that ratings reflect a compromise between two tendencies: (1) judges tend to
make differences in response proportional to differences in stimulus rank; and
(2) judges tend to make differences in response proportional to differences in
scale value.

The range-frequency model can be written (Birnbaum, 1974b):

CJ].k =(C,, —C,) [aG, (sj) + b(s]. -5 )G, —s) +C,, (16)

where CJ].k is the category judgment of stimulus j in context k, on a scale from
C toC ;s and s are scale values of the maximum and minimum stimuli;
G, (s;) is'the cumulative density of stimuli having scale values less than or equal
to s, in context k; and @ and b are the weights of the frequency and range prin-
ciples, respectively.

Range-frequency theory predicts that if the stimuli are spaced evenly on the
subjective scale and presented with equal frequency, the response will be a linear
function of subjective value. The judgmental transformations for the two- and
four-stimulus ratings, Jp,, Jpy g, and Jpp, are all nearly linear, as evidenced by
the near-parallelism in Figs. 6, 8, 13, 16, and 17. The J functions for category
ratings have been found to be nearly linear in other studies involving subtractive
models (Birnbaum, 1974a; Birnbaum & Veit, 1974a, 1974b).

Although the J functions estimated here are nearly linear, it seems reasonable
to suppose that the stimulus distribution for stimulus pairs also affects the J
function. Birnbaum, Parducci, and Gifford (1971, Experiment V) found evidence
that the form of J in an information integration task can be manipulated in
accord with range-frequency theory applied to the distribution of integrated
impressions (¥). It is tempting to theorize that Eq. (16) would apply to ratings
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of “differences” with the substitution of N |fors. Thus ratings of “differences”
may be approximated by the equation:

Dy = 8;;(Dy, —D,) [aG (1) +b 1W;: 1/ W, ] +D,, (17)

where D,-]- is the rating of the subjective difference, ¥, =s; —5;;D,, is the max-
imal response; D, is the response for “no difference”, 8,-]- = —1if \I/,-]- <0; 6,-]- =0
if ¥;; = 0;6;; = 1if ¥;; > 0; ¥, is the maximum absolute difference in the ex-
periment; and G(I\If,-jl) is the cumulative density for the absolute difference.

Research is needed to establish the locus of contextual effects in information
integration and to test the applicability of Eq. (17) in stimulus comparison ex-
periments.

Magnitude estimation. To account for the approximate bilinearity of “‘ratio”
judgments (Figs. 6, 7, and 13), the trilinearity of “ratios of ratios” judgments
(Fig. 15), and the nonlinear relationship between ratings and magnitude estima-
tions (Fig. 2), it is necessary to postulate that the judgmental transformations
for magnitude estimation, JM, JR, and Jp ¢ , are nearly exponential. An expon-
ential transformation for J, would cause a subtractive operation to lead to bi-
linear data, since if Rii =Jgr (s]. — ;) =exp (s]. ~§;), then R ij = eXp (s].)/exp (s;) =
$;*/s;*, where s* = exp (s).

Birnbaum and Veit (1974a) have proposed an interpretation of Jp that can
account for an exponential transformation for magnitude estimation. The idea is
shown in Fig. 19, which plots magnitude estimation responses against subjective
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FIG. 19 Theory of the judgment function for magnitude estimations of “‘ratios.” Abscissa
represents the subjective continuum of comparisons (¥), evenly spaced with category labels
of “ratios.” It is assumed that reversing the stimulus order corresponds to equal distances
from *‘equal” and that the distance from “equal” to “twice” is the same as the distance
from *‘twice” to “four times.” This process of response generation induces an exponential
transformation. (After Birnbaum and Veit, 1974a).
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differences varying from “large minus difference” through “zero difference” to
“large positive difference.” Suppose a subject is presented with a trial on which
a “large difference” is presented. The subject selects a large magnitude estimation
response, say “400.” If the same pair of stimuli are presented in reverse order,
the subjective difference would be the same but reversed in sign. However, the
instructions require that the subject respond with the reciprocal “ratio,” “25.”
If reversal in order corresponds to equal psychological distances and if the sub-
ject responds with reciprocal “ratios,” then Jg will be positively accelerating as
in Fig. 19. If, in addition, the subjective dlstance between * equal” and “‘twice”
equals the subjective distance from “twice” to “four times,” then the judgment
transformation for magnitude estimation will be exactly exponential. Thus this
theory of response generation explains how a ratio model could fit the data even
though the comparison process is subtraction.

It is interesting to note that the largest mean ‘“ratio” of loudness (Fig. 7),
5.69, is very nearly equal to the largest mean “ratio” of darkness (left of Fig. 6),
5.84. Teghtsoonian (1971) has discussed a theory of magnitude estimation in
which the average log response range (log R .x — 108 R, ) is a constant. In
spite of the judge’s apparent freedom to choose any response range, Teghtsoon-
ian notes that the average log response range is usually near 1.53. The log re-
sponse ranges for darkness and loudness (Figs. 6 and 7) are about 1.65 and 1.43,
respectively. Birnbaum and Elmasian (1977) found that subjects differed widely
in the value assigned to the largest ratio. It may be useful to represent magnitude
estimation in terms of an exponential transformation of Eq. (17), allowing the
largest response, D, , to depend on the subject. It may also be possible to man-
ipulate the value of D through instructions, possibly in the examples given to
illustrate the scale.

The judgmental transformations for magnitude estimations of “ratios of dif-
ferences™ have been estimated to be positively accelerated (Veit, 1974, Experi-
ment II; Beck & Shaw, 1967) when the standard difference is intermediate in
value. The curves in the upper-right panel of Fig. 14 show that on either side of
zero, the Jrp function accelerates. This acceleration is consistent with a posi-
tively accelerated judgmental transformation for magnitude estimation. Yet,
when the standard difference is the largest difference (Figs. 6 and 11 (C) and
upper-left panel of Fig. 14), the Jrp function is nearly linear. Perhaps the Jp
function has a different form (a smaller slope) for response values less than 100
from the form it has for response values above 100.

A precise theory of magnitude estimation should predict how the subject
selects his largest “ratio” response and how such factors as stimulus range,
instructions, and modulus affect J. It may prove profitable to solve for Jgp by
rescaling “‘ratio” judgments to parallelism, under different conditions of context
For example, this procedure would allow a separation of the effects of stimulus
Spacing, on J and on s. To date, contextual effects are better understood for
ratings than for magnitude estimations.
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Summary

The data obtained from sets of factorial experiments suggest that the basic
operation by which two stimuli are compared is subtraction. This conclusion
depends on the premise that scales are independent of the judgmental task. The
metric properties of the data satisfy the theory that magnitude estimations of
“ratios” are an exponential function—and category ratings of “differences” are
a linear function—of subjective differences. Consistent with the notion that the
subjective stimulus representation is inherently an interval scale, “ratios of dif-
ferences” can be represented by a ratio of differences model even though simple
“ratios” are represented by subtraction.
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