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1 Introduction

Many studies have concluded that expected utility (EU) theory fails to provide an
accurate description of people’s behavior in several choice problems under risk.
Choices apparently violate the crucial independence axiom as shown by the famous
paradoxes of Allais (1953). Such violations led to the development of numerous
alternative theories (e.g. rank-dependent utility, disappointment and regret models,
prospect theory, etc.), which aim to provide a more realistic account of actual choice
behavior (see surveys by Abdellaoui 2009; Birnbaum 2008; Luce 2000; Starmer 2000;
Sugden 2004; Schmidt 2004). Most of these new theories rely on independence
assumptions that are weaker than assumptions of EU. Experimental tests of these
weakened independence conditions revealed systematic violations, which rule out not
only EU but also rank-dependent utility models and cumulative prospect theory
(Birnbaum 2008; Birnbaum and Navarrete 1998; Wakker et al. 1994; Wu 1994).

Other studies have shown that people are not perfectly consistent when choosing
between risky lotteries (see e.g. Camerer 1989; Starmer and Sugden 1989; Harless and
Camerer 1994; Hey and Orme 1994); that is, in repeated choice problems they may
choose one option in the first round and choose the other option in the second one.
Such preference reversals to the same problem suggest that choices involve a stochastic
component. Nowadays one very intensively discussed issue in decision theory is how
to model this stochastic component adequately (e.g., Birnbaum and Bahra 2012; Gul
and Pesendorfer 2006; Blavatskyy 2007, 2008, 2011, 2012; Conte et al. 2011; Hey
et al. 2009; Loomes 2005; Wilcox 2008, 2011; Harrison and Rutström 2009).

Is it possible that one can explain systematic violations of EU by proper modeling of
the error component of choice? Hey (1995) concluded: BIt may be the case that these
further explorations may alter the conclusion to which I am increasingly being drawn:
that one can explain experimental analyses of decision making under risk better (and
simpler) as EU plus noise—rather than through some higher level functional—as long
as one specifies the noise appropriately.^ Certain of the reported violations of EU might
be at least partly caused by errors instead of being intrinsic violations (Blavatskyy
2006; Sopher and Gigliotti 1993; Schmidt and Hey 2004; Butler and Loomes 2007,
2011; Berg et al. 2010).

Schmidt and Neugebauer (2007) considered only cases where subjects chose the
same option in a choice problem three times in row. Provided that the probability of
errors is not too high, such repeated choices more likely reflect Btrue preferences^ since
it is rather improbable that a subject makes the same error three times. It turns out that
in these cases the incidence of violations of independence decreases substantially.

The goal of the present paper is to provide a more systematic analysis to estimate the
incidence of true violations as opposed to those that might be attributed to error. We
perform repeated choice experiments and fit an error model that is neutral with respect
to violations of any independence condition. This model allows us to distinguish
precisely which portion of violations can be attributed to errors and which part should
be considered as Breal^ violations. Note that such an analysis is not possible with a
model of EU plus error term (e.g., as used by Schmidt and Neugebauer 2007) since that
model assumes that true preferences are governed by EU, and thus satisfy the inde-
pendence axiom, coalescing, and transitivity. The model we use in the present paper, in
contrast, assumes only that there is a true choice probability and an error rate (which
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can be different for each choice problem); it does not assume transitivity, independence,
or coalescing (implications of EU that we aim to test).

A further systematic deviation from EU (and in fact also from many alternatives to
EU such as rank-dependent utility (RDU), rank- and sign-dependent utility (RSDU),
and cumulative prospect theory (CPT)) is provided by violations of coalescing (split-
ting effects). For example, coalescing assumes that gamble G = ($50, 0.1; $50, 0.1; $0,
0.8) is equivalent to G′ = ($50, 0.2; $0, 0.8). A branch of a gamble is a probability-
consequence or event-consequence pair that is distinct in the presentation to the
participants. In this case, G is a three-branch gamble, and G′ is the two-branch
coalesced form of G. A splitting effect is said to occur if, for example, G is preferred
to a gamble, F, and yet F is preferred to the gamble G′, apart from random error.

There exists abundant evidence that splitting a branch (e.g., an event) with a good
consequence increases the attractiveness of that lottery in comparison to other lotteries
(Starmer and Sugden 1993; Birnbaum and Navarrete 1998; Humphrey 1995, 2001).1

According to configural weighting models, splitting the branch leading to the lowest
consequence can also lower the evaluation of a gamble, even when that worst conse-
quence is positive (Birnbaum 2008). While Birnbaum and Navarrete employed split-
ting effects in order to generate substantial violations of first-order stochastic domi-
nance, the papers of Humphrey note that splitting effects may have contributed to
previously reported violations of transitivity. It may well be the case that splitting
effects are the main cause of violations of independence conditions, as in the Allais
paradoxes (Birnbaum 2004).

Birnbaum (2004) noted that the Allais common consequence problem can be
decomposed into three simpler properties: coalescing (no splitting effects), transitivity
of preference, and restricted branch independence. If a person satisfies these three
properties, she would not show the paradoxical violation of EU. Restricted branch
independence is a weaker form of independence that holds when the number of
branches is the same in both gambles being compared and the probabilities of corre-
sponding branches are equal. With these restrictions, the value of a common conse-
quence is assumed to have no effect. For example, with three branch gambles, restricted
branch independence requires that S = (x, p; y, q; z, 1 – p – q) preferred to R = (x′, p; y′,
q; z, 1 – p – q) if and only if S′ = (x, p; y, q; z′, 1 – p – q) preferred to R′ = (x′, p; y′, q; z′,
1 – p – q). Note that the common consequence is z in the first choice and z′ in the
second choice. Presenting Allais common consequence problems in a proper split form
can convert them to tests of restricted branch independence.

For example, consider the choice between S* = ($40, 0.2; $2, 0.8) and R* = ($98,
0.1; $2, 0.9). The canonical split form of this choice is the form in which probabilities
on corresponding ranked branches are equal and the number of branches is minimal:
S = ($40, 0.1; $40, 0.1; $2, 0.8) versus R = ($98, 0.1; $2, 0.1; $2, 0.8). Coalescing and
transitivity imply that a person should choose S over R iff she chooses S* over R*.
According to restricted branch independence, a person chooses S over R iff she chooses
S′ = ($40, 0.1; $40, 0.1; $98, 0.8) over R′ = ($98, 0.1; $2, 0.1; $98, 0.8). By coalescing
and transitivity, this holds iff ($40, 0.2; $98, 0.8) is chosen over ($98, 0.9; $2, 0.1). CPT

1 For similar evidence of splitting effects in other contexts than choice under uncertainty see e.g. Weber et al.
(1988) and Bateman et al. (1997).
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satisfies coalescing (Birnbaum and Navarrete 1998), so we can test not only EU but
also CPT by testing such pairs of choices in both coalesced and canonical split form.

This paper is organized as follows. The next section presents error models and
discusses the issue of testing properties such as independence in the presence of errors.
Section 3 presents the experimental design and method of Experiment 1, while
Section 4 reports the results. Sections 5, 6, and 7 present Experiment 2, which confirms
and extends our results. Discussion and concluding observations appear in Section 8.

2 Errors and violations of independence

This section shows that random errors can generate data that appear to provide
systematic violations of EU. It shows how the true and error model can be used to
separate estimation of error from the model to be tested. Consider a simple variant of
the common ratio effect (CRE) as shown in Fig. 1.

According to EU theory, a person should prefer A over B if and only if that person
prefers C over D because EU(A) > EU(B) if and only if EU(C) > EU(D). Proof:
EU(A) = 0.5u(50) + 0.5u(0) > u(20) iff 0.01u(50) + 0.99u(0) > 0.02u(20) + 0.98u(0).
There are four possible response patterns in this experiment, AC, AD, BC, and BD,
where e.g. AC represents preference for A in the first choice and C in the second choice.
The response patterns AC and BD are consistent with EU while the other two patterns
violate the independence axiom of EU. Suppose we obtained data as in Table 1 from
100 participants.

In this case 33 people switched from B to C, whereas only 9 reversed preferences in
the opposite pattern. The conventional statistical test (test of correlated proportions) is
significant, z = 3.7, which is usually taken as evidence that EU theory can be rejected
(e.g., Conlisk 1989).

Can such results occur by random errors? As has been previously noted, yes.
Suppose for example a subject chooses A over B iff EU(A) - EU(B) + ε > 0 and
chooses C and D iff EU(C) - EU(D) + ε′ > 0 where ε and ε′ are normally distributed,
independent random variables with E(ε) = E(ε′) = 0 and variances σ and σ′. Note that
EU(A) – EU(B) > EU(C) – EU(D) for any utility function, u. Depending on the error
variances, the probability to make an erroneous response in the choice between C and
D could be greater than that in the choice between A and B (for example, if σ = σ′), in
which case we would observe more frequent erroneous BC than AD preference

Choice AB: Which do you choose? 

A:  0.50 to win $0 

     0.50 to win $50 

B:  $23 for sure 

Choice CD: Which do you choose? 

C:  0.99 to win $0 

     0.01 to win $50 

D:  0.98 to win $0 

     0.02 to win $23 

Fig. 1 ATest of Common Ratio Independence
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patterns. Thus, the standard test of inequality of different types of violations is not a
diagnostic test of EU plus random error.

Since this EU-based error theory, however, assumes EU, it does not allow us to test
EU; it merely provides an excuse for the violations. Therefore, in order to test EU
empirically (rather than by assumption) we needmore general error models that allow us
to empirically estimate error rates and to distinguish true preferences from response
errors. Such models have been developed (Birnbaum 2013; Birnbaum and Bahra 2012).

Suppose that each person has a true preference pattern, which may be one of the four
possible response combinations. Let pAC, pAD, pBC, and pBD denote the probabilities of
the four true preference patterns, which represent the relative frequencies of subjects
with these patterns. Let e represent the probability of an error in reporting one’s true
preference for the choice between A and B. Similarly, e′ is the probability of an error for
the choice between C and D. Is it possible that, given the data in Table 1, all subjects
conform to EU? In other words, are the data in Table 1 compatible with pBC = pAD = 0?
The answer is Byes,^ despite the statistically significant inequality in the two types of
violations.

In the true and error (TE) model, the probability of observing the preference pattern
BC is given as follows:

P BCð Þ ¼ pAC eð Þ 1−e′ð Þ þ pAD eð Þ e′ð Þ þ pBC 1−eð Þ 1−e′ð Þ þ pBD 1−eð Þ e′ð Þ ð1Þ

In this expression, P(BC) is the probability of observing this preference pattern, and
e and e′ are the error rates in the choice problems A versus B and C versus D,
respectively. The error probabilities are assumed to be less than ½ and to be mutually
independent. P(BC) is the sum of four terms, each representing the probability of
having one of the true patterns (pAC, pAD, pBC, and pBD), and having the appropriate
pattern of errors and correct responses to produce the BC data pattern. For example, a
person who truly has the AC pattern could produce the BC pattern by making an error
on the first choice and correctly reporting her preference on the second choice. There
are three other equations like (1), each showing the probability of an observed data
pattern given the model.

Given only the data of Table 1, this model is under-determined. There are four
response frequencies to fit, which have three degrees of freedom (df) because they sum
to the number of participants. The four true probabilities must sum to 1, and there are
two error probabilities. Thus, we have three degrees of freedom in the data and five
parameters to estimate, so many solutions are possible. Two solutions that reproduce
the data in Table 1 perfectly are shown in Table 2.

This table shows that we might try to Bsave^ EU in this case by assuming that people
have unequal error rates in the two choice problems. But if the error rates are actually
equal, we should reject EU. Thus, given only the data in Table 1 it is not possible to

Table 1 Hypothetical Frequen-
cies of Response Patterns

C D

A 9 9
B 33 49
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rationally decide one way or the other. As noted in Wilcox (2008), none of the early
error models he reviewed allowed any independent way to answer this question without
making an assumption that affects the conclusion. We need a way to evaluate EU
without assuming that error rates are necessarily equal or that EU is correct. Put another
way, we need to enrich the structure of the data so that we can determine error rates
empirically. This enrichment is possible via replications of each choice problem
(Birnbaum and Bahra 2012).

Consider the case of one choice problem presented twice: for example, Choice AB
above.With two replicates, there are four response patterns possible, AA, AB, BA, and BB.
The probability that a person will show the AB preference reversal is given as follows:

P ABð Þ ¼ p 1−eð Þ eð Þ þ 1−pð Þe 1−eð Þ ¼ e 1−eð Þ: ð2Þ

where p is the true probability of preferring A and e is the error rate on the choice between
A and B. The probability of the opposite reversal, BA, is also e(1 – e). These expressions
show that if we present each choice problem at least twice to the same people, we can
estimate the error rates for each choice problem without having to assume that error rates
are equal or that EU is true. An important property of the true and error models is that with
the proper experimental designs, they not only allow estimation of parameters to address
empirical questions, but they are empirically testable.

With two replications of two choice problems (e.g., in a test of the common
consequence effect), there are 2 × 2 × 2 × 2 = 16 possible response patterns, which
have 15 degrees of freedom. But there are only 5 parameters to estimate from the 16
frequencies of these response patterns: two error terms and three probabilities of true
response patterns. Because the four probabilities of true response patterns sum to 1, the
fourth probability is determined. The general model (which allows all four true
preference patterns to have nonzero probability) is now over-determined, leaving
15 – 5 = 10 degrees of freedom to test the general error model. EU theory is a special
case of this general model in which two of the true probabilities are fixed to zero. For
example, in Table 1, EU assumes pBC = pAD = 0.

Parameters can be estimated to minimize the deviations of fit of the predicted to
observed frequencies of response patterns, which can be measured by the standard Chi-
Square formula:

χ2 ¼ ∑ f i−qið Þ2=qi; ð3Þ

Table 2 Two models of Table 1 that fit equally well

Parameter Model 1: EU holds Model 2: EU does not hold

pAC 0.10 0.05
pAD 0.00 0.00
pBC 0.00 0.34
pBD 0.90 0.61
e 0.10 0.14
e′ 0.40 0.14
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where fi is the observed frequency and qi is the predicted frequency of a particular
response pattern. Two statistical tests are of primary importance: first, one can test the
TE model as a fit to the 16 response frequencies. Second, one can test EU as a special
case of that model. The difference in χ2 between a fit of the general model (that allows
all four response patterns to have non-zero probabilities) and the χ2 for the special case
(EU, in which pBC = pAD = 0) is theoretically Chi-square distributed with 2 degrees of
freedom. This test allows us to determine whether observed violations of EU are real, or
whether they might be attributed to response errors.

In Experiment 1, we used four replications of each choice problem. With two choice
problems and four replications, there are 256 possible response patterns (44 = 256).
When cell frequencies are small, we use the G-statistic, which is a likelihood ratio test
that takes on similar values to the standard index and is theoretically distributed as Chi-
Square: G = 2∑filn(fi/qi). The G index is regarded as more accurate when cell
frequencies are small; cells with zero frequency (i.e., fi = 0) have no effect on the
statistic, whereas the standard Chi-Square is known to be inflated when expected
frequencies are low (see Özdemir and Eyduran 2005; McDonald 2009). Additional
details about true and error models (including more elaborate models and analyses) are
presented in our online supplement in Appendices B and C.

3 Experimental method and Design of Experiment 1

The experiment was conducted at the University of Kiel with 54 participants, mostly
economics and business administration students (all undergraduates). Altogether there
were six sessions each with nine participants and lasting about 90 minutes. Subjects
received a 5 Euro show-up fee and had to respond to 176 pairwise choice questions
which were arranged in four booklets of 44 choices each. After a subject finished all
four booklets, one of her choices was randomly chosen and played out for real. The
average payment was 19.14 Euro for 90 minutes, i.e. 12.76 Euro per hour, which
clearly exceeds the usual wage of students (about 8 Euro per hour). As noted in Cox
et al. (2015), this system is incentive compatible with EU theory; that is, a person who
perfectly satisfies EU should report her true preferences on all choice problems.

Choices were presented as in Fig. 2 and subjects had to circle their preferred
alternative. Prizes were always ordered from lowest to highest. Explanation and playing
out of lotteries involved a container holding numbered tickets from 1 to 100. Suppose a
subject could for instance play out lottery A in Fig. 2. Then she would win 20 Euro if
the ticket drawn numbered from 1 to 50, 30 Euro for tickets numbered from 51 to 80,
and 40 Euro for a ticket between 81 and 100. All this was explained in printed
instructions that were given to the participants and read aloud. Following instructions,
subjects had to answer four transparent dominance questions as a test of understanding,
which were checked by the experimenter before the participant was allowed to proceed.

A: 50% to win 20 Euro B: 33% to win 10 Euro

30% to win 30 Euro 34% to win 15 Euro

20% to win 40 Euro 33% to win 60 Euro

Fig. 2 Format for presentation of a choice between lotteries
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Choice problems in the booklets were presented in pseudo-random order. The
ordering was different in each booklet with the restriction that successive choice
problems not test the same property. Only after finishing each booklet did a subject
receive the next one. Moreover, for half of the subjects each booklet contained only
coalesced or only split choice problems whereas for the other half split and coalesced
choice problems were intermixed in each booklet. Our design included 11 tests of
independence conditions, nine of which were investigated in both coalesced and
canonical split forms. All 20 tests were replicated four times with counterbalanced
left-right positioning. Additionally, in order to check the attentiveness of subjects, each
booklet included two transparent stochastic dominance problems, one based on out-
come monotonicity and one on event monotonicity.

The lottery pairs for each test are presented in Table 3. Each lottery pair consists of a safe
lottery S (in which you can win prize si with probability pi) and a risky lottery R for which
possible prizes and probabilities are denoted by ri and qi respectively. The lotteries were
adapted from previous studies that reported high violation rates but we adjusted outcomes
in order to get an average expected value of about 12 Euro. Table 3 shows only the
coalesced forms of the lottery pairs. Some of these choice problems were also presented
using the canonical split form of those pairs. The canonical split forms of these choices can
be found in Appendix A in the online supplement to this article. For example, Choice 5 in
Table 3 is the choice between S = ($19, 0.2; $0, 0.8) and R = ($44, 0.1; $0, 0.9). The
canonical split form of this choice is the form in which probabilities on corresponding
ranked branches are equal and the number of branches is minimal: S* = ($19, 0.1; $19, 0.1;
$0, 0.8) versusR* = ($44, 0.1; $0, 0.1; $0, 0.8), listed as Choice 7 in Table A.1 ofAppendix
A. Objectively, S is the same as S* and R is the same as R*.

The first six tests in Table 3 include four problems that had previously shown
common consequence effects (CCE1–4) and two problems with common ratio effects
(CRE1 and 2). The paradoxes of Allais are special variants of such CCE and CRE. This
type of CCE can be formally described by S = (z, p1; s2, p2; s3, p3), R = (z, q1; r2, q2; r3,
q3), S′ = (z, p1– α; z′, α; s2, p2; s3, p3), and R′ = (z, q1– α; z′, α; r2, q2; r3, q3) where all
lotteries are presented in coalesced form. S′ and R′ are constructed from S and R by
shifting probability mass (α) from the common consequence z to a different common
consequence z′, and converting to coalesced form. An EU maximizer will prefer S over
R if and only if she prefers S′ over R′. In principle, there is no restriction on the ordering
of the consequences in this notation (for example, z and z′ might be the lowest and
highest consequences or vice versa). In practice, in all of our tests, z = $0 is the lowest
consequence and z′ is either the middle or highest consequence of the three. In all of the
cases of this design, there are no more than three distinct consequences in each test and
lotteries are presented in coalesced form.

In Table 3, the first row of a choice problem always characterizes the lotteries S and
R and the second one the lotteries S′ and R′. For example, in Choice 5 of CCE1 we have
z = s1 = 0, p1 = 0.8, p2 = 0.2, s2 = 19, p3 = 0 for S; and we have q1 = 0.90, q2 = 0.10,
r2 = 44, q3 = 0 for R; in Choice 13, S′ and R′ are constructed by setting α = 0.4 and
z′ = r2 = 44. In this case, S′ has added a new branch leading to $44, but the branches
leading to 44 are coalesced in R′. The four CCE problems of Table 3 are adapted from
Starmer (1992). In all cases, S′ has either added a branch leading to the highest
consequence or lost the branch leading to the lowest consequence. The typical pattern
of violations in CCE1–4 is that people prefer R over S but S′ over R′.
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A test of CRE can be formally described by S = (z, p1; s2, p2), and R = (z, q1; r2, q2),
S′ = (z, 1 – β(1 – p1); s2, βp2), R′ = (z, 1 – β(1 – q1); r2, βq2), i.e. S′ and R′ are

Table 3 The lottery pairs

Safe Gamble Risky Gamble

Property No. p1 p2 p3 q1 q2 q3
s1 s2 s3 r1 r2 r3

CCE1 SR 5 0.80 0.20 0.90 0.10
0 19 0 44

S′R′ 13 0.40 0.20 0.40 0.50 0.50
0 19 44 0 44

CCE2 SR 1 0.89 0.11 0.90 0.10
0 16 0 32

S′R′ 2 1.00 0.01 0.89 0.10
16 0 16 32

CCE3 SR 5 0.80 0.20 0.90 0.10
0 19 0 44

S′R′ 6 1.00 0.10 0.80 0.10
19 0 19 44

CCE4 SR 9 0.70 0.30 0.80 0.10 0.10
0 21 0 21 42

S′R′ 10 0.70 0.20 0.10 0.80 0.20
0 21 42 0 42

CRE1 SR 15 0.98 0.02 0.99 0.01
0 23 0 46

S′R′ 16 1.00 0.50 0.50
23 0 46

CRE2 SR 20 0.80 0.20 0.86 0.14
0 28 0 44

S′R′ 19 0.40 0.60 0.58 0.42
0 28 0 44

UTI SR 29 0.73 0.02 0.25 0.74 0.01 0.25
0 15 60 0 33 60

S′R′ 30 0.73 0.02 0.25 0.74 0.26
0 15 33 0 33

LTI SR 33 0.75 0.23 0.02 0.75 0.24 0.01
1 34 36 1 33 60

S′R′ 34 0.75 0.23 0.02 0.99 0.01
33 34 36 33 60

UCI SR 37 0.20 0.20 0.60 0.20 0.20 0.60
9 10 24 3 21 24

S′R′ 38 0.40 0.60 0.20 0.80
9 21 3 21

LDI SR 23 0.60 0.20 0.20 0.60 0.20 0.20
1 18 19 1 2 32

S′R′ 24 0.10 0.45 0.45 0.10 0.45 0.45
1 18 19 1 2 32

UDI SR 25 0.20 0.20 0.60 0.20 0.20 0.60
6 7 20 1 19 20

S′R′ 26 0.45 0.45 0.10 0.45 0.45 0.10
6 7 20 1 19 20

The first lottery pair of a choice problem always characterizes the lotteries S and R and the second one the
lotteries S′ and R′
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constructed from S and R by multiplying all probabilities by β and assigning the
remaining probability 1 – β to the common consequence z. EU implies again that
people choose either the risky or the safe lottery in both choice problems.

The remaining five independence properties in Table 3 are weaker than the
independence axiom of EU. Some of these are assumed or implied by RDU
(Quiggin 1981, 1982; Luce 1991, 2000; Luce and Fishburn 1991; Luce and
Marley 2005), CPT (Starmer and Sugden 1989; Tversky and Kahneman 1992;
Wakker and Tversky 1993). These properties test between the class of RDU
models (including CPT) and earlier configural weight models that violate those
properties (Birnbaum and Stegner 1979; Birnbaum 2008). Tail independence
(TI), studied by Wu (1994), is a special case of ordinal independence (Green
and Jullien 1988). If two lotteries share a common tail (i.e. identical probabilities
of receiving any outcome better than xi+1), then the preference between these
lotteries must not change if this tail is replaced by a different common tail.
Upper Tail Independence (UTI) requires that S = (s1, p1; s2, p2; α, p3) ≺ R = (r1,
p1; γ, p2; α, p3) iff S′ = (s1, p1; s2, p2; γ, p3) ≺ R′ = (r1, p1; γ, p2 + p3), where
r1 < s1 < s2 < γ < α. TI, however, also demands that preferences must not
change if lower common tails are exchanged which is called lower tail indepen-
dence (LTI). TI is implied by many models including all variants of RDU as well
as CPT. Therefore, rejecting TI would provide serious evidence against all these
models. Wu (1994) and Birnbaum (2008) reported large violations of TI, con-
tradicting RDU, CPT, and EU. Our tests of UTI were adapted from Wu (1994).
LTI has, as far as we know, not been tested before. Our test of LTI was
constructed in similar fashion to that of UTI.

Birnbaum and Navarrete (1998) deduced the properties of lower and upper cumu-
lative independence (LCI and UCI) as theorems that must be satisfied by CPT (and
RSDU) but which will be violated according to configural weight models. Formally,
UCI demands that If S = (s1, p1; s2, p2; α, p3) ≺ R = (r1, p1; γ, p2; α, p3) then S′ = (s1,
p1 + p2; γ, p3) ≺ R′ = (r1, p1; γ, p2 + p3), where r1 < s1 < s2 < γ < α. Substantial
violations of UCI were reported by Birnbaum and Navarrete (1998) and in subsequent
research summarized in Birnbaum (2008).

The final property is distribution independence (DI), proposed by Birnbaum as a test
of the weighting function in CPT. Whereas certain configural weight models imply that
DI holds, DI should be violated according to RDU and CPT, if the weighting function
is not linear, as commonly inferred from empirical research (Camerer and Ho 1994; Wu
and Gonzalez 1996; Tversky and Fox 1995; Gonzalez and Wu 1999; Abdellaoui 2000;
Bleichrodt and Pinto 2000; Kilka and Weber 2001; Abdellaoui et al. 2005). For three-
outcome lotteries, DI demands that S = (s1, β; s2, β; α, 1 – 2β) ≺ R = (r1, β; r2, β; α, 1
– 2β) if and only if S′ = (s1, δ; s2, δ; α, 1 – 2δ) ≺ R′ = (r1, δ; r2, δ; α, 1 – 2δ), where
r1 < s1 < s2 < r2. When α is the highest outcome, the condition is called upper
distribution independence (UDI); when α is the lowest consequence, it is called lower
distribution independence (LDI).

Consistency check: We examined the eight tests of transparent dominance per
person. Out of 54 subjects, 49 (91%) had no violations in eight tests; five had one
and one person had two violations; a total of 7 violations out of 8 × 54 = 432 tests
is 1.6%). We conclude from these checks that our subjects were indeed motivated
and attentive.
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4 Results of experiment 1

Table 4 summarizes tests of independence properties, using the true and error model.
For each property tested (first column), Table 4 shows the estimated probabilities of the
four possible response patterns in columns two through five. Columns six and seven
show the estimated error rates for the choice problems between S and R (e) as well as
between S′ and R′ (e′). The final column presents Chi-Square statistics between the fit
of a general model (a model that allows all four response patterns to have non-zero
probabilities) and the fit of a model that satisfies the respective independence condition
(i.e., pRS′ = pSR′ = 0). One asterisk (two asterisks) in this column indicate that we can
reject the null of pRS′ = pSR′ = 0 in favor of the general model at the 5% (1%)
significance level. A subscript BS^ in the first column indicates that in that test, the
choice problems were presented in canonical split form. Bold entries in Table 4 indicate
substantial violations of the property tested.

According to the independence axiom of EU, pRS′ = pSR′ = 0. Our results show
that even allowing for a different error rate in each choice problem, EU is
systematically violated in the manner reported in previous research. In tests
CCE1–4 and CRE1–2, independence can be rejected. Estimated probabilities of
violations range from 10% to 64% (mean 28%); apart from CCE3, the vast
majority of violations are of one type. In CCE3, there are substantial violations
of both pattern SR′ and of RS′. In summary, we find that typical violations of the
independence properties of EU reported for raw responses are also observed when
errors are taken into account; in other words, we conclude that the violations
observed in previous research are replicated in our experiment and are not
attributable to random error.

Table 4 Tests of independence conditions

Property Choices pSS′ pSR′ pRS′ pRR′ e e´ Test

CCE1 5, 13 0.44 0.02 0.30 0.24 0.15 0.11 20.36**
CCE1S 7, 14 0.52 0.20 0.00 0.28 0.13 0.16 12.77**
CCE2 1, 2 0.02 0.00 0.10 0.88 0.02 0.08 15.33**
CCE2S 3, 4 0.09 0.03 0.05 0.84 0.07 0.07 7.61*
CCE3 5, 6 0.25 0.21 0.16 0.39 0.16 0.12 18.69**
CCE3S 7, 8 0.52 0.24 0.00 0.25 0.13 0.16 12.63**
CCE4 9, 10 0.67 0.01 0.29 0.02 0.14 0.09 21.96**
CCE4S 11, 12 0.80 0.01 0.02 0.17 0.14 0.12 0.82
CRE1 15, 16 0.25 0.00 0.64 0.11 0.11 0.07 44.64**
CRE1S 17, 18 0.44 0.00 0.46 0.10 0.15 0.05 27.21**
CRE2 20, 19 0.57 0.00 0.20 0.23 0.14 0.11 18.00**
CRE2S 21, 22 0.84 0.02 0.01 0.12 0.17 0.12 0.45
UTI 29, 30 0.06 0.01 0.52 0.40 0.13 0.18 18.76**
UTIS 31, 32 0.17 0.01 0.00 0.82 0.14 0.18 0.05
LTI 33, 34 0.04 0.00 0.14 0.82 0.05 0.15 3.96
LTIS 35, 36 0.04 0.00 0.01 0.95 0.06 0.08 0.24
UCI 37, 38 0.14 0.08 0.13 0.66 0.13 0.22 3.88
UCIS 37, 39 0.13 0.09 0.02 0.76 0.13 0.09 5.07
LDI 23, 24 0.94 0.00 0.00 0.06 0.02 0.05 0.00
UDI 25, 26 0.16 0.02 0.03 0.79 0.09 0.10 1.80

*denotes a significance level of 5%, ** a significance level of 1%
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A quite different picture arises when the same choice problems are presented in
canonical split form. In CCE4S and CRE2S violations are reduced and not significant
(i.e., EU cannot be rejected), and in CCE1S the violations of EU are in the opposite
direction from that observed in coalesced form (i.e., the SR′ pattern is more frequent
than the RS′ pattern), and these reversed violations are statistically significant. One case
(CRE1) shows the same pattern in both split and coalesced forms as in previous
research. We can, therefore, conclude that splitting effects have a substantial influence
on tests of the independence axiom of EU. These results are consistent with Birnbaum’s
(2004) hypothesis that CCE are largely due to violations of coalescing.

Next, consider the tests of the weaker independence conditions implied or assumed
by RDU, CPT, and EU. For UTI we observe a substantial and systematic violation: the
estimated probability of the violating pattern RS′ amounts to 52%. These results agree
with the high violation rates observed by Wu (1994) and other research summarized in
Birnbaum (2008). We conclude that violations of UTI are not caused by errors but
reflect true preferences. This is a serious challenge for CPT and the whole class of rank-
dependent models (including EU) which all imply that UTI holds. It is, however,
noteworthy that violations of UTI virtually disappear when we present choices in
canonical split form. The estimated frequency of the RS′ pattern decreases from 52%
in the coalesced test to 0% in the split test while the frequency of the opposite violation
SR′ amounts to only 1% in both cases. Therefore, violations of UTI seem to be likely
caused by violations of coalescing.

Our new test of LTI did not generate significant violations, nor did the test of UCI.
Comparing our results for UCI to previous ones, the failure to observe significant
violations may be due to large error rates in our tests. In fact, the estimated error rates in
our coalesced test of UCI are the highest of all choice problems. The high error rates
may explain why we estimated only relatively low true violation rates for UCI whereas
our observed violation rates (on average 37% for the coalesced presentation and 24%
for the split one) fall in line with previous results.

Our tests of LDI and UDI agree with the conclusions of previous research.
Systematic violations of DI are predicted by CPT but are not observed in our tests,
replicating previous failures to confirm predictions of the inverse-S weighting function
commonly proposed for rank-dependent models.

Because violations of coalescing rule out RDU and CPT models (as well as EU) and
because the tests of independence depend on the form of presentation (split or
coalesced), we also present direct tests of these splitting effects in Table 5. Table 5
compares choices in a given lottery pair in coalesced form with the same choice in
canonical split form. If no splitting effects occur, each subject chooses the risky lottery
in both problems or the safe lottery in both problems, aside from error. In contrast,
Table 5 shows that many people make different choice responses, even when corrected
for errors, where e (e′) is the estimated error rate of the choice problem stated first
(second) in the first column of the table. The last column shows Chi-Square tests
comparing the fit of a special case model that satisfies coalescing (pRS′ = pSR′ = 0), and
the fit of a general model that allows for splitting effects (allowing non-zero probabil-
ities of all four possible response patterns). It turns out that in nine out of 14 tests the
null hypothesis of coalescing, pRS′ = pSR′ = 0, can be rejected in favor of the general
model allowing for splitting effects. Substantial violations of coalescing (indicated in
bold in Table 5) contradict CPT, RDU, and EU models, among others.
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5 Experiment 2

Experiment 1 concluded that violations of common ratio and common consequence
independence cannot be attributed to error and are strongly affected by the form in
which choice problems are presented. When branches are split in canonical split form,
violations of independence are either reduced markedly or in some cases reversed. Such
results are largely consistent with configural weight models (Birnbaum 2008), which
can violate coalescing. In Experiment 2, we replicate and extend these findings for
Allais paradoxes in a new experiment with American participants with different
lotteries, and we test a new manipulation, called double splitting in which both the
upper and lower branches are split. This manipulation allows us to test among
variations of configural weighting models.

Birnbaum and Stegner (1979, Eq. 10) proposed a Brevised^ configural weight model
in which configural weights are transferred from branch to branch in proportion to the
absolute weight of the branch that loses weight. This model is now known as the
transfer of attention exchange (TAX) model (e.g., Birnbaum and Navarrete 1998).
Consider gambles defined as G = (x1, p1; x2, p2; ... xj, pj; ... xi, pi;…; xn, pn), where the
outcomes are ordered such that x1 ≥ x2 ≥ ... ≥ xj ≥ ... ≥ xi ≥ ... ≥ xn ≥ 0 andΣ pj = 1. Note
that xj ≥ xi. The TAX model can be written as follows:

U Gð Þ ¼
∑n

i¼1t pið Þu xið Þ þ ∑n
i¼2∑

i−1
j¼1 u xið Þ−u x j

� �� �
ω pi; p j; n
� �

∑n
i¼1t pið Þ ð4Þ

where U(G) is the utility of the gamble, t(p) is a weighting function of probability, u(x)
is the utility function of money, and ω(pi, pj, n) is the configural transfer of weight
between outcomes xi and xj in a gamble with n branches. Note that if the configural
transfer is positive, then the branch with a higher valued consequence transfers weight
to branches with lower valued consequences; when it is negative, then the higher-

Table 5 Tests of splitting effects

Problems pSS′ pSR′ pRS′ pRR′ e e′ Test

1–3 0.02 0.00 0.07 0.90 0.02 0.07 7.89*
5–7 0.47 0.00 0.28 0.26 0.15 0.13 17.42**
9–11 0.70 0.00 0.06 0.24 0.14 0.14 1.78
10–12 0.82 0.14 0.00 0.04 0.09 0.12 7.83*
13–14 0.52 0.22 0.00 0.26 0.11 0.16 18.52**
15–17 0.29 0.00 0.13 0.57 0.11 0.15 8.04*
19–21 0.76 0.03 0.07 0.14 0.11 0.12 4.56
20–22 0.56 0.00 0.23 0.20 0.14 0.16 17.31**
29–31 0.06 0.00 0.13 0.80 0.13 0.13 10.66**
30–32 0.18 0.40 0.00 0.42 0.18 0.18 24.72**
33–35 0.02 0.02 0.01 0.95 0.05 0.07 3.51
34–36 0.05 0.13 0.01 0.81 0.15 0.08 3.76
38–39 0.13 0.15 0.01 0.71 0.22 0.08 3.85
41–42 0.35 0.04 0.35 0.27 0.20 0.14 15.19**
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valued branch gains weight and the lower valued branches give up this same weight.
The weight transfers are assumed as follows:

ωðpi; pj; nÞ ¼ δtðpjÞ= nþ kð Þ; δ ≥ 0
δt pið Þ= nþ kð Þ; δ < 0

���� ð5Þ

where n is the number of distinct branches, and k was fixed to 1. If δ = 1 and k = 1
then the weights of two, three, and four equally likely outcomes will be (2/3, 1/3),
(3/6, 2/6, 1/6), and (0.4, 0.3, 0.2, 0.1), for lowest to highest valued branches,
respectively. For small consequences, 0 < x < $150, it has been found that u(x) = x
provides a reasonable approximation to choice data from undergraduates. In addition
the weighting function of probability has been approximated as t(p) = p0.7. This
model is known as the Bprior^ TAX model because these parameters from 1997 were
used (with considerable success) to predict results of new experiments, such as those
reviewed in Birnbaum (2004, 2008).

Viscusi’s (1989) prospective reference theory is a special case of TAX in which
δ = 0; EU is also a special case of TAX when t(p) = p and δ = 0.

This model is the same as in Birnbaum and Navarrete (1998), except that the
consequences are ranked here in decreasing value (e.g., x1 ≥ x2, to match the
notational convention used in CPT), so δ < 0 in the earlier publication corresponds
to δ > 0 in Eq. 5.

According to the TAX model, splitting the branch of a gamble leading to the highest
consequence in the gamble should make the gamble better and splitting the lowest
branch of a gamble should make a gamble worse (Birnbaum 2008).

Except for two cases, the trends observed in Experiment 1 (Table 5) are consistent
with the predictions of the prior TAX model; that is, splitting the branch with the best
consequence of a gamble tends to make it more attractive and splitting the branch with
the worst consequence of a gamble makes it worse. In the two cases not predicted from
previous parameters (Choice Problems 13–14 and 30–32) it was found that splitting
both the upper and lower branches of the risky gamble increased the frequency with
which the split form was chosen relative to splitting the middle branch of the safe
gamble.

Double splitting: Consider, for example, A = ($98, 0.5; $2, 0.5) and B = ($98,
0.25; $98, 0.25; $2, 0.25; $2, 0.25). B is the same as A except for coalescing, and the
manipulation from A to B is called Bdouble splitting^ because both upper and lower
branches are split in the same way. To test the effect of this manipulation, each of
these gambles can be compared with a third gamble, C. Will A be chosen over C
more often than B over C, when corrected for error? According to the prior TAX
model, the overall utility of a gamble tends to decrease as the number of branches
increases, consistent with the idea that increasing complexity of an alternative
lowers its evaluation (Sonsino et al. 2002). This manipulation allows us to compare
three variants of the TAX model in which the term (n + 1) in Eq. (5) is replaced by
(n + k), where k > 0, k < 0 (where n + k > 0), or k = 0; these cases imply that double
splitting will tend to decrease, increase, or have no effect on the utility of a gamble,
respectively.
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6 Method of experiment 2

Participants made choices between gambles, viewed via computers in a lab. Each
choice appeared as in Fig. 3.

Instructions read (in part) as follows: BYour prize will be determined by the color of
marble that is drawn randomly from an urn. The urns always have exactly 100 marbles,
so the number of any given color tells you the percentage that wins a given prize.^
Participants clicked a button beside the gamble they would rather play in each trial.
They were informed that 3 lucky participants would be selected at random to play one
of their chosen gambles for real money, so they should choose carefully. Prizes were
awarded as promised.

The main design analyzed the Allais paradoxes as the result of violations of
restricted branch independence, violations of coalescing, and random error. Figure 4
shows the main design of Experiment 2. The triangle in Fig. 4 represents a probability
simplex depicting lotteries of the form ($98, p; $40, 1 – p – q; $2, q). The abscissa
shows q, the probability to win $2 and the ordinate shows p, the probability to win $98.
BSure things^ to win $40, $98, or $2 correspond to the lower left-, upper left-, and
lower right-corners of this figure, respectively.

Each line segment in Fig. 4 represents a choice between a Bsafe^ gamble and a
Brisky^ gamble. Each of these six choice problems was presented in both coalesced and
in canonical split form, making 12 choice problems in the main design. In Sample 2,
the same design was used but consequences $98, $40, and $2 were changed to $96,
$48, and $4, respectively.

Table 6 lists the choice problems of Fig. 4. Each choice problem in Table 6 is created
from the problem in the row above by either coalescing/splitting or by applying
restricted branch independence. A person should make the same choice response in
every choice problem of Table 6, according to EU, aside from random error. That is, a
person should either choose the risky gamble in all 13 choice problems or choose the
safe gamble in all 13 cases. According to CPT, people should make the same choice
responses in problems that differ only in coalescing/splitting, but they can violate
restricted branch independence.

In choice problem 1 of Table 6 (first row), the common branch is 80 marbles to win
$2 (Problem 1), 80 to win $40 (Problem 2), or 80 to win $98 (Problem 3). Problem 4 is
generated from Problem 1 by changing 40 marbles to win $2 to 40 marbles to win $40;
Problem 5 is generated from Problem 4 by changing the common branch of 40 marbles
to win $2 to 40 marbles to win $98. Problem 6 is generated from Problem 1 by
changing a common branch of 40 marbles to win $2 to 40 marbles to win $98.

7. Which do you choose?
          M: 10 blue marbles to win $40
             10 green marbles to win $40
             80 black marbles to win $2
      OR 
          N: 10 red marbles to win $98
             10 white marbles to win $2
             80 black marbles to win $2

Fig. 3 Format for the display of a choice problem in Experiment 2
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Choice problems marked #1a, 2a, 3a, etc. are the same as #1, 2, 3, etc., respectively,
except these are presented in canonical split form. For example, Problem 1a is the same
as Problem 1, except that the branch of 20 marbles to win $40 in the safe gamble has
been split to two branches of 10 marbles each to win $40, and the branch of 90 marbles
to win $2 in the risky gamble has been split into a branch with 80 marbles to win $2 and
10 to win $2. Problem 6c is another split form of Problem 6, designed to improve the
Bsafe^ gamble relative to the Brisky^ one. Problems 1, 1a, 2, 3, and 3a (Sample 1)
match choice problems used by Birnbaum (2004, Series A).

There were 13 additional choice problems, shown in Table 7, which were presented
on alternating trials. These additional trials tested double splitting of two branch
gambles into four and eight branch gambles as well as other tests of coalescing and
idempotence. The same design was used in Sample 2, except $96, $44, and $4 were
substituted for $98, $40, and $2. The order of choice problems was randomized with
the restriction that successive choice problems not come from the same design.
Complete materials can be viewed at URLs:

http://psych.fullerton.edu/mbirnbaum/decisions/allais5_.htm
http://psych.fullerton.edu/mbirnbaum/decisions/allais6_.htm

Participants were 211 undergraduates enrolled in lower division psychology courses
at California State University, Fullerton (USA). There were 104 and 107 who served in
Samples 1 and 2, respectively. The sample was 57% and 62% female, and 87% and
86% were 20 years of age or younger in the two groups, respectively. Each person
completed the entire study twice, separated by other tasks that required about 20 mi-
nutes of intervening time. Participants were told that three lucky participants would be
selected by chance to play one of their chosen lotteries for real cash prizes.

Fig. 4 Main design of Experiment 2 (see also Table 6)
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7 Results of experiment 2

The percentages representing preference for the Brisky^ gamble in the main design are
shown under B%R^ in Table 6. According to EU, people should make the same
responses in all rows of Table 6, apart from error. Instead, the observed choice
percentages vary from a low of 17% (Choice Problem 3 in Sample 2) to a high of
74% (Problem 4 in Sample 2). These are extremely large violations of EU in raw choice
percentages.

Choice Problems 1 and 3 also produce large violations of EU (from 59% and 66%
preferring the risky gamble in Problem 1 to only 25% and 17% in Problem 3). This
Allais Paradox is reversed in Problems 1a and 3a, in split form. This reversal of the
direction of the Allais paradox under splitting contradicts RDU, CPT and EU models,
but it replicates previous results with the same choice problems (Birnbaum 2004). It
also confirms results from Experiment 1 (CCE1 and CCE1s). The next section analyzes
the question of whether errors can account for these violations.

7.1 True and error analysis

The true and error model was fit to the replicated presentations of each choice problem
in each sample of Experiment 2, and was fit to the data combined across samples as
well. Details are presented in the online supplement in Appendix B, which shows that
the true and error model gave a good fit to the data for replications and that the rival
model of response independence (implied by random preference models) could be
rejected in every statistical test.

Because the true and error model gives a good representation of the data, we can use
its parameter estimates of the true choice probabilities to address the main issue of this
article: Can we attribute violations of EU to random error?

The estimated error rates and true choice probabilities for the true and error model
are presented in Tables 6 and 7 for the main design and double-splitting designs,
respectively. According to EU, a person should choose either the Brisky^ gamble or the
Bsafe^ gamble in every choice of Table 6, but should not switch, except by random
error. The choice proportions, corrected for error, should therefore be constant in all
rows of Table 6. Instead, the estimated true probabilities choosing the risky gamble
vary from as low as 0.09 and 0.13 for Problem 6 in Samples 1 and 2 respectively, to as
high as 0.80 and 0.88 for Problem 4. Similarly, they vary from 0.16 and 0.09 in
Problem 3 to 0.64 and 0.72 in Problem 1. These represent huge violations of EU,
corrected for error.

According to RDU, CPT, and EU, choice responses should not differ if choice
problems are presented in coalesced or split form. In reality, there are large effects of
splitting in Tables 6 and 7. Choice Problems 1 versus 1a, 3 versus 3a, and 4 versus 4a
produced splitting effects large enough to reverse modal choices. In all three of these
cases, the branch leading to the highest consequence of one gamble is split and the
lowest branch of the other gamble was split. Most people who switched preferences did
so as predicted by the TAX model; that is, choice proportions increased for gambles
whose higher branch was split relative to gambles whose lower branch was split.

When gambles are presented in canonical split form, it should be easy to see and
cancel identical branches, if a person wanted to follow this editing principle of original
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prospect theory. If a person used cancellation in Experiment 2, her data would satisfy
restricted branch independence. Instead, there are significant violations of restricted
branch independence; note that Problems 1a, 4a, 5a, and 6a all yield estimated
probabilities less than 0.5, but Problems 2a and 3a yielded estimated probabilities that
exceed 0.5 in Sample 1. As shown in Table 6, violations of restricted branch indepen-
dence are not diminished by the correction for error.

The observed violations of restricted branch independence are opposite from Allais
paradoxes in coalesced form, and they are opposite predictions of CPT based on the
inverse-S probability weighting function. These findings corroborate previous results
(Birnbaum 2004) and extend them by showing that these failures of CPT for the Allais
paradoxes cannot be attributed to random error.

The prior TAX model correctly predicted the modal choices in nine cases of Table 6
but failed to predict the modal response in Choice Problems 2, 2a, 6, and 6a. In all four
of these cases, people tend to prefer the gamble that gives three positive outcomes over
a gamble giving only one or two possible consequences. CPT with prior parameters of
Tversky and Kahneman (1992) failed to predict these same four choices (2, 2a, 6, and
6a), but it also failed to predict four other cases that were correctly predicted by prior
TAX: #1a, 3a, 4a, and 6c, all involving choice problems in split form.

Appendix B in the online supplement analyzes a true and error model in which
different people are allowed to have different amounts of noise in their data. The
analysis shows that even allowing individual differences in error rates, the same
conclusions are reached regarding EU and CPT.

Appendix C in our online supplement considers a more complex true and error
model in which the probability of making an error depends not only on the choice
problem but also on a person’s true preference state. Can we save EU by doubling the
number of error rate parameters to be estimated from the data? For example, perhaps
those who truly prefer the risky gamble in Choice Problem 1 are more likely to make an
error in Problem 3 than those who truly prefer the safe gamble. This error model would
imply a shift of choices from risky to safe in Problems 1 and 3; but can it save the EU
model? As shown in Appendix C, even this more complex error model requires us to
reject the EU model.

7.2 Double splitting and stochastic dominance

Table 7 shows that double splitting (splitting both the upper and lower branches of a
gamble) did not affect overall choice proportions by very much. The largest effect
occurred in Choice Problems 7 and 7a; in all other tests, data are consistent with the
hypothesis that fewer than 5% of participants were affected by this manipulation.
The prior TAX model with k = 1 in Eq. (4) implies that double splitting should have
reduced the utility of the lotteries. Instead, it appears that TAX would be improved
with k = 0, instead of k = 1. A caveat is that with so many choice problems using
splitting manipulations in this study, some participants may have learned to recog-
nize the equivalence of the splitting manipulation; therefore, a different magnitude
effect might be observed in situations where fewer choices of this type would be
presented. However, if these results generalize, it suggests that the proportion of
weight transferred in the TAX model might better be represented as δ/n rather than
δ/(n + 1) in Eq. (5).
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Choice Problem 10d (Table 7) is a test of first order stochastic dominance of a type
that has produced high rates of observed violations in previous studies (e.g., Birnbaum
and Navarrete 1998). In this new study, the observed percentages of violations are 60
and 61% in Samples 1 and 2, respectively. Problem 10a is a test of coalescing/splitting
related to Problem 10d, which shows similar rates of violation. The prior TAX model
correctly predicts these two modal choices, which violate both EU and CPT. Corrected
for error, estimated true rates of violation are higher for both problems.

8 Conclusions

Three major conclusions can be drawn from our study: First, we reject the hypothesis
that violations of independence properties tested in the coalesced form can be explained
as a mere consequence of choice errors. Even when we control for errors, EU can be
significantly rejected in all six tests of common consequence and common ratio effects
in Experiment 1. In addition, we found significant violations of upper tail independence
controlling for errors. Second, violations of coalescing are systematic. In nine of
fourteen tests of Experiment 1 coalescing could be rejected, which refutes EU, RDU,
and CPT. Third, when both lotteries in each choice are presented in canonical split
form, only one test (a common ratio effect) remained significant in the same direction;
all other tests were either insignificant, unsystematic, or significant in the opposite
direction. In Experiment 2, we replicated the main findings of Experiment 1 and
extended them, showing that the Allais paradoxes, the effect of splitting, and the
violations of restricted branch independence cannot be attributed to error.

These results agree with Birnbaum’s (2004, 2008) conclusions that the Allais
paradox is largely due to violations of coalescing and that violations of restricted
branch independence can work in the opposite direction from the Allais paradox.
Schmidt and Seidl (2014) reached similar conclusions regarding the common ratio
effect and coalescing. But neither of those studies controlled for unequal error rates in
different choice problems, so the present findings (corrected for error) strengthen the
case beyond those from these earlier papers.

Given our evidence, the question arises whether one form of presenting lotteries in a
choice (coalesced or canonical split form) may be regarded as Bbetter^ in some sense
than the other. Indeed, when Savage (1954) found that he violated his sure-thing axiom
in the common consequence effect, he reformed the Allais choices in (what we now
call) canonical split form in order to convince himself to satisfy his own axiom.
Violations of first-order stochastic dominance are nearly eliminated when choice
problems are presented in canonical split form (see review in Birnbaum 2008). From
these considerations, one might be tempted to conclude that the canonical split form of
a choice is the Bright^ way to present a choice.

Presenting choices in canonical split form cannot save EU, however, as shown by
the significant violations even when choices are presented in canonical split form
(Tables 4 and 6). Birnbaum and Bahra (2012) found that when sufficient data are
collected from each person to fit an individual true and error model to each person,
violations of restricted branch independence remain significant. But would restricting
the theoretical domain to choices in canonical split form save RDU and CPT models?
These models can violate restricted branch independence. Experiment 1 shows
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significant violations of UTI in the coalesced form but not in the split form.
Furthermore, the weaker independence conditions implied by RDU and CPT are not
significantly violated in our data in canonical split form (Table 4). The splitting results
of Table 5 that violate RDU and CPT as do violations of stochastic dominance in
coalesced form in Table 7 would be considered outside the new, limited domain of
these models, which would be considered applicable only to choices in canonical split
form. In this approach, restricting the domain to canonical split form, CPT and RDU
models could no longer be considered as theories of the Allais paradoxes and other
results in the literature that have used coalesced lotteries. Further, to account for
violations of RBI in canonical split form (e.g., Birnbaum 2008), these models would
need to give up the inverse-S weighting function, since the observed violations of RBI
are opposite in direction from those predicted by that any inverse-S weighting function.

Another potential problem with this approach (restricting attention to choices
presented in canonical split form) arises, however, from the fact that how a lottery is
split in canonical form depends on the other lottery with which it is compared. That
means that lottery A appears in one form when paired with B and in another form when
paired with C. If the utility of a lottery depends on how it is split, and if how it is split
depends on the lottery with which it is compared (as is the case in canonical split form),
it means that the utility of one gamble varies depending on the other lottery with which
it is compared. But the RDU and CPT models assume that the utility of a lottery is
independent of how it is split and independent of the other lottery of a choice.
Violations of these types of independence could result in apparent violations of
transitivity, which would then rule out these models even within the restricted domain
of canonical split forms.

Because splitting effects rule out a number of popular models including CPT, and
because the operational definition of branch splitting depends on the format for
presentation of choices between lotteries (i.e., the experimental methods of representing
and displaying probabilities and choices), the question naturally arises, is there a
procedure or format in which violations of coalescing and other violations of CPT are
minimized? So far, 15 different formats have been tested, all showing strong evidence
against CPT (Birnbaum 2008; see our online supplement for additional references).

Violations have been observed when lotteries are represented via pie charts, histo-
grams, lists of equally likely consequences, aligned and unaligned matrices showing
the connections between tickets and prizes, with lotteries presented side-by-side or one
above the other, with and without event framing (using same or different colored
marbles for common probability-consequence branches), with regular probabilities to
win x, and with decumulative probabilities (probabilities to win prize x or more), with
positive, negative, and mixed gambles, with dependent and independent gambles, and
with other variations of format and procedure. Although there are small effects of
format, no format has yet been found in which violations of coalescing or stochastic
dominance are reduced to levels that might allow retention of RDU or CPT, nor has a
format been found in which systematic violations of restricted branch independence
match the predictions of the inverse-S decumulative weighting function.

In experiments with many trials, rates of violation of EU sometimes decrease with
practice. We further analyzed the data of Experiment 1 and found that violations of
coalescing diminished significantly with practice but persisted throughout the experi-
ment (Appendix A; Birnbaum and Schmidt 2015). Whether or not people can learn to
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satisfy EU in a long enough experiment, perhaps with education and training, remains
an open question (Humphrey 2006).

Given the present results showing that splitting effects cannot be attributed to error,
it seems time to set aside those models that cannot account for these phenomena and
concentrate our theoretical and experimental efforts on differentiating models that can.
Models that imply splitting effects include (stripped) original prospect theory (apart
from its editing rule of combination), subjectively weighted utility (Edwards 1954;
Karmarkar 1979), prospective reference theory (Viscusi 1989), gains-decomposition
utility (Luce 2000; Marley and Luce 2001), entropy modified linear weighted utility
(Luce et al. 2008a, b), and configural weight theory (Birnbaum 2008).
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