1. Basic Principles of Drug Action
 a. Drug Administration
 Ingestion (oral route)
 Injection (SC, IM, IV)
 Inhalation
 Absorption through mucous membranes
 Transdermal

 b. Drug Distribution
 Must enter bloodstream
 Must pass blood-brain barrier (non-ionized, lipid soluble molecules)
 Distributes to all the body cells

 c. Drug Metabolism (liver enzymes)
 d. Drug Elimination (kidney, urine; other routes)
 e. Drug “half-life”
 f. Mechanisms of Drug Action (in NS is synapse, receptor sites)

 g. Drug Tolerance
 Shifts dose-response curve to the right
 Takes more of drug to get same result as before
 Not all drugs exhibit tolerance
 Can develop tolerance to some, but not all, of a drug’s effect
 Mechanisms: e.g. liver enzyme induction, changes in RSs

 h. Drug Withdrawal Effects & Physical Dependence
 Exposure to a drug produces compensatory changes in NS that offset
 the drug’s effects and produce tolerance
 Rapid/abrupt D/C of drug vs. gradual tapering off of drug
 Is not the same as addiction (cravings, concentrated focus, reward)
 “Conditioned” tolerance (conditioned stimuli --- compensatory
 bodily changes), role in drug ODs
2. **Drug Addiction (p.2)**

a. **Biopsychological Theories of Addition**
 “older” physical-dependence theories
 do not adequately describe the data on addition
 addicts that do not exhibit withdrawal effects still crave
 relapse occurs without dependence/withdrawal
 addiction does not occur even with dependence/withdrawal

 “newer” positive-incentive theories of addiction
 addict uses drug in order to re-experience the positive incentive
 (“pleasure”, “release” from tension effects)
 to stop the “cravings” from the drug
 “pleasure” vs. “intense focus/attention on” experiencing the drug

b. **Brain areas involved in “pleasure/focus”**
 intracranial self-stimulation studies (septal/lateral hypothalamus)
 mesotelencephalic **dopamine** system
 cell bodies in midbrain (substantia nigra & **ventral tegmental area**)
 axons project to telencephalon (forebrain), including prefrontal ctx,
 limbic ctx (**cingulated gyrus**, **olfactory bulb**, **amygdala**, **septum**,
 dorsal striatum (caudate nucl. & putamen),
 & **nucleus Accumbens**
 (2 pathways using dopamine, one for motor control via the
 basal ganglia, and one for “reward” via forebrain & limbic
 structures)
 “**mesocorticolimbic pathway**”

 dopamine agonists are likely to be very addictive
 e.g. cocaine, methamphetamines, nicotine
 drugs that are dopamine antagonists or that have no effect on dopamine
 are not addictive

 nucleus Accumbens may not actually mediate the reward/pleasure
 experience per se; but does attach “meaning” to a stimulus (e.g. a
 drug) that signals **that “reward” is imminent**, stimulus becomes the
 focus of attention, S will try to get the stimulus, will “crave” it, will
 seek it to the exclusion of all other stimuli… “addiction”