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Empirical Evaluation of Third-Generation Prospect Theory 

Michael H. Birnbaum 

Abstract 

Third generation prospect theory (Schmidt, Starmer, & Sugden, 2008) is a theory of choices and 

of judgments of highest buying and lowest selling prices of risky prospects, i.e., of willingness to 

pay (WTP) and willingness to accept (WTA). The gap between WTP and WTA is sometimes 

called the “endowment effect” and was previously called the “point of view” effect.  Third 

generation prospect theory (TGPT) combines cumulative prospect theory for risky prospects 

with the theory that judged values are based on the integration of price paid or price received 

with the consequences of gambles.  In TGPT, the discrepancy between WTP and WTA is due to 

loss aversion--losses have greater absolute utility than gains of the same value.  TGPT was 

developed independently of similar developments by Birnbaum and Zimmermann (1998) and 

Luce (2000).  This paper reviews theoretical and empirical findings, to show that TGPT fails as a 

descriptive model of both choices and judgments.  Evidence refutes three implications of TGPT, 

but they are consistent with configural weight models (Birnbaum & Stegner, 1979) in which loss 

aversion is not needed to describe the results. In the configural weight models, buyers place 

greater weight on lower consequences, attributes or estimates of value compared to sellers, who 

place greater configural weight on higher aspects of an object or prospect. 
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 Schmidt, Starmer, & Sugden (2008) proposed third-generation prospect theory (TGPT) 

as a unified theory to account for judgments of value of risky prospects as well as choices 

between such prospects.  This theory was intended to account for the discrepancy between 

willingness to pay (WTP) and willingness to accept (WTA) and for preference reversals between 

choices and judgments of value.   

This paper shows that third-generation prospect theory implies three properties that are 

empirically violated by data but which are consistent with an older theory known as configural 

weight theory.  Before presenting the properties and the empirical evidence testing them, it is 

useful to review the history of the models and their relationships.   

Original prospect theory (Kahneman & Tversky, 1979) made use of a subjectively 

weighted utility formulation similar to that of Edwards (1953). Cumulative prospect theory 

(CPT) by Tversky and Kahneman (1992) is a variant of rank-and sign-dependent utility (RSDU), 

by Luce & Fishbein (1991), with particular functions specified.  Schmidt, et al. (2008) refer to 

CPT as “second generation” prospect theory.  Schmidt, et al. retained CPT for choices between 

risky prospects, but added new assumptions to account for judgments of value--maximal buying 

prices (WTP) and minimal selling prices (WTA).  Thus, TGPT is an extension of CPT, rather 

than a revision of it. 

Birnbaum and Stegner (1979) tested a configural weight model that predicted specific 

relationships between judgments of highest buying and lowest selling prices. Birnbaum and 

Stegner referred to the empirical effects as effects of the “judge’s point of view.” They fit a 

configural weight averaging model in which the configural weights of lower or higher values are 

affected by instructions to identify with the buyer, seller, or an independent.  They assumed that 

buyers would place greater configural weight on lower estimates, attributes, or consequences of 

an option than would sellers.  The data showed strong effects consistent with this interpretation.  
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Thaler (1980), who did not cite the earlier configural weight theory or data, proposed the 

term, “endowment effect,” and suggested that such phenomena might relate to “loss aversion,” 

postulated by Kahneman and Tversky (1979) as a property of the utility function—“losses loom 

larger than gains”.  The phenomenon is sometimes described as a special case of a “status quo 

bias” (Samuelson & Zeckhauser, 1988).  Tversky and Kahneman (1991) elaborated the idea that 

the discrepancy between WTP and WTA for riskless goods might be explained by a utility 

function in which a loss of x has greater negative utility than that of a gain of comparable 

absolute value.  Loss aversion was also incorporated in CPT (Tversky & Kahneman, 1992).  

To represent risky gambles, Schmidt, et al. (2008) proposed TGPT, which used CPT, 

combined with the assumption that prices paid or accepted are integrated into the consequences 

of a prospect.  In TGPT, buying or selling prices of risky prospects are theorized as decisions 

among mixed gambles that are affected by loss aversion, even when all consequences are strictly 

positive.   

These main ideas of TGPT had already been proposed and evaluated by Birnbaum and 

Zimmermann (1998, Appendix B, Model 2), along with certain other “loss aversion” theories of 

the so-called endowment effect.  They rejected TGPT model as a descriptive account of 

judgments of highest buying and lowest selling prices, as well as the theory of Tversky and 

Kahneman (1991) and an anchoring and adjustment model. 

In response to unpublished findings by Birnbaum and Yeary (1998) testing implications 

of configural weighting models, Luce (2000) developed a more elaborate theory in which prices 

and consequences are integrated via a joint receipt operation; this theory was further developed 

and evaluated by Birnbaum, Yeary, Luce, & Zhao (2016). The main difference between TGPT 

and Luce’s (2000) approach is that in Luce’s approach prices are integrated with consequences 

via a joint receipt operation rather than by simple addition or subtraction as in Birnbaum and 
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Zimmermann (1998) and in Schmidt, et al. (2008).  However, in Luce’s (2000) approach, like 

that of Birnbaum and Stegner (1979), the utility of negative consequences (“loss aversion”) plays 

no role in the theory.   

The present article presents new analyses of previously published data to evaluate the 

empirical status of TGPT.  These results show that TGPT is not an accurate empirical description 

of either judgments of value (WTP and WTA) or of choices between prospects.  The rest of this 

paper is organized as follows: Section 1 presents the key ideas of TGPT and presents theorems of 

TGPT (testable properties) that can be evaluated empirically; Section 2 presents evidence that 

these implications of TGPT are violated systematically by empirical findings. Section 3 presents 

a configural weight model (Birnbaum and Stegner, 1979) and shows that it explains these 

phenomena that refute TGPT and provides a better fit to data.  Section 4 discusses the 

implications of those empirical results and related findings for theories of choice and judgment.  

1. Third-Generation Prospect Theory: Testable Implications 

 Schmidt, et al. (2008) based TGPT on CPT, which they called “second-generation” 

prospect theory.  Let G = (y1, p1; y2, p2;…; yn, pn; xm,qm;…; x2,q2; x1,q1) represent a gamble with 

outcomes ranked such that x1 < x2 <…< xn < z ≤ ym <…< y2 < y1 , where z is the status quo.  Define 

cumulative probabilities of losses (worse than status quo) as follows: Qi = qkk=1

i
∑ ; define decumulative 

probabilities of gains (better than or equal to status quo) as follows: Pj = pkk=1

j
∑ .  CPT (Tversky & 

Kahneman, 1992) can be written as follows: 

(1)            CPU(G) = [W −(Qi
i=1

n

∑ )−W −(Qi−1)]u(xi )+ [
j=1

m

∑W (Pj )−W (Pj−1)]u(yj ) ,   

where Qj  and Qi−1  are the probabilities of a loss being equal to or worse (lower) than and strictly lower 

than xi , respectively; Pj  and Pj−1   are the probabilities of winning a positive prize of xj  or better, and of 
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strictly better than xj , respectively (P0 =Q0 = 0 ). CPU(G)  is the utility (“subjective value”) of the 

gamble; the model assumes that   G  F ⇔ CPU(G) CPU(F) , where ≻ denotes systematic preference 

(apart from error).  The functions, W (P)  and W −(Q)  are strictly increasing probability weighting 

functions, W (0) =W −(0) = 0 , and W (1) =W −(1) =1 .   

For binary mixed gambles of the form, G = (y, p; x), where y > z > x, it is useful to note that  

CPU(G) =W (p)u(y)+W −(1− p)u(x) .  

Utility (sometimes called “value”) is defined with respect to changes from the status quo (z); it is often 

assumed that z = 0 and u(0) = 0.  

 In third-generation prospect theory (TGPT), CPT is retained for choices between 

prospects.  However, for decisions to buy or sell, it is further assumed that the decision maker 

integrates the price of a prospect with the prizes.  Thus, the price paid or received plays the role 

of the status quo, z, and the consequences of the gamble are compared to that value, which 

differs from prospect to prospect.  Because the price paid (or demanded) depends on the gamble, 

it means that a positive cash prize might be either a gain or a loss, depending on the other 

features of each gamble. 

 For example, consider a binary gamble with nonnegative consequences, G = (y, p; x), to 

win y with probability p and otherwise win x, where y > x ≥ 0. In willingness to pay, it is 

assumed that the subject considers that if he/she pays buying price, B, and wins y, then the gain 

will be y – B, but if the gamble yields only x, then the loss will be x – B.  Similarly, in 

willingness to accept, it is assumed that the subject considers a sale for S to be a gain when x 

occurs, since the profit is S – x; but the seller considers it a loss if the higher outcome y occurs, 

because the seller would have been better off to have kept the gamble; in this case, seller 

experiences a loss of S – y.  Thus, buying and selling of prospects that yield strictly positive 
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consequences involve the evaluation of mixed gambles, and psychological losses (e.g., for 

having sold a gamble that would have won) invoke utility and weighting of a loss. 

These assumptions of TGPT (Schmidt, et al., 2008, p. 209) lead to the following 

expressions for B (WTP) and S (WTA): 

(2)  CPT(y – B, p; x – B) = 0 

(3)  CPT(S – y, p; S – x) = 0 

Thus, the price paid or received is integrated into the consequences of the gamble, producing a 

mixed gamble.  Equations 1, 2, and 3 are termed TGPT.  Equations 2 and 3 also appeared for 

maximal buying and minimal selling prices in Birnbaum and Zimmermann (1998, p. 178).  

[More general expressions were postulated by Luce (2000), in which subtraction is replaced by 

an (inverse) joint receipt operation.  Luce’s (2000) model is evaluated in Birnbaum, et al. 

(2016).] 

 In the parameterized version of their model, Schmidt, et al. (2008) also assume that utility 

can be approximated as follows, 

(4)   u(x) = xβ,  for x ≥ 0 

(5)	   	   	   u(x) =	  –	  λ(– x) β,	   for	  x	  <	  0	   	   	  

where λ is a constant, sometimes called the “loss aversion” parameter. It is usually found that λ 

> 1 and that 0 < β < 1, but such restrictions on these parameters are not necessary to what 

follows. 

1.1 Complementary Symmetry 

Birnbaum and Zimmermann (1998) showed that Equations 1-5 imply a property they 

called complementary symmetry for binary gambles. The maximal buying price (WTP), B for 

gamble (y, p; x) plus the minimal selling price, S (WTA) for the complementary gamble (y, 1 – 
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p; x) should be x + y.   

Assuming Equations 1-5, with the definition, T(p) = [λW–(1 – p)] /W(p)](1/β), it follows that: 

(6)         B = [y + T(p)x]/[1 + T(p)]         

(7)  S = [x + T(p)y]/[1 + T(p)]      

Adding Expressions 6 and 7, we have  

(8)  S + B = x + y.   

Complementary symmetry (Equation 8) thus follows from Equations 1-5 with any weighting 

functions. Birnbaum and Zimmermann (1998) proved Equations 1-5 imply complementary 

symmetry for all gambles of the form (y, ½, x); and Birnbaum, et al. (2016) deduced Equations 

(6), (7), and (8) for all (y, p; x).  Michal Lewandowski (personal communication, April 23, 2016) 

reports that he has proved that TGPT (Equations 1, 2, and 3) implies complementary symmetry 

for any u(x) function on gains and losses.    

1.2 First Order Stochastic Dominance in Judgments 

Birnbaum (1997) devised a recipe that was tested in choice by Birnbaum and Navarrete 

(1998) who found that about 70% of undergraduates chose G = ($96, .85; $90, .05; $12, .10) 

over F = ($96, .90; $14, .05; $12, .05), even though F dominates G by first order stochastic 

dominance. Birnbaum (1997, 2005) constructed this recipe to compare descriptive models that 

satisfy dominance against certain rival descriptive models that violate dominance.  Because CPT 

must satisfy stochastic dominance, evidence that people systematically violate dominance shows 

that CPT is not an accurate descriptive model of risky decision making. 

Stochastic dominance also follows in TGPT: judgments of buying or selling prices should 

also satisfy first order stochastic dominance in this recipe; that is, the WTP (WTA) of F should 

exceed WTP (WTA) of G (Birnbaum, et al., 2016).  
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1.3 Violations of Restricted Branch Independence  

 Consider three-branch gambles with a fixed probability distribution.  Let (x, y, z) 

represent a prospect to win x with probability p; y with probability q, and otherwise win z.  Let 

B(x, y, z) and S(x, y, z)  represent the judged value of WTP and WTA (highest buying and lowest 

selling prices of this prospect).  Restricted branch independence can be expressed for such three-

branch gambles as follows: 

(9a)  S(x, y, z) > S(x', y', z) if and only if  S(x, y, z') > S(x', y', z')   

(9b)  B(x, y, z) > B(x', y', z) if and only if  B(x, y, z') > B(x', y', z')   

This property can be violated by TGPT when the weighting functions are not linear.  The manner 

of violation, however, depends on the shape of the weighting functions.  According to TGPT, it 

should be possible to predict the types of violations of this property in judgments from the shape 

of the weighting functions estimated from choices (Birnbaum, 2008; Birnbaum & Zimmermann, 

1998).   

 For example, suppose z' > y' > y > x > x' > z ≥ 0.  There are two types of violations, Type 

1: B(x, y, z) > B(x', y', z) and B(x, y, z') < B(x', y', z'), or Type 2: B(x, y, z) < B(x', y', z) and B(x, y, 

z') > B(x', y', z').  The same types stated here for buying prices (WTP) can be stated for selling 

prices (WTA). It can be shown that if the weighting functions are inverse-S in shape (as assumed 

by Tversky and Kahneman, 1992, Schmidt, et al., 2008, and others), then systematic violations 

should only be of Type 2 for either buying or selling prices.  For example, the parameterized 

model of Schmidt, et al. (2008) implies that B($39, $45, $2) < B($12, $96, $2) and B($39, $45, 

$148) > B($12, $96; $148).  An analysis of restricted branch independence and its connection to 

the shape of the weighting function is presented in Birnbaum (2008, p. 484-487).  Intuitively, 

when the common branch (z) is the lowest, y' and y are highest-ranking values and have 

relatively greater weight than x' and x, which are middle values; but when the common branch is 
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highest (z' ), y' and y are intermediate-valued and have less weight than x' and x, which are the 

lowest valued consequences.  

The weighting function of CPT required to reproduce standard findings in the literature 

must have this inverse-S form (Tversky & Kahneman, 1992; Birnbaum, 2008; Schmidt, et al., 

2008; Wakker, 2011).  Because TGPT requires the same weighting functions for both choice and 

for judgments of value, it predicts the Type 2 pattern of violation of restricted branch 

independence in choice tasks, and in WTP and WTA judgments. 

2. Empirical Violations of the Implications of TGPT 

2.1 Violations of Complementary Symmetry 

 In Section 1, it was shown that in TGPT, the sum of buying and selling price of 

complementary binary gambles of the form (y, p; x) should equal the sum of the outcomes.  This 

sum should therefore be independent of other factors, such as range, |x – y|, holding p and x + y 

constant.  However, empirical evidence contradicts this implication, as shown next. 

 At the time of Birnbaum and Sutton (1992), neither TGPT nor the property of 

complementary symmetry had yet been developed; nevertheless, that experiment provides tests 

of that property.  Figure 1 shows a reanalysis of data from Birnbaum and Sutton (1992) to test 

complementary symmetry. The figure shows the sum of median judgments of buying and selling 

prices (WTP + WTA) of gambles of the form (y, .5; x); that is S + B of Equation 8.  These are 

plotted as a function of |x – y| with a separate curve for each value of T = x + y.  According to 

TGPT, each curve should be horizontal with a constant value of x + y. 
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Figure 1.  Sum of median WTP and WTA (buying plus selling prices) for gambles of the 

form (y, .5; x) as a function of |x – y| with a separate curve for each level of T = x + y.  

According to complementary symmetry, all curves should be horizontal.  Instead, all 

curves decrease as a function of range.  

 

In contradiction to TGPT, Figure 1 shows that S + B decreases systematically with range 

for every value of T.  For example, the median WTP and WTA of ($60, .5; $48) are $50 and $54, 

respectively, for a total of $104.  However, the median WTP and WTA of ($96, .5; $12) are $25 

and $50, respectively, for a total of only $75.  TGPT implies that both totals should have been 

$108.  For all 36 points in Figure 1 where the range is not zero, S + B < x + y.  Furthermore, 

every curve decreases as a function of range (|x – y|).  Because there are 15 curves in Figure 1 

connecting at least two empirical points, the probability that the right most point in each curve 
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would fall below the left most point is one-half to the 15th power, assuming complementary 

symmetry.  Therefore, these data systematically violate complementary symmetry, contrary to 

TGPT.  Other violations of complementary symmetry are reported in Birnbaum, et al. (2016), 

who showed that holding x + y and |x – y| constant, S + B varies systematically as a function of p.  

2.2 Violations of First Order Stochastic Dominance  

 Birnbaum & Yeary (1998) asked 66 undergraduates to evaluate 166 risky gambles from 

the viewpoints of both highest buying price and lowest selling price. Interspersed among these 

trials were 8 trials that provided four tests of first order stochastic dominance (FOSD) in each 

point of view.  These four tests of FOSD were constructed to show violations, according to 

configural weight models.  Table 1 shows the median judgments of WTP and WTA for these 8 

gambles.  

In all eight comparisons in Table 1 (four tests by two viewpoints), the dominated gamble 

(denoted G- in Table 1, to the right) received higher median judgments than the dominant 

gamble (G+, to the left), violating FOSD.  Means are similar and show the same violations 

(Birnbaum, et al., 2016).  The overall mean judgment was $63.31 for dominated gambles 

(averaged over the four tests and two viewpoints), compared to a mean of $55.11 for dominant 

gambles.  This difference between dominant and dominated gambles is significant; therefore, the 

null hypothesis that the dominance relation has no effect on judgments of value was rejected in 

favor of the hypothesis that people assign higher judgments to dominated gambles in these 

specially constructed pairs of gambles. 
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TABLE	  1.	  Median	  Judgments	  in	  the	  Tests	  of	  Stochastic	  Dominance.	  In	  each	  test,	  G+	  

dominates	  G-‐	  and	  yet	  receives	  a	  lower	  median	  judgment.	  

Buying	  Prices	  (WTP)	  

Test	   G+	   Median	  WTP	   G–	   Median	  WTP	  

1	   .05  .05  .90 
$12  $14  $96	  
	  

30.0	   .10  .05  .85 
$12  $90  $96 
 

60.0	  

2	  
.06  .06  .88 
 $3   $5  $97	  
	  

22.5	  

	  

.12  .04  .84 
 $3  $92  $97	  
	  

50.0	  

3	  
.02  .03  .95 
 $6   $8  $99	  
	  

40.0	  

	  

.05  .03  .92 
 $6  $91  $99	  
	  

54.0	  

4	  
.01  .01  .98 
 $4   $7  $97	  
	  

50.0	  

	  

.02  .02  .96 
 $4  $89  $97	   62.5	  

Selling	  Prices	  (WTA)	  

Test	   G+	   Median	  WTA	   G–	   Median	  WTA	  

	  

1	   .05  .05  .90 
$12  $14  $96	  
	  

73.5	   .10  .05  .85 
$12  $90  $96 
 

81.5	  

2	  
.06  .06  .88 
 $3   $5  $97	  
	  

68.0	  

	  

.12  .04  .84 
 $3  $92  $97	  
	  

80.0	  

3	  
.02  .03  .95 
 $6   $8  $99	  
	  

82.5	  

	  

.05  .03  .92 
 $6  $91  $99	  
	  

83.5	  

4	  
.01  .01  .98 
 $4   $7  $97	  
	  

81.0	  

	  

.02  .02  .96 
 $4  $89  $97	   87.5	  
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  Analysis of individuals’ data showed that 51 of 66 participants (77%) assigned higher 

mean judgments to dominated gambles than to the dominant gambles, averaged over the four 

tests and two viewpoints.  

 These results with judgment agree with results from direct choices between the same 

pairs of gambles; Birnbaum and Navarrete (1998) found that 73, 61, 73, and 73 judges (out of 

100) chose the dominated gamble G– over the dominant gamble, G+, in direct choices of Tests 1 

though 4 (of Table 1), respectively.  Many subsequent studies have confirmed high rates of 

violation of FOSD in direct choices constructed from this recipe and shown that they are not due 

to random error (Birnbaum & Bahra, 2012). In sum, violations of FOSD are observed in buying 

prices, selling prices, and in direct choices.  All three results are systematic violations of TGPT.    

Because FOSD follows in CPT for choice and TGPT for both WTP and WTA for any 

utility and any decumulative weighting functions, it would not be possible to salvage these 

models as descriptive of such violations by choosing other parameters or other functions for u, 

𝑊, and 𝑊!.  

2.3 Violations of Restricted Branch Independence 

 Because TGPT assumes that the same W −(Q)  and W(P) functions apply to judgments as 

to choices, this theory implies that we should be able to predict violations of restricted branch 

independence from the shape of the probability weighting functions estimated from choice 

experiments.  It is well-known that to describe standard results of empirical choice studies, 

including the Allais paradoxes, CPT requires inverse-S probability weighting functions in which 

intermediate branches receive lower weight than lowest or highest valued branches (Tversky & 

Kahneman, 1992; Birnbaum, 2008; Wakker, 2011).   

 Empirically, the observed type of violation of restricted branch independence in both 

WTP and WTA judgments is not in agreement with the inverse-S weighting function postulated 
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in TGPT (Birnbaum & Beeghley, 1997; Birnbaum & Zimmermann, 1998; Birnbaum & Veira, 

1998).  In these studies, it is typically found that the violations are of Type 1 rather than Type 2 

(Section 1.3). 

 For example, Table 2 shows mean judgments of 12 of the prospects studied by Birnbaum 

and Beeghley (1997), who asked 46 participants to judge both WTP and WTA for 166 gambles, 

each of which had three, equally likely outcomes: (y, x, z).  The mean (and median) judgments 

violate restricted branch independence in both viewpoints in the opposite way from that 

predicted by TGPT. 

 The predicted judgments in Table 2 are calculated from TGPT using the parameters 

estimated by Tversky and Kahneman (1992).  The observed type of violations of restricted 

branch independence are opposite of the type predicted.  Note that in both WTA and WTP 

viewpoints, the empirical violations are of Type 1 rather than Type 2; for example, B(x, y, z) > 

B(x', y', z) and B(x, y, z') < B(x', y', z'), as well as S(x, y, z) > S(x', y', z) and S(x, y, z') < S(x', y', z'), 

when z' = $148, y' = $96, y =$45, x = $39, x' = $12, and z = $2.  In contrast, TGPT predicts the 

opposite orderings from these empirical results.   

 When the common consequence is z = $2 (upper half of the table), TGPT predicts that (x', 

y', z)  = ($2, $12, $96) should receive the highest judgment in both WTP and WTA compared to 

the other values of ($2, x, y) in the upper half of Table 2.  Instead, ($2, $12, $96) is judged lowest 

in WTP and it falls third from the bottom in WTA.  Similarly, TGPT predicts that (x', y', z') = 

($12, $96, $148) should receive the lowest judgment for WTP and fourth from the bottom for 

WTA compared to the other values of (x, y, $148) in the lower half of the table, but empirically it 

falls third highest for WTP and highest for WTA. 

In sum, the data show systematic Type 1 violations, whereas TGPT with an inverse-S 

weighting function implies that the violations should be of Type 2. 
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Violations of restricted branch independence in direct choice also show the opposite 

pattern from that predicted by the inverse-S weighting function needed by CPT and TGPT.  This 

pattern of violations (Type 1) has been replicated in dozens of empirical studies using different 

formats for presentation of choices (Birnbaum, 2004, 2008; Birnbaum & Bahra, 2012; Birnbaum 

& Navarrete, 1998).   Therefore, one cannot retain both TGPT and the inverse-S decumulative 

weighting function, if one wants to describe empirical data for WTP, WTA, or choice.    

 
Table 2.  Reanalysis of Data from Birnbaum and Beeghley (1997).  Predicted WTP and WTA are 

based on third-generation prospect theory, using parameters of Tversky and Kahneman (1992). 

Lottery WTP WTA Pred WTP Pred WTA 

($2, $27, $33) 15.4 23.0 6.7 27.0 

($2, $33 $39) 19.1 26.6 7.7 33.0 

($2, $39, $45) 19.6 30.0 8.6 38.9 

($2, $45, $51) 21.9 34.2 9.6 44.9 

($2, $51, $57) 27.7 37.1 10.5 50.9 

($2, $12, $96) 14.4 28.5 11.9 61.5 

($27, $33, $148) 35.5 51.9 38.6 102.7 

($33, $39, $148) 39.8 50.2 44.1 105.0 

($39, $45, $148) 45.2 58.5 49.6 107.3 

($45, $51, $148) 49.9 62.0 55.0 109.6 

($51, $57, $148) 56.5 68.5 60.5 111.8 

($12, $96, $148) 47.8 75.2 30.7 108.0 
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3. Configural Weighting Models 

 In social and evaluative judgment tasks, it has been found that unfavorable or negative 

information seems to override the effects of positive or favorable information.  Birnbaum (1974) 

considered two theories to explain this effect: either the lower-valued information has more 

extreme value (analogous to “loss aversion”) or it has greater configural weight.  In a series of 

experiments, Birnbaum (1974, 1982) concluded that the lower-valued or negative information 

carries greater configural weight.  Birnbaum represented the combination of information by an 

averaging model with weights that depend on ranks.   

Although Birnbaum (1974) wrote of weights that “depend on the ranks” of the 

components, such configural weighting differs from what later came to be called “rank-

dependent weighting,” as described in Quiggin (1982, 1993).  The term “rank-dependent” 

weighting now refers to weighting in which cumulative weight is a monotonic function of 

cumulative probability.  In Birnbaum’s configural weighting, however, the weight of each 

branch (e.g. discrete probability-consequence pair presented to the decider) is affected by the 

rank of its discrete consequence, but not necessarily a function of cumulative probability. 

 Birnbaum and Stegner (1979, Experiment 5) theorized that buying and selling prices 

would induce different patterns of configural weighting. An extension of Birnbaum and 

Stegner’s model is now known as the transfer of attention exchange (TAX) model.  It has proven 

useful for describing choices between risky prospects and it correctly predicted results with a 

dozen “new paradoxes” that cannot be described by CPT (Birnbaum, 2008).  

For gambles of the form, G = (y1, p1; y2, p2;…; yk, pk;…; yi, pi;…; yn, pn )  where 

0 ≤ yn <…< yi <…< yk <…< y2 < y1 , the TAX model can be written: 
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(10)           TAXU(G) =
t(pi )u(yi )+ [u(yi )−u(yk )]ω(pi, pk,n)

k=1

i

∑
i=1

n

∑
i=1

n

∑

t(pi )
i=1

n

∑
    

where ω(pi , pk, n)  represents the weight transferred from branch k to branch i (k ≤ i ; hence 

weight is transferred from branches with higher-valued consequences to branches with lower 

consequences when ω(pi , pk, n)  > 0).  

The “special” TAX model is a special case in which all weight transfers are the same 

fixed proportion of the weight of the branch giving up weight, as follows: 

(11)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ω(pi , pk, n) =

δ ⋅t(pk )
n +1

, δ > 0
δ ⋅t(pi)
n +1

, δ ≤ 0

% 

& 

' 
' 
' 
' 

	   	   	   	   	   	   	  

In this special case of the TAX model, the amount of weight transferred between any two 

branches is a fixed proportion of the (transformed) probability of the branch losing weight. If 

lower-ranked branches have more importance (as they would for a “risk-averse” person), it is 

theorized that weight is transferred from branches with higher consequences to those with lower-

valued consequences; i.e., δ > 0.  The term “prior TAX” is used to refer to specific parameters in 

special TAX, where 𝑢 𝑥 = 𝑥, 𝑡 𝑝 = 𝑝!.!, and 𝛿 = 1. These parameters are not optimal 

(selected in 1996) but were fairly successful in predicting modal choices by undergraduates in 

new studies done over the next two decades (Birnbaum, 2008; Birnbaum & Bahra, 2012), who 

made choices between risky prospects involving small positive consequences (less than $150).   

 For the case of binary, 50-50 gambles, 𝐺 = (𝑦, .5; 𝑥), special TAX (Equations 10 and 11) 

further simplifies to: 

(12)  𝑇𝐴𝑋 𝑦, 0.5; 𝑥 = 0.5 𝑢 𝑦 + 𝑢 𝑥 + 𝜔|𝑢 𝑥 − 𝑢 𝑦 | 

where 𝜔 = −𝛿/6.  Note that this holds for any 𝑡 𝑝  function. 
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Note that the weight of the higher ranked utility is .5 + ω, and the weight of the lower 

ranked value is .5 – ω.  If ω = 0, the model is a simple average (EU for 50-50 gambles), but 

when ω is positive, the higher valued stimulus gets greater weight, and when ω is negative, the 

lower valued stimulus gets greater weight.  At the extremes, when ω = 0.5, or ω = – 0.5, the 

model becomes a maximum or minimum model.   

 Birnbaum and Stegner (1979, Experiment 5) theorized that configural transfers of weight 

(values of ω) would be affected by the judge’s point of view, which they theorized were due to 

psychological incentives to a judge for over- versus under-estimating value (deduced in 

Birnbaum, Coffey, Mellers, & Weiss, 1992).  To test their theory, they asked people to judge the 

most a buyer should pay, the least a seller should accept, or the “fair” price of used cars, based 

on evaluations provided by people of varied bias and expertise who had examined the cars.  

Their theory (1979, p. 60-61) was that buyers, sellers, and independents (judging “fair” value) 

would have different values of ω, but u(x) is independent of point of view.  This model fit the 

data well, and correctly predicted the finding that WTP and WTA are not monotonically related 

to each other (Birnbaum & Stegner, 1979; Birnbaum, 1982; Birnbaum & Zimmermann, 1998).    

 Birnbaum and Stegner (1979) estimated the configural weights for buyers, sellers, and 

“fair price” judgments as follows: ωB  =  – 0.19 (buyers put greater weight on lower values), ωS 

= 0.06 (sellers put greater weight on higher values), and ωF = – 0.07 (“fair” prices fall 

intermediate between buyer and seller).  

3.1 Configural Weighting Account of Violations of Complementary Symmetry 

 To predict violations of complementary symmetry for gambles of the form (y, .5; x) one 

can assume Equation 12 holds for both S and B, with the assumption that u(x) = x and the that 

only ω differs for S and B: 
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  S(x, .5; y) + B(y, .5; x) = x + y + (ωB + ωS)|x – y| 

Where ωB  and ωS are the configural weights for buying and selling prices, WTP and WTA, 

respectively. If ωB  =  – 0.19 and ωS = 0.06, as found by Birnbaum and Stegner (1979), then ωB 

+ ωS = – 0.13; therefore, one would predict a decline in Figure 1 as a function of |x – y| for each 

T = x + y.   

Using parameter estimates from Birnbaum and Stegner (1979) for used cars is obviously 

not optimal for fitting data of Birnbaum and Sutton (1992) for risky prospects, but it does show 

that the general trend is consistent with the theory and that a decline is anticipated, given 

parameters fit to previous data. Thus, the configural weight model can violate complementary 

symmetry and can correctly predict the general trends in Figure 1. 

3.2 Violations of Stochastic Dominance in Configural Weight Models 

 Although Birnbaum (1974) had used the terminology that “weights depend on ranks” to 

describe configural weight models such as Equation 10, the configural weight models do not in 

general imply stochastic dominance, as implied by “rank dependent utility” models as in Quiggin 

(1993), Luce and Fishburn (1991), or Tversky and Kahneman (1992).  To compare configural 

weight models against these rank dependent models, Birnbaum (1997) derived critical tests to 

distinguish them.  Among these tests was a recipe in which the configural weight models were 

expected to violate first order stochastic dominance.  

To understand how and when the configural weight models (as in Equations 10-11) imply 

violations of FOSD, realize that when t(p) is a negatively accelerated function of p, splitting a 

branch can produce splinters having greater total weight than the unsplit branch.   

 Birnbaum’s (1997) recipe is illustrated as follows:  Starting with G0 = ($96, 0.9; $12, 

0.1), split the upper branch and reduce the value on the splinter to create a strictly worse gamble 
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G– = ($96, .85; $90, .05; $12, .10); now split the lower branch of G0 and increase the value of 

the splinter to create a strictly better gamble, G+ = ($96; .90; $14, .05; $12, .05).  By splitting the 

upper branch to create G–, the sum of the weights of the two upper branches has increased 

(because t(p) is negatively accelerated), thus improving the value of the gamble (even though it 

has been made objectively worse); similarly, splitting the lower branch of a gamble makes it 

seem worse, so G+ has a lower value despite being objectively better than G0.   

For example, with t(p) = p0.7, u(x) = x, and	  δ	  = 1, the prior TAX model values of G+ and 

G– are $45.77 and $$63.10, respectively; therefore, TAX predicts a violation of first order 

stochastic dominance in this case.  Birnbaum, et al. (2016) showed that with plausible parameters 

for buying and selling prices, the TAX model can accommodate violations of FOSD like those in 

Table 1.  

3.3 Violations of Restricted Branch Independence  

 Birnbaum (2008) presented an analysis of violations of restricted branch independence in 

the special TAX model (Equations 10-11) and showed that if violations occur, they must be of 

Type 1.  If δ = 0, then there will be no violations of restricted branch independence.  However, 

whether weight is transferred from highest valued branches to lower valued branches, or vice 

versa, TAX implies any systematic violations must be of Type 1 (see Birnbaum, 2008, Figure 

11).  

 Birnbaum and Beeghley (1997) fit Equation 10 to their judgments, including those in 

Table 2.  The weights of lowest, middle, and highest of three equally likely consequences were 

estimated to be 0.56, 0.36, and 0.08 in the buyer’s viewpoint (WTP), respectively, and they were 

0.27, 0.52, and 0.21 in the seller’s viewpoint (WTA), respectively.  In both cases, the middle 

valued branch does not have the least weight, contrary to the inverse-S weighting function of 
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CPT. As shown in Birnbaum and Beeghley, these weights do an excellent job of fitting the 

violations of restricted branch independence and the non-monotonic relationship between WTP 

and WTA (including Table 2), even with the assumption that u(x) = x.  

3.4 Model Fitting: Comparison of Fit 

 The TGPT models of WTP and WTA (Equations 6 and 7) were fit to judgments of 63 

binary gambles of the form, (y, p; x) by Birnbaum, et al. (2016).  There were 9 levels of 

probability: p = 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, or 0.99; there were 7 levels of (y, 

x): (y, x)  = ($100, $0), ($72, $0), ($48, $0), ($24, $0), ($100, $6), ($100, $24) or ($100, $48).  In 

this case, 9 parameters were estimated for T(p) in Equations 6 and 7, because there were 9 levels 

of p. Estimating T(p) for each p allows complete flexibility to the weighting functions, W and W– 

so they need not follow the inverse-S shape or any particular form in this analysis; λ and β were 

also free in Equations 4 and 5, so there were 11 free parameters. 

Despite the flexibility allowed by so many free parameters, TGPT does not fit the data as 

well as configural weight models that used fewer parameters. The sum of squared deviations 

between predicted and obtained judgments (126 predicted values for 63 gambles in WTP and 

WTA) was 20,242 for TGPT (11 parameters) compared to 1,051 for the TAX model with 6 

parameters and 1,097 for a TAX model with 5 free parameters (where u(x) = x).  This 

comparison shows how much better the older, configural weight models performed in fitting 

judgments.  

An anomaly not featured in this paper also violates TGPT: violations of consequence 

monotonicity.  Increasing the lowest consequence in a binary gamble, holding everything else 

fixed, should strictly improve judgments, but it has been found when a low probability 

consequence is reduced from a small positive value to zero, it can actually increase WTP and 

WTA (Birnbaum & Sutton, 1992; Birnbaum, et al., 1992).  This anomaly has been described by 
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the assumption that the value zero (status quo) receives lower weight than nonzero consequences 

(Birnbaum, 1997).  These violations of monotonicity as well as violations of complementary 

symmetry contributed to the difference in fit between TAX and TGPT in Birnbaum, et al. (2016). 

Additional details of the experiment and its analysis, as well as evaluations of other models 

including that of Luce (2000), are presented in Birnbaum, et al. (2016). 

4. Discussion and Conclusions 

 This paper analyzed three properties that are implied by TGPT to show that they are 

violated by empirical data: complementary symmetry, first order stochastic dominance, and the 

Type 2 violation of restricted branch independence.  It also noted that when the models are fit to 

data from a factorial experiment of binary gambles, the judgments of WTP and WTA are better 

fit by configural weight models than by TGPT.  

 Some articles on the endowment effect report the ratio of WTA/WTP, as if this is a 

sensible or stable index.  According to both TGPT and configural weight models, this ratio is not 

an invariant and can be manipulated at will.  Empirically, the ratio of WTA/WTP = 54/50 = 1.08 

for the gamble Q = ($60, .5; $48) and WTA/WTP = 50/25 = 2 for the gamble R = ($96, .5; $12).   

Note that the the ranges differ ($12 versus $84), so TAX predicts this effect.  Not only is this 

ratio not a constant, but WTA is not even a monotonic function of WTP (Birnbaum, 1982; 

Birnbaum & Stegner, 1979; Birnbaum & Sutton, 1992).  For example, for gamble U = ($36, .5; 

$48), WTP = $39.5 and WTA = $41.  Thus, for WTP, U is rated higher than R ($39 > $25) but 

for WTA, U is rated lower than R ($41 < $50).  As noted by Birnbaum, et al. (2016), such 

preference reversals between buying and selling prices refute theories in which WTA is a 

monotonic function of WTP or proportional to it, as in Tversky and Kahneman (1991).  

 Because TGPT relies on CPT, it is also refuted by studies of choice testing Birnbaum’s 

(2008) “new paradoxes.”  These new paradoxes represent findings that refute prospect theories in 



	   24	  

the same way that the Allais paradoxes refuted EU: modal data patterns lead to self-contradiction 

within CPT.  Such paradoxes refute CPT as a descriptive theory of choices between gambles.  

Several of these new paradoxes that refute CPT have been replicated in dozens of experiments 

with a variety of experimental procedures.  

 For example, the violations of first order stochastic dominance reported here in Table 1 

have also been found in more than 40 studies of choice with probability represented by numbers 

of balls of different colors in urns, by frequencies of tickets with different prize values printed on 

them, with pie charts representing spinners, with bar charts showing probabilities, with lists of 

equally likely outcomes, with independent and dependent gambles, with decumulative 

probabilities, and with different arrangements of juxtaposing branches in the gambles compared. 

They have been observed in lab studies of hypothetical choice, in Internet studies with chances 

of real prizes, and in public settings where real cash prizes are awarded in the presence of an 

excited group via drawings conducted immediately after the choices (reviewed in Birnbaum, 

2008; Birnbaum and Bahra, 2012).  

The fact that violations of stochastic dominance and restricted branch independence yield 

such similar results in both judgments and in direct choices suggests that these violations arise 

from a common evaluation mechanism for the evaluation of gambles, rather than from some 

mechanism specific to comparison of gambles. 

In some historical instances, anomalies have been found that violate older models and 

newer models were created to accommodate those new findings.  It is worth emphasizing, 

however, that in this case, older models were used to devise new tests of prospect theories.  The 

configural weight models were used to design new tests of critical properties that would 

distinguish between them and the newer models, leading to the “new paradoxes” and 



	   25	  

“anomalies” that refute both CPT and TGPT.  In the case of complementary symmetry, a new 

test was deduced that could be evaluated using older data as well as the older theory.  

Cognitive mechanisms that might underlie configural weighing have been explored by 

Johnson and Busemeyer (2005) and byAshby, Dickert, & Glöckner (2012). 

The configural weight models can explain the finding that the ratio of WTA to WTP is 

not a constant and that these two judgments are not even monotonically related to each other 

(Birnbaum & Stegner, 1979).  It correctly predicted the trend of violations of complementary 

symmetry in Figure 1 (decreasing as a function of increasing range), it correctly describes the 

type of violations of restricted branch independence (Type 1), it was used to devise the recipe for 

violations of first order stochastic dominance that have been observed, and it fits data better than 

the parameterized model of Schmidt, et al. (2008). 

It seems reasonable that investigators who pursue the concept of loss aversion as a theory 

of the endowment effect should be asked to show that their loss aversion models provide better 

fits to the data than provided by the earlier models.  Perhaps those working with the concept of 

“loss aversion” can find a new theory to account for empirical phenomena such as these 

violations of complementary symmetry, first order stochastic dominance, and restricted branch 

independence. 
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