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Appendix A: Choice Problems of Experiment 1 

The choice problems of Experiment 1 are presented in coalesced form in Table 3 of our 

main paper.  The choice problems in canonical split form (corresponding to Table 3) are 

presented in Table A.1 of this Appendix. In canonical split form, the probabilities on 

corresponding ranked branches in the two lotteries within a choice are equal.   

The choice problems were selected from previous research because they had produced 

large violations of expected utility (EU) or cumulative prospect theory (CPT). Our lottery pairs 

testing Upper Cumulative Independence (UCI) were taken from Birnbaum, Patton, & Lott 

(1999). For the Common Ratio Effect (CRE):  CRE1 is from Birnbaum (2001) and CRE2 is 

from Starmer and Sugden (1989). 

The choice problems used in our tests of Upper and Lower Cumulative Independence 

(UDI and LDI) are taken from Birnbaum (2005). That paper and Birnbaum and Chavez (1997) 

reported either minimal violations or violations contrary to CPT with inverse-S weighting 

function. Studies that reported evidence against EU and CPT based on choice problems of 

Experiment 2 include Birnbaum (2004b, 2005a, 2005b, 2006, 2007).   

Our reanalysis of data from Experiment 1, investigating the effects of practice, is 

described in Birnbaum and Schmidt (2015).  
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 Safe Risky 
Problem No. p1 

s1 
p2 
s2 

p3 
s3 

p4 
s4 

q1 
r1 

q2 
r2 

q3 
r3 

q4 
r4 

CCE1S 7 0.80 
0 

0.10 
19 

0.10 
19 

	 0.80 
0 

0.10 
0 

0.10 
44 

	

14 0.40 
0 

0.10 
19 

0.10 
19 

0.40 
44 

0.40 
0 

0.10 
0 

0.10 
44 

0.40 
44 

CCE2S 3 0.89 
0 

0.01 
16 

0.10 
16 

	 0.89 
0 

0.01 
0 

0.10 
32 

	

4 0.01 
16 

0.89 
16 

0.10 
16 

	 0.01 
0 

0.89 
16 

0.10 
32 

	

CCE3S 7 0.80 
0 

0.10 
19 

0.10 
19 

	 0.80 
0 

0.10 
0 

0.10 
44 

	

	 8 0.10 
19 

0.80 
19 

0.10 
19 

	 0.10 
0 

0.80 
19 

0.10 
44 

	

CCE4S 11 0.70 
0 

0.10 
21 

0.10 
21 

0.10 
21 

0.70 
0 

0.10 
0 

0.10 
21 

0.10 
42 

	 12 0.70 
0 

0.10 
21 

0.10 
21 

0.10 
42 

0.70 
0 

0.10 
0 

0.10 
42 

0.10 
42 

CRE1S 17 0.98 
0 

0.01 
23 

0.01 
23 

	 0.98 
0 

0.01 
0 

0.01 
46 

	

	 18 0.50 
23 

0.50 
23 

	 	 0.50 
0 

0.50 
46 

	 	

CRE2S 21 0.80 
0 

0.06 
28 

0.14 
28 

	 0.80 
0 

0.06 
0 

0.14 
45 

	

	 22 0.40 
0 

0.18 
28 

0.42 
28 

	 0.40 
0 

0.18 
0 

0.42 
45 

	

UTIS 31 0.73 
0 

0.01 
15 

0.01 
15 

0.25 
60 

0.73 
0 

0.01 
0 

0.01 
33 

0.25 
60 

	 32 0.73 
0 

0.01 
15 

0.01 
15 

0.25 
33 

0.73 
0 

0.01 
0 

0.01 
33 

0.25 
33 

LTIS 35 0.75 
1 

0.23 
34 

0.01 
36 

0.01 
36 

0.75 
1 

0.23 
33 

0.01 
33 

0.01 
60 

	 36 0.75 
33 

0.23 
34 

0.01 
36 

0.01 
36 

0.75 
33 

0.23 
33 

0.01 
33 

0.01 
60 

UCIS 37 0.20 
9 

0.20 
10 

0.60 
24 

	 0.20 
3 

0.20 
21 

0.60 
24 

	

	 39 0.20 
9 

0.20 
9 

0.60 
21 

	 0.20 
3 

0.20 
21 

0.60 
21 

	

 
Table A.1.  Choice problems of Experiment 1 in canonical split form. Note: The first lottery 

pair of a choice problem always characterizes the lotteries S and R and the second one the 

lotteries Sʹ and Rʹ.   
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Appendix B: Supplemental Analyses of True and Error Models 

Let p represent the proportion of people who truly prefer R in the choice problem 

comparing S and R, and let e represent the error rate for this problem.  The probability of 

choosing gamble R on both presentations (i.e., both repetitions of the same choice problem) is 

represented as follows: 

   P(RR) = p(1 – e)2 + (1 – p)e2     

In other words, those people who truly prefer R over S have correctly detected and reported 

their preference twice and those who truly prefer S have made two errors.  The probability of 

switching from R to S is given as follows: 

    P(RS) = p(1 – e)e + (1 – p)e(1 – e) = e(1 – e)   

This is the same as P(SR), so the probability of reversals is 2e(1 – e).  Finally, the probability 

of choosing S twice is P(SS) = pe2 + (1 – p)(1 – e)2.  In theory, this model should reproduce the 

four observed frequencies corresponding to P(RR), P(RS), P(SR), and P(SS), which have 3 

degrees of freedom (since they sum to the number of participants). The model uses two 

parameters (p and e), leaving 1 degree of freedom (df) to test the model. The parameters are 

estimated to minimize the χ2(1) between observed and predicted frequencies. 

Table B.1 presents the χ2(1) tests of fit corresponding to the estimated values of p and e 

in Experiment 2 that are given in Tables 6 and 7 of the main paper.  There are two χ2(1) tests 

of fit for each set of data:  one is a test of the true and error model and the other is a test of 

response independence [i.e., P(RR*) = p(R)p(R*), P(RS*) = p(R)p(S*), etc.], based on the same 

exact data entries, with the same number of parameters and using the same number of degrees 

of freedom.  The true and error model does not imply independence.  

All 52 tests of response independence in Table B.1 are significant (median Chi-Squares 

in Samples 1 and 2 were 37.43 and 45.25, respectively), but only 4 of the 52 Chi-Squares for 

the true and error model were significant  (p < .05) with medians of 0.74 and 0.33, respectively. 

At the 0.05 level, we expect 2.6 tests to be significant by chance; the binomial probability to 

observe 4 or more “significant” (out of 52 with p = 0.05) is 0.26; we can retain the hypothesis 

that this true and error model is compatible with these data. Table B.2 shows the response 

frequencies for each choice problem of Experiment 2, aggregated over both samples. 

Aggregated data lead to the same conclusions as data for the two samples fit separately.   
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  Sample 1 (n = 104) Sample 2 (n = 107)  
Choice 

Problem 

TE parameters CHISQ TE parameters CHISQ 

p e Indep TE P e Indep TE 

 1 0.64 0.17 18.72 0.31 0.72 0.13 26.50 0.00 

 1a 0.40 0.11 38.91 1.77 0.37 0.11 37.28 0.05 

 2 0.60 0.13 31.69 1.08 0.65 0.08 49.56 0.00 

 2a 0.61 0.09 48.93 3.81 0.57 0.11 39.30 1.18 

 3 0.16 0.15 15.92 4.68 0.09 0.10 16.00 1.30 

 3a 0.69 0.23 7.10 0.67 0.46 0.14 30.58 0.99 

 4 0.80 0.13 20.97 1.08 0.88 0.19 7.30 3.82 

 4a 0.38 0.19 19.13 4.67 0.44 0.13 32.22 0.17 

 5 0.43 0.17 20.27 0.86 0.35 0.19 14.02 0.27 

 5a 0.42 0.21 10.78 0.03 0.38 0.09 47.98 0.53 

 6 0.09 0.15 7.26 2.42 0.13 0.15 9.96 0.04 

 6a 0.34 0.19 13.71 0.50 0.30 0.10 42.40 1.96 

 6c 0.18 0.08 35.95 0.07 0.09 0.13 8.94 0.00 

 7 0.34 0.06 62.53 2.18 0.35 0.05 67.48 0.40 

 7a 0.40 0.02 91.90 0.32 0.37 0.02 86.84 0.20 

 7b 0.39 0.05 69.89 0.11 0.38 0.02 90.75 0.00 

 7c 0.34 0.04 75.58 0.14 0.33 0.05 71.01 0.98 

 8 0.30 0.06 60.02 0.81 0.35 0.02 90.25 0.00 

 8a 0.40 0.03 80.57 0.00 0.37 0.02 90.59 0.00 

 8b 0.39 0.02 88.07 0.95 0.38 0.02 90.89 0.95 

 8c 0.34 0.06 71.02 7.59 0.31 0.04 73.89 0.49 

 9 0.59 0.02 91.99 0.32 0.58 0.02 87.55 0.20 

 9a 0.55 0.07 58.23 0.08 0.58 0.05 70.20 0.40 

 9b 0.69 0.05 67.68 0.98 0.65 0.08 64.40 7.36 

 10a 0.41 0.14 27.24 0.04 0.40 0.10 42.53 0.47 

 10d 0.34 0.18 14.91 0.03 0.34 0.15 21.79 0.00 
 

Table B.1:  Fit of the True and Error Model to Samples 1 and 2 of Experiment 2.  
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Choice Response Pattern Indep Est. parameters TE model 

No. AA* AB* BA* BB* CHISQ p e CHISQ 

1 52 28 25 106 45.2 0.68 0.15 0.17 

1a 104 23 18 66 75.8 0.38 0.11 0.61 

2 65 22 17 107 80.1 0.63 0.10 0.64 

2a 71 12 25 103 88.5 0.59 0.10 4.46 

3 144 25 19 23 30.6 0.12 0.12 0.82 

3a 67 36 26 82 35.9 0.56 0.18 1.61 

4 29 19 35 128 26.6 0.84 0.16 4.67 

4a 92 34 19 66 52.3 0.41 0.15 4.18 

5 89 30 32 60 34.0 0.39 0.18 0.06 

5a 95 27 25 64 52.0 0.40 0.14 0.08 

6 137 30 23 21 16.8 0.11 0.15 0.92 

6a 108 24 26 53 51.0 0.32 0.14 0.08 

6c 147 20 19 25 41.7 0.14 0.10 0.03 

7 66 7 14 124 130.7 0.65 0.06 2.28 

7a 78 4 4 125 178.7 0.62 0.02 0.00 

7b 76 7 6 122 160.0 0.62 0.03 0.08 

7c 65 10 6 130 146.5 0.67 0.04 0.99 

8 64 6 9 132 149.5 0.67 0.04 0.59 

8a 77 5 5 124 171.0 0.62 0.02 0.00 

8b 78 4 4 125 178.7 0.62 0.02 0.00 

8c 63 5 12 131 142.8 0.68 0.05 2.78 

9 119 3 5 84 179.4 0.41 0.02 0.49 

9a 106 12 11 82 128.1 0.44 0.06 0.04 

9b 127 17 4 63 131.3 0.33 0.06 7.46 

10a 68 20 24 98 68.9 0.59 0.12 0.36 

10d 54 29 30 98 36.4 0.66 0.17 0.02 

 

Table B.2: Frequencies of response patterns in two replications, aggregated over Samples 1 and 

2 of Experiment 2 (n = 211). 

 
Previous research has shown that there are individual differences in the rate of 

preference reversals in the same choice problems, as if some participants have more “noise” in 

their data.  Would apparent violations of EU be eliminated or diminished if the error model 

allowed for individual differences in error rates?  Put another way: is it possible that different 
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sub-groups of participants who differ in their error rates also differ with respect to their 

conformance to EU?  To investigate this question, participants of Experiment 2 were separated 

into groups, according to the number of preference reversals between two replicates, and the 

true and error model was fit in each group separately. 

There were 107 “noisy” participants, who had 5 to 7 preference reversals between 

repetitions (out of 26 choice problems, i.e., 73% to 81% self-agreement), and 104  “low noise” 

participants who had 4 or fewer reversals (85% self-agreement or better).  Analysis of 

partitioned data is presented in Table B.3.  Estimated true choice probabilities are similar 

between these groups (correlation was r = 0.90), and the error rates for different choice 

problems were correlated (r = 0.82), but estimated values of e were (as expected) much higher 

in the “noisy” than “low noise” group (medians = 0.15 versus 0.06, respectively).  However, 

large violations of EU (compare Problems 1 and 3 and 4 and 6) appear in both groups, and the 

violations of EU, RDU and CPT (compare Problems 1 and 1a, and 3 and 3a) also appear in 

both groups.  Therefore, allowing for individual differences in noise levels does not change the 

conclusions with respect to EU, RDU, and CPT.   
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  Noisy Group (n = 107) Low Noise Group (n = 104) 

Choice 
Problem 

No. 

TE parameters CHISQ TE parameters CHISQ 

p e Indep TE P e Indep TE 

 1 0.65 0.20 14.74 2.42 0.71 0.11 34.47 1.77 

 1a 0.31 0.13 31.32 2.09 0.45 0.10 44.27 0.22 

 2 0.73 0.16 16.98 0.31 0.54 0.05 67.77 0.40 

 2a 0.68 0.15 26.28 3.75 0.53 0.06 64.82 0.81 

 3 0.07 0.16 4.27 0.14 0.16 0.09 32.36 0.99 

 3a 0.59 0.30 2.63 0.55 0.54 0.09 47.45 1.45 

 4 0.84 0.23 4.38 1.32 0.85 0.10 30.41 4.52 

 4a 0.37 0.24 9.53 5.05 0.44 0.08 52.20 0.07 

 5 0.33 0.23 7.63 0.11 0.43 0.13 29.93 0.66 

 5a 0.31 0.26 4.66 0.61 0.44 0.06 64.51 0.81 

 6 0.02 0.19 0.17 0.03 0.18 0.11 25.51 1.77 

 6a 0.21 0.20 8.31 0.12 0.40 0.08 48.49 0.00 

 6c 0.10 0.14 8.44 0.15 0.16 0.07 39.88 0.08 

 7 0.32 0.09 45.95 1.44 0.37 0.02 87.79 0.95 

 7a 0.42 0.04 76.85 0.00 0.35 0.00 104.00 0.00 

 7b 0.42 0.05 66.75 0.09 0.35 0.01 95.63 1.66 

 7c 0.31 0.07 57.13 1.86 0.36 0.02 91.44 0.32 

 8 0.30 0.07 53.30 1.12 0.35 0.01 99.70 0.83 

 8a 0.41 0.04 73.19 0.11 0.36 0.01 99.75 0.83 

 8b 0.42 0.03 80.31 0.14 0.35 0.01 99.70 0.83 

 8c 0.27 0.09 46.87 3.81 0.37 0.01 99.80 0.83 

 9 0.69 0.03 77.40 0.14 0.49 0.01 100.07 0.83 

 9a 0.68 0.09 42.93 0.22 0.46 0.03 84.91 0.20 

 9b 0.79 0.09 43.25 5.81 0.57 0.03 84.98 1.67 

 10a 0.45 0.15 26.08 0.33 0.37 0.09 44.09 0.06 

 10d 0.31 0.27 3.86 0.10 0.35 0.09 44.37 0.06 

Table B.3:  Fit of the True and Error Model for two groups of participants who differed 

in number of preference reversals between replicates.      
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Appendix C: Expanded True and Error Model (TE-4 Model) 
 Although the model in which each choice problem has a different error rate fits the data 

well (Appendix B), this appendix considers a more complex model (Birnbaum 2012) in which 

the probability of making an error in a given choice problem might also depend on a person’s 

true preference state.  This assumption doubles the number of error rate parameters, but it 

might provide a means by which the EU model might be saved from data that would otherwise 

refute it.  Thus, one would be adopting a more complex error model in hopes of retaining a 

simpler or more “rational” model of decision-making.  

Let e and f represent the probabilities of making an error given that a person truly 

prefers S or R in the SR choice problem, and let eʹ and fʹ represent the probabilities of error 

given that a person truly prefers Sʹ or Rʹ in the SʹRʹ problem, respectively.  Since there are two 

choice problems and two error rates for each problem, there are now four error rates in each 

test of EU. Hence, with two choice problems, this model is termed TE-4 and the model used in 

Appendix B (where e = f and eʹ = fʹ) is a special case labeled TE-2. 

According to TE-4, the probability to show the RSʹ response pattern on both 

replications is as follows: 

(C.1) P(RSʹ, RSʹ) = pRRʹ (1 – f)2(fʹ)2 + pRSʹ (1 – f)2(1 - eʹ)2 + pSRʹ (e)2(fʹ)2 + pSSʹ (e)2(1 - eʹ)2 

where P(RSʹ, RSʹ) is the probability to observe RSʹ response pattern on both replications, and 

the other terms are as defined in Equation (1).  There are 16 such equations for the 16 possible 

response patterns; the 16 corresponding observed frequencies have 15 degrees of freedom.  The 

model uses four true probabilities of the response patterns (which sum to 1, using 3 df) and 4 

error terms, so it uses 7 df, leaving 15 – 7 = 8 df to test the model.  

 Because the predicted frequencies of some cells are small in Experiment 2, cells 

representing the same combinations of response patterns were pooled prior to analysis, leaving 

10 cell frequencies to be fit.  (For example, frequencies of SS'SR' and SR'SS' were combined).  

Because these 10 frequencies sum to the number of participants, there are 9 df remaining in the 

data.  There are at most 8 parameters to estimate from the data, which use 7 df (because pSSʹ + 

pSRʹ  + pRSʹ + pRRʹ = 1), leaving at least 2 degrees of freedom in the tests.   

 The EU-4 model is the special case of TE-4 in which pRSʹ  = pSRʹ = 0.  The difference in 

fit between TE-4 and EU-4 is theoretically Chi-Square distributed with 2 df.  The TE-2 model 
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is the special case of TE-4 in which e = f and eʹ = fʹ; within TE-2, EU-2 is a further special case 

in which pRSʹ  = pSRʹ = 0.  It is also possible to constrain the error terms to fit the replication data 

only (as in Table B.1); this constrained case of TE-2 is denoted TE-2c. The advantage of the 

constrained case is that the errors are estimated in a neutral way (from preference reversals in 

replications) that is independent of other assumptions, including EU. 

 The TE-4 model could, in principle, provide an error theory in which errors might be 

able to save EU.  As it turns out empirically, however, even this model requires rejection of EU 

for the present data, as illustrated in Tables C.1 and C.2 for Problems 1 and 3.  Table C.1 

presents estimated parameter values for each model and indices of fit.  Table C.2 presents 

observed and predicted frequencies for four models: TE-2c, EU-2c, TE-4, and EU-4.  

Note that the G statistics (Chi-Squares) are acceptable for all three general versions of 

TE in both studies (Table C.1), so by the usual principle to prefer simpler models to more 

complex ones, there is no reason to adopt TE-4 over TE-2.  The most parsimonious, acceptable 

model is TE-2c in both samples.  According to this model, 49% and 66% of the subjects 

violated EU by having RS' as their true preference patterns in Samples 1 and 2, respectively.   

However, our goal in this case is not to choose the most parsimonious error model, but 

rather to ask if by choosing a more complex error model, EU-4 might still be saved.  The data 

give a clear answer to that question: No. The difference in G between a TE model and its 

special case, EU model is theoretically χ2(2).  All six differences exceed 9.21, which is the 

critical value of χ2(2) with α = 0.01, so EU can be rejected in all cases.  Table C.2 shows that 

best-fit predictions of EU-4 deviate systematically from the observed frequencies. 

Another statistical test helps pinpoint where the data refute EU.  We can use a binomial 

test of the observed frequency of a repeated response pattern violating EU (SR'SR' or RS'RS'): 

does it exceed predicted frequency according to EU with this error model?  In Samples 1 and 2, 

the observed frequencies of RS'RS' are 26 and 43 out of 104 and 107 participants, respectively.  

In all six cases (two samples by three models), observed violation patterns are much higher 

than the predictions of the best-fit EU model. EU-4 in Samples 1 and 2 implies predicted 

probabilities for the RS'RS' pattern of only 0.161 and 0.210.  The binomial probabilities to 

observe 26 or 43 (or more) out of 104 and 107 are 0.013 and .000005, respectively.  Thus, even 

with four error terms that depend on a person’s true preference (“safe” or “risky”) and the 

choice problem, EU can be rejected because the RS'RS' pattern is too frequent.  
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Sample 1 

Model f f' e e' pSS' pSR' pRS' pRR' G 

TE-4 0 0.10 0.34 0.15 0.58 0.04 0.27 0.11 0.50 

EU-4 0 0.50 0.43 0.17 0.71 (0) (0) 0.29 13.91 

TE-2 (= e) (= e') 0.17 0.14 0.35 0.02 0.49 0.14 2.46 

EU-2 (= e) (= e') 0.50 0.14 0.84 (0) (0) 0.16 31.11 

TE-2c (= e) (= e') 0.17 0.15 0.35 0.02 0.49 0.14 2.61 

EU-2c (= e) (= e') 0.17 0.15 0.70 (0) (0) 0.30 112.30 

Sample 2 

Model f f' e e' pSS' pSR' pRS' pRR' G 

TE-4 0 0 0.33 0.11 0.46 0.05 0.47 0.03 1.16 

EU-4 0.19 0.50 0.50 0.04 0.66 (0) (0) 0.34 36.52 

TE-2 (= e) (= e') 0.13 0.10 0.25 0.03 0.66 0.06 1.58 

EU-2 (= e) (= e') 0.50 0.10 0.91 (0) (0) 0.09 51.27 

TE-2c (= e) (= e') 0.13 0.10 0.25 0.03 0.66 0.06 1.60 

EU-2c (= e) (= e') 0.13 0.10 0.75 (0) (0) 0.25 278.37 

 
Table C.1:  Estimated parameters and index of fit of true and error models to the frequencies of 

response combinations for Problems 1 and 3. Parameters that have been fixed or constrained 

are shown in parentheses, respectively.  
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Response Study 1    Study 2    

Pattern Data TE-2c EU-2c TE-4 EU-4 Data TE-2c EU-2c TE-4 EU-4 

SS'SS' 18 19.5 36.2 19.2 16.8 18 17.4 49.2 17.3 16.7 

SS'SR' 7 3.7 6.6 3.4 3.4 0 2.2 5.6 2.1 0.9 

SS'RS' 11 8.9 7.4 9.9 12.5 10 8.8 7.3 8.7 17.8 

SS'RR' 2 1.9 1.9 1.8 2.6 1 1.1 1.1 1.0 2.0 

SR'SS' 1 3.7 6.6 3.4 3.4 4 2.2 5.6 2.1 0.9 

SR'SR' 2 1.7 1.8 2.0 0.7 2 2.2 1.0 2.5 0.3 

SR'RS' 1 1.9 1.9 1.8 2.6 0 1.1 1.1 1.0 2.0 

SR'RR' 2 1.9 3.4 1.0 0.5 1 1.0 2.5 1.2 1.4 

RS'SS' 10 8.9 7.4 9.9 12.5 8 8.8 7.3 8.7 17.8 

RS'SR' 2 1.9 1.9 1.8 2.6 2 1.1 1.1 1.0 2.0 

RS'RS' 26 26.4 2.0 26.0 16.8 43 43.5 1.3 44.3 22.4 

RS'RR' 7 6.0 3.1 5.5 9.4 4 5.4 2.0 5.3 6.6 

RR'SS' 1 1.9 1.9 1.8 2.6 0 1.1 1.1 1.0 2.0 

RR'SR' 0 1.9 3.4 1.0 0.5 2 1.0 2.5 1.2 1.4 

RR'RS' 4 6.0 3.1 5.5 9.4 8 5.4 2.0 5.3 6.6 

RR'RR' 10 8.1 15.7 10.0 7.8 4 4.7 16.4 4.0 6.1 

Table C.2:  Observed frequencies of response patterns (Data) and predicted frequencies for 

Problems 1 and 3, according to best-fit true and error models.  
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Tables C.3 and C.4 show the analysis of Problems 1a and 3a, which are the canonical 

split forms of Problems 1 and 3.  According to EU and CPT, how branches are split in a 

presentation should have no effect on how people choose between gambles.  Instead, Problems 

1a and 3a give opposite modal choices compared to Problems 1 and 3.  Table C.2 shows that 

for Problems 1 and 3, there were 58 and 73 people who showed RS' pattern at least once in 

Samples 1 and 2 compared with 12 and 9 who showed the SR' pattern (not counting the cases 

who showed both patterns, SR'RS'), so the pattern RS' was significantly more frequent, z = 5.50 

and 7.07, respectively.  In contrast, Table C.4 shows that pattern SR' was more frequent than 

RS' in Problems 1a and 3a of Samples 1 and 2 (49 to 16 and 35 to 22; z = -4.09 and -1.72, 

respectively). 

This effect due to splitting is reflected in the best-fit parameters in Tables C.1 and C.3.  

Whereas Table C.1 shows that the estimated true percentage (TE-2c) of subjects with RS' 

patterns is 49% and 66% in Samples 1 and 2, respectively, corresponding percentages in Table 

C.3 are only 5% and 10%, respectively.  Whereas estimated percentages in Table C.1 of SR' are 

only 2% and 3%, they are 29% and 18% in Table C.3, respectively.  

As in Table C.1, EU can be rejected in all six tests of Table C.3; in addition, observed 

frequencies of repeated patterns violating EU are significantly greater than predicted by EU for 

one or both repeated violation patterns, via binomial tests. Again, EU can be rejected with any 

of the error models, and CPT can be rejected because of the effects of splitting. 

Tables C.5 and C.6 show response pattern frequencies for other pairwise tests of EU 

and CPT, which provide additional evidence that neither EU nor CPT can be saved for these 

data by this more complex error model.  These cases have been fit to the true and error models 

with similar conclusions to those illustrated for Problems 1 and 3 in coalesced and canonical 

split forms. 

Based on the principle of parsimony, one would prefer TE-2 or TE-2c over TE-4 for 

our data, since these models use fewer parameters and achieve fairly good fits.  However, our 

purpose in this appendix is to ask if the more complex error models would allow us to retain 

the EU or CPT models.  The results show that even when we allow these additional parameters, 

neither EU nor CPT can account for the systematic patterns of repeated violations of common 

consequence independence and coalescing.    
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Sample 1                  Estimated Parameters of True and Error Model                                     Fit 

Model f f' e e' pSS' pSR' pRS' pRR' G 

TE-4 0.21 0.00 0.02 0.44 0.48 0.00 0.22 0.29 2.82 

EU-4 0.17 0.24 0.06 0.45 0.52 (0) (0) 0.48 14.98 

TE-2 (= e) (= e') 0.11 0.23 0.30 0.29 0.05 0.36 17.33 

EU-2 (= e) (= e') 0.11 0.37 0.57 (0) (0) 0.43 30.14 

TE-2c (= e) (= e') 0.11 0.23 0.30 0.29 0.05 0.36 17.36 

EU-2c (= e) (= e') 0.11 0.23 0.54 (0) (0) 0.46 43.35 

Sample 2                  Estimated Parameters of True and Error Model                                     Fit 

Model f f' e e' SS' SR' RS' RR' G 

TE-4 0.21 0.09 0.04 0.17 0.42 0.11 0.17 0.30 1.17 

EU-4 0.20 0.31 0.07 0.30 0.55 (0) (0) 0.45 24.09 

TE-2 (= e) (= e') 0.11 0.14 0.44 0.18 0.10 0.28 2.95 

EU-2 (= e) (= e') 0.12 0.31 0.61 (0) (0) 0.39 26.21 

TE-2c (= e) (= e') 0.11 0.14 0.44 0.18 0.10 0.28 2.96 

EU-2c (= e) (= e') 0.11 0.14 0.60 (0) (0) 0.40 52.71 

 
Table C.3: Estimated parameters and fit of true and error models to the frequencies of response 

combinations for Choice Problems 1a and 3a, as in Table C.1. 
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Response 

Pattern 

Sample 1    Sample 2    

Data TE-2c EU-2c TE-4 EU-4 Data TE-2c EU-2c TE-4 EU-4 

SS'SS' 13 16.0 26.3 15.6 14.6 29 28.2 37.9 29.1 25.6 

SS'SR' 16 8.8 8.1 12.0 12.3 8 6.3 6.1 6.9 11.1 

SS'RS' 2 2.5 3.6 1.6 1.3 2 4.3 4.8 3.3 2.6 

SS'RR' 1 1.9 1.9 1.2 2.0 0 1.2 1.2 1.1 2.4 

SR'SS' 11 8.8 8.1 12.0 12.3 6 6.3 6.1 6.9 11.1 

SR'SR' 10 15.4 2.8 10.5 10.8 11 12.3 1.3 11.0 5.4 

SR'RS' 2 1.9 1.9 1.2 2.0 0 1.2 1.2 1.1 2.4 

SR'RR' 8 4.1 3.1 5.9 4.8 8 3.7 3.2 4.9 3.9 

RS'SS' 2 2.5 3.6 1.6 1.3 5 4.3 4.8 3.3 2.6 

RS'SR' 1 1.9 1.9 1.2 2.0 3 1.2 1.2 1.1 2.4 

RS'RS' 6 4.3 2.5 4.7 1.9 8 7.3 1.2 8.2 3.1 

RS'RR' 3 6.2 6.8 3.6 6.1 4 3.9 4.1 3.3 6.7 

RR'SS' 0 1.9 1.9 1.2 2.0 1 1.2 1.2 1.1 2.4 

RR'SR' 4 4.1 3.1 5.9 4.8 2 3.7 3.2 4.9 3.9 

RR'RS' 3 6.2 6.8 3.6 6.1 3 3.9 4.1 3.3 6.7 

RR'RR' 22 17.8 22.0 22.1 19.7 17 17.7 25.1 17.2 14.7 

 
Table C.4:  Observed and predicted frequencies of response patterns for Choice Problems 1a 

and 3a, as in Table C.2.   
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 Choice Problems 

Pattern 4 X 6 4a X 6a 2 X 5 2a X 5a 

SS'SS' 18 75 34 55 

SS'SR' 5 6 10 3 

SS'RS' 17 12 12 6 

SS'RR' 1 9 0 3 

SR'SS' 5 8 10 10 

SR'SR' 1 2 11 3 

SR'RS' 1 7 1 1 

SR'RR' 0 6 9 2 

RS'SS' 29 12 10 15 

RS'SR' 5 1 3 3 

RS'RS' 73 9 33 19 

RS'RR' 19 7 17 18 

RR'SS' 1 2 3 4 

RR'SR' 0 4 1 3 

RR'RS' 16 9 18 10 

RR'RR' 20 41 39 56 

Total 211 210 211 211 

G (EU-4) 18.85 1.79 28.06 11.88 

SR' 11 26 41 21 

RS' 154 49 90 68 

Z 11.13 2.66 4.28 4.98 

Binomial 0.222 0.028 0.108 0.05 

 p(x >=73) p(x >=9) p(x >= 33) p(x >=19) 

 0.000026 0.138 0.019 0.010 

 
Table C.5:  Frequencies of response patterns in other tests of EU from the main design. 
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Response Choice Problems 

Pattern 1 X 1a 3 X 3a 4 X 4a 6 X 6a 6a X 6c 5 X 5a 

SS'SS' 41 61 24 86 92 61 

SS'SR' 4 27 4 18 10 7 

SS'RS' 20 4 9 11 15 9 

SS'RR' 1 3 5 0 4 6 

SR'SS' 4 14 1 17 5 11 

SR'SR' 3 42 0 16 1 10 

SR'RS' 2 4 3 4 2 6 

SR'RR' 5 14 2 15 3 9 

RS'SS' 17 2 20 10 22 14 

RS'SR' 2 4 4 1 1 5 

RS'RS' 26 0 38 1 18 11 

RS'RR' 16 2 21 5 5 9 

RR'SS' 3 6 4 5 2 2 

RR'SR' 3 7 7 7 1 11 

RR'RS' 9 2 11 0 10 6 

RR'RR' 55 19 57 15 20 34 

Total 211 211 210 211 211 211 

G (EU-4) 12.93 12.79 9.32 1.40 7.40 8.69 

SR' 19 104 14 73 20 48 

RS' 88 10 99 27 70 49 

z 6.67 -8.80 8.00 -4.60 5.27 0.10 

Binomial 0.0360 0.0036 0.0096 0.2780 0.0442 0.0054 

 Table C.6:  Response patterns in tests of coalescing (tests of EU and CPT). 
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