STIMULANTS: Amphetamines, Cocaine (p.1)

1. History of amphetamine development

first synthesized in 1887 (in Germany) seeking a synthetic form of ephedrine

- marketed first in 1932 as a *Benzedrine inhaler*, for tx. of asthma, congestion (Benzedrine = d,l amphetamine)
- in 1935 dextroamphetamine (*Dexedrine*) was marketed for tx of narcolepsy (Dexedrine = d-amphetamine)
- by 1940s amphetamines were widely used as "diet pills" do decrease food/drink intake for short term (& increase duration of times between meals), but eat more rapidly and same amounts overall when do eat overall, not helpful for long-term weight loss/control
- **used in WWII by military** to decrease fatigue (Germans, USA, Japanese, etc.) the **Rebuilding of Japan after WWII**:
 - after WWII Japanese government sold large stock piles of amphetamines to its citizens w/o Rxs
 - by 1954 it is estimated that 2/100 persons in Japan were abusing amphetam. and the abuse potential of the drug was finally acknowledged
 - by 1960 Japanese government had decreased public access to drug and # of abusers had begun to decrease
- by 1960s in **USA** also began to recognize abuse potential for amphetamines... made a Schedule II drug in late 1960s...and abusers switched to cocaine!
 - in **1970** 10 billion amphetamine pills were produced in USA per year
 - at least 10% of USA population > 14 years old had used some form of this drug (dieters, students, truck drivers, laborers, etc.)
 - in 1954 methylphenidate (Ritalin) was synthesized, followed by pemoline (Cylert)

both have abuse potential, Ritalin > Cylert

now used for several specific medical conditions:

ADHD/ADD, narcolepsy (although this is changing), and IHS Not used for weight loss

STIMULANTS: Amphetamines, Cocaine (p.2)

2. General effects of taking amphetamines:

in PNS – vasoconstriction, hypertension, tachycardia in CNS – agitation, insomnia, anorexia, increased alertness tremor, restlessness, increased motor activity

note: cocaine users cannot distinguish between the subject effects of 8-10 mg. cocaine vs. 10 mg. dexadrine, both administered IV

3. Mechanisms of Action:

these are sympathomimetic agents are **NEpi, Epi, & DA agonists** increase the release of NE & DA from presynaptic neurons in CNS increase the release of NE & E from post-ganglionic neurons in SNS may have medium effects (<cocaine) on blocking reuptake of DA

release of DA in mesolimbic pathway --- reinforcing effects release of DA in basal ganglia (caudate nucl. & putamen) --- **stereotypic behavior "punding**"

note: in *S* with ADD/ADHD amphetamines seem to have a paradoxical "calming" effect (actually, **S** is **more focused**, not calm *per se*)

4. Effects of drug vs. dose levels:

low doses (< 20 mg)

increased BP, HR

relaxation of bronchial muscles (opening of airway)

increased alertness, euphoria, wakefulness, mood, decreased fatigue

note: amphetamine < cocaine in producing euphoria (less reinforcing)

increased motor activity & speech production

increased sense of well-being & power

may improve performance on simple motor tasks, esp. repetitive "boring" tasks

but impairs fine motor skills; usually improves athletic performance can detect in urine up to 48 hours after use

STIMULANTS: Amphetamines, Cocaine (p.3)

4. Effects/Dose levels (cont.)

moderate doses (20-50 mg)

all of the above, plus increased respiration rate increase in tremors & motor restlessness increase in insomnia, agitation decreased appetite

high doses (> 50 mg)

all of the above, plus sudden aggression & violence marked increase in purposeless, repetitive acts ("punding", stereotypies) paranoid delusions severe anorexia --- wt. loss, malnutrition, skin sores, infections psychosis (esp. with abuse of methamphetamine) lack of sleep progressive deterioration of social, personal, job skills

5. Use in pregnancy

no clear teratogenic effects but lower birth weights, retarded growth rates postnatal can see an increase in intracerebral hemorrhages in fetus increases in school/behavioral problems, cognitive slowing & general maladjustments later on in infant/child

6. Pharmacokinetics

can take PO (unlike cocaine) lipid soluble onset of effects w/i ½ hour ½ life is 5 to 20/30 hours (mean = 10 hours) a single dose is detectable in body for 3 days metabolized by liver enzymes

STIMULANTS: Amphetamines, Cocaine (p.4)

7. Pharmacodynamics:

withdrawal effects – hypersomnia (increased REM, increased NREM) hyperphagia & wt. gain lethargy, fatigue depression & increased risk of suicide (for months) requires tx w/ antidepressants & careful monitoring

tolerance develops esp. to euphoric effects, to anorexia, & to some of the cardiovascular effects tolerance develops fairly rapidly, so increased doses frequently seen increased risk for OD

toxic effects that mimic paranoid psychosis occurs at dose levels **60-300 mg/day** and can last for longer duration than that seen with cocaine requires tx with high-potency antipsychotics (e.g. Haldol/haloperidol)

shows state-dependent learning effects

8. Use of "ICE" (free-base methamphetamine)

- (analogous to use of free-base cocaine or "CRACK")
- both of these forms of the drug are **smoked/inhaled**, which because of an almost immediate effect in the brain are markedly more addictive than when the drugs are taken by some other route (PO, absorption through nasal mucosa, etc.)
- changes in the CNS (e.g. in RSs) may be irreversible...e.g. drug "craving" behs. see >1yr. after D/Cd drug
- also see long-lasting (permanent?) changes in sleep architecture, sexual beh., mood (depression), movement disorders, and schizophrenic Sxs deaths due to pulmonary edema and/or heart failure

STIMULANTS: Amphetamines, Cocaine (p.5)

9. Amphetamines Used in Clinical Treatment

for ADD/ADHD, use Dexedrine, Adderall (Dexedrine + amphetamine)
 also use Ritalin, Concerta (methylphenidate),
 newly released drug Provigil (modafinil) is also now being tried
 is not a DA agonist --- no/low abuse potential
 may be a glutamate agonist and/or a GABA antagonist
 used in order to improve mental focus, concentration in these Ss
 which has the happy side effect of decreasing distractability, restlessness,etc.

for *narcolepsy* or *idiopathic hypersomnia*, use Dexedrine, Ritalin, Provigil, or *Cylert (pemoline*, although must do frequent liver function tests) used in order to counter EDS in these patients note: exciting recent discovery of NT that may produce "wakefulness" is perhaps not a NT that simply blocks sleep... orexin = hypocretin, cell bodies in anterior hypothalamus

for *weight loss*, no currently supported use for stimulants do not use Fastin/Adipex (phentermine) do not use Redux (dexfenfluramine) do not use Pondimin (fenfluramine) do not use ephedrine (Ma Huang), pseudephedrine use *Meridia (sibutramine)* is a reuptake inhibitor of 5HT, NE & DA (< amphetamines) structurally similar to amphetamine molecule but is not an amphetamine parent molecule rapidly metabolized --- active metabolite so far seems to have a low abuse potential does increase BP & HR

STIMULANTS: Amphetamines, Cocaine (p.6)

10. History of Cocaine Use

- obtained from leaves of *Erythroxylon coca* plant (So.America) fresh, green leaves chewed by native peoples --- less fatigue, greater endurance, more resistance to cold
 - about a 200mg/day "dose" at most
- 1855 the active ingredient (cocaine) isolated
- 1850-1860 invention/perfection of syringe & hypodermic needle
- 1880 cocaine used as a local anesthetic
- 1885 cocaine & caffeine both used in USA as "helpful nerve tonics" e.g. Coca-Cola (60 mg cocaine/8 oz.)
 - to give S energy, sense of well-being!
- late 1880s Freud used cocaine himself & recommended it for his pts. addition potential unrecognized at first
 - by early 1900s Freud was discouraging its use
- 1910 President Taft speakes out against use of cocaine specifically
- 1914 passage of the *Harrison Narcotic Act* (includes prohibition against cocaine) cocaine banned for use in medicines or beverages
- 1918 1st synthetic local anesthetic developed (*Novocaine/procaine*) procaine has no dependency-producing effects
- 1930s use of cocaine had decreased
- 1940s to be replaced by use of newly synthesized "ephedrine-like" drugs

11. "Typical" Cocaine User in USA

young (12 to 39 years)

dependent on cocaine + 2 other drugs (multiple drug use)

male (75%)

comorbid conditions – depressed (67%), paranoid (25%), ETOH dependent (85-90%)

at increased risk for premature (& violent) death (homicides, suicides, accidents) at increased risk for cardiovascular morbidity/mortality

STIMULANTS: Amphetamines, Cocaine (p.7)

12. Pharmacokinetics:

absorption – is slow when "snorted" because drug causes vasoconstriction of nasal blood vessels

peak plasma levels reached 30-60 min. after snorting

20-30% of snorted drug absorbed into bloodstream

- is very fast when **smoked/inhaled**, via lungs peak plasma levels reached w/i 5 min. & "rush" felt w/i a few seconds 6-32% of smoked drug absorbed into bloodstream

- is also very fast if **injected IV**, enters plasma directly

100% enters bloodstream

30-60 seconds to feel onset of effects

- PO route is rate, reduced absorption, very mild effects after 30-60 minutes

distribution – crosses the BBB easily

initial concentration in brain > plasma concentrations after cocaine leaves brain it redistributes to other body tissues (is water soluble) easily passes placental barrier

metabolism & excretion

 $\frac{1}{2}$ life = 30-90 minutes

metabolized extensively by liver & plasma enzymes

removed more slowly from brain vs. body tissues (is still present in brain > 8 hrs. after administered)

can detect cocaine in urine for up to 12 hours after administration

can detect cocaine *metabolite* (inactive, benzoylecgonine) up to 48 hours after use (in acute user), and after 2 weeks (in chronic user) because inactive metabolite accumulates in body tissues

STIMULANTS: Amphetamines, Cocaine (p. 8)

13. Mechanism of Action

cocaine is a major DA agonist

blocks the reuptake of DA

increases the DA activity, esp. in nucl. Accumbens

cocaine itself directly can also affect post-synaptic membranes of neurons end result is a decrease in discharge rate of nucl. Accumbens neurons & of ventral-tegmental pathway neurons

cocaine is also a major 5HT & NE agonist

blocks the reuptake transporter protein for 5HT & for NE seems also to produce reinforcing effects (although the 5HT1a RS may decrease reinforcing effects)

note: may cause the DA,5HT,NE transporter protein to reverse, & carry NTs to outside of neuron (to synaptic cleft) from presynaptic membrane...

clinical issue - What if S had a "faulty" 5HT/DA transporter system that resulted in **too great an uptake of 5HT/DA**?

Would this person be "self-medicating" by using cocaine? Would this person be more susceptible to cocaine use & depression? both cocaine & ETOH abusers do seem to have faulty 5HT transporter proteins...

14. Effect of Cocaine on the Body/Behavior

3 of importance:

potent local anesthetic effect (prevents uptake of Na+ into neurons) potent vasoconstrictor (incl. cardiac/coronary arteries) potent psychostimulant with reinforcing properties

Effects of short-term, low-dose use: physiological/bodily effects

increased alertness	hypertension
motor hyperactivity	bronchodilation
tachycardia	increased body temperature, increased BMR
vasoconstriction	pupillary dilation
increased blood glucose	decreased blood flow to organs
increased blood flow to sk	eletal muscles & brain

STIMULANTS: Amphetamines, Cocaine (p.9)

14. Effects (cont.)
Short-Term, Low-Dose Use (cont.)
Psychological Effects – usually occur within the first 30 minutes euphoria (marked)
giddiness
increased self consciousness
forceful boasting

Secondary Effects – that occur within 60-90 minutes milder euphoria anxiety rapid speech, "pressured" speech, incoherence

Protracted Effects – that last for hours – incl. anxiety, and depression later on

Appetite is initially suppressed, later rebounds Sleep is quite delayed, but fatigue is reduced initially & then rebounds later on

initially motor activity increases, with agitation, restlessness

And the urge to take more cocaine increases – "**cocaine cravings**" Which as tolerance increases (esp. to euphoria) --- larger/more frequent doses --- greater toxicities & risk of death

Note: former cocaine users show **classically conditioned cocaine cravings** when shown stimuli associated with prior cocaine use blood flow increases to **limbic system** structures (esp. amygdala, anterior cingulated gyrus, orbitoprefrontal cortex) & S experiences "cravings")

specific toxicities to CNS:

anoxia in CNS 2^{ndary} to decrease in blood flow increased risk of vascular thrombosis intracranial hemorrhage & strokes cerebral atrophy seizures risk of movement disorders 2ndary to brain damage

STIMULANTS: Amphetamines, Cocaine (p. 10)

14. Effects (cont.)
cardiovascular toxicities: hypertensive crisis cardiac ischemia, cardiac arrhythmias MIs, heart failure, infected heart tissue ruptures aorta

nasal problems (degeneration of nasal septum)

Long-Term, High-Dose Effects: "toxic paranoid psychosis"

anxiety severe sleep deprivation hypervigilance suspiciousness paranoia, persecutory fears impulsive repetitive, compulsive behavior ("punding") altered perception of reality – delusions, hallucinations aggression, homicidal thoughts/behaviors depression & dysphoria (which will worsen when S D/Cs cocaine) can last for days-weeks +

"cocaine psychosis" – paranoia, impaired reality testing, anxiety stereotyped, compulsive, repetitive behaviors vivid hallucinations (visual, auditory, tactual) disturbances of eating, sleeping

note: w/ chronic cocaine use there is likely to be a **comorbid Dx** bipolar, unipolar depression, schizophrenia, other drug use (esp. ETOH & heroine), personality disorders (reckless, rebellious, poor frustration tolerance, risk taking, impulsive) often a + family pedigree for drug abuse, psych. disorders

STIMULANTS: Amphetamines, Cocaine (p. 11)

15. Cocaine & Pregnancy

vasoconstriction --- decreased placental blood flow --- decreased O2 to fetus increased risk for placental detachment, preterm labor, stillborns, decreased birth weight, microcephaly, cardiovascular damage to fetus

teratogenic effects & fetotoxic effects are noted

- **question** would fetus have reduced #s of 5HT, DA, NE RSs? would fetus thus be at greater rish for depression postnatal?
- **note**: overall 11% of pregnant women use cocaine during pregnancy inner city women in low SEL – may be as high as 68-70% in these women, 15-25% of neonates have detectible cocaine in their bloodstream/urine at birth

cocaine still present in breast milk 60 hours after woman last used cocaine

16. **Pharmacologic Treatment** of Cocaine Dependency tx for **depression** – antidepressants (e.g. desipramine, imipramine, fluoxetine)

tx for cravings – e.g. buproprion (Wellbutrin) that block DA RSs

tx for **comorbid disorders** – e.g. antidepressants, mood stabilizers e.g. ReVia (naltrexone) to decrease ETOH/heroine cravings

note: prolonged cocaine use is likely to have --- down regulation of DA (NE,5HT) RSs; thus, when D/C cocaine --- these NT systems are hypoactive --- depression, anhedonia, fatigue, etc.? & have to again up regulate...

note: have these Ss been "self-medicating" for "too active" a DA/5HT/NE system? 35% of cocaine abusers have a Hx of ADHD in childhood, 15% in adult yrs. thus, if these Ss were given e.g. Ritalin, do they usually improve...yes

STIMULANTS: Amphetamines, Cocaine (p. 12)

16. Treatment (cont.)

psychosocial interventions, added to pharmacologic txs, make for better results than either intervention alone

these psychosocial interventions should include cognitive-behavioral therapy, coping skills, interpersonal skills, social support, enrironment changes, etc.

Use Harm Reduction Model

note: all of our interventions have relatively poor treatment outcomes in the long run...most addicts return to using...& their craving beh. never stops
...a permanent brain change?
be very careful what you expose you CNS to...
an ounce of prevention may be worth a pound of cure...