THE SOMATOSENSES

Unusual (vs. other senses)
Many somatosenses we have no conscious awareness of
Many somatosenses have a strong affective component
Are more varied than other senses

Three kinds of somatosenses:
Exteroceptive – from stimulation external to body (tough, temp, pain)
Proprioceptive – from stimulation internal to body, position of body,
 No conscious awareness; feedback from muscles, joints, ligaments,
 and from organs of balance
Interceptive – from stimulation internal to body, no conscious awareness,
 e.g. temperature, BP, acidity of stomach, CO2 levels in bloodstream

Sensory Receptors for Exteroceptive Senses:
Free-Nerve Endings (temp & pain), no “receptor”
Hairless skin (glabrous): Hairy skin:
 Pacinian corpuscle Pacinian corpuscle (deep, rapid)
 Meisner’s corpuscle Hair cell (shallow, rapid adaptor)
 Ruffini endings Ruffini endings (deep, slow adapt)
 Merkel’s discs Merkel’s discs (shallow, slow)

350 touch receptors/square millimeter in human finger tips

Dermatomes
Skin (derma) zones carried in on given spinal nerves (N=31 pairs)
Plus input from CN V (trigeminal nerve) for head

Pathway into brain:
(1) Dorsal (sensory) column/medial lemniscal pathway
 carries touch and proprioception senses
 receptors --- dorsal root nerve into spinal cord --- dorsal (sensory) columns
 --- decussate in medulla --- contralateral medial lemniscus --- ventral
 posterior nucleus of thalamus (joined by CN V) --- post-central gyrus
Pathways into brain: (cont.)

2. Anterolateral pathway
 carries pain and temperature information
 Free-nerve endings --- dorsal root nerve into spinal cord --- synapses onto
 a new nerve cell --- decussates --- ascends in one of 3 tracts:
 - spinothalamic tract --- ventroposterior nucleus of thalamus
 - spinoreticular tract --- RF --- parafascicular & intralaminar nuclei of
 thalamus
 - spinotectal tract --- colliculi
 note: CN V (trigeminal) adds into the mix at medulla
 thalamus --- post-central gyrus (SI and SII) & posterior parietal area

Other Interesting Information:

Chronic Pain
= or > 6 months duration, often starts with injury
 pain receptors become hypersensitive
 opiates help but concerns re. addiction (which may be unjustified)
 Melzack’s “gate theory” of pain reduction
 Noticed that pain awareness is susceptible to distraction…why?
 Effects of high emotional states on pain…fear/anxiety, sexual
 arousal, anger
 Where does pain get blocked? PAG (periaqueductal gray) in
 midbrain --- 5HT neurons in Raphe nucleus (medulla) ---
 spinal cord interneurons --- inhibit incoming pain signals in
 dorsal horn of grey matter of spinal cord
 Endogenous “opiates” = endorphins (neuropeptides)
 Do chronic pain patients have too little?
 Are suppressed by chronic use of opiates…
 Are released in high amounts just prior to giving birth
 Are released in high amounts with acute stress
 Associated with suppression of immune system, as are opiates
 lesion dorsal root ganglia (rhizotomy) --- little relief
 lesion ventroposterior or intralaminar+parafascicular nuclei
Chronic Pain (cont.)
Where is pain felt in the brain?...do not know...
If remove SI and SII, no change in pain threshold
Pt. with one hemisphere removed can still feel pain bilaterally!

Role of anterior cingulated gyrus
If lesion/remove--- S shows a reduced emotional reaction to pain
Becomes more active when S experiencing pain
S shows less anxiety if lesion ACG, also less OCD

Phantom Limb Pain
Felt in about 50% of all amputees
Lessened if put on an artificial limb...why?
Does not reduce if lesion incoming pain pathways, so must be central in origin...similar to phantom vision? Phantom hearing?

Molecular Neurosurgery
Substance P is a major NT in incoming pain signal
Glutamate may also be

Capsaicin – causes release of large amount of sub.P, depletes supply
Thus, several hours/days of analgesia

Artificial molecule of sub.P + toxic molecule (e.g. saporin) created
Inject into ascending pain pathways --- absorbed into neuron ---
kills neuron --- analgesia
S still responds to opiate analgesia (which is good)
Way of the future of treating pain?