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Abstract

& Analysis of the degree of overlap between functional mag-
netic resonance imaging–derived regions of interest (ROIs)
has been used to assess the functional convergence and/or
segregation of category-selective brain areas. An examination
of the extant literature reveals no consistent usage for how
such overlap is calculated, nor any systematic comparison
between different methods. We argue that how ROI overlap is
computed, especially the choice of the denominator in the
formula, can profoundly affect the results and interpretation of
such an analysis. To do this, we compared the overlap of the
FFA–FFA (fusiform face area) and FFA–FGA (fusiform Greeble-
selective area) in a localizer study testing both Greeble novices
and experts. When using a single ROI as the denominator, we
found a significant difference in FFA–FFA versus FFA–FGA
overlap, consistent with the result of a previous study arguing
for face specificity of the FFA [Rhodes, G., Byatt, G., Michie,

P. T., & Puce, A. Is the fusiform face area specialized for faces,
individuation, or expert individuation? J Cogn Neurosci, 16,
189–203, 2004]. However, these ROI overlap differences dis-
appeared when the denominator combined both of the in-
volved ROIs, and the patterns of such overlap comparisons
were dependent on given statistical thresholds. We also found
proportionally decreasing FFA–FFA overlap with increasing
center-of-FFA distance, resolving an apparent contradiction be-
tween the consistency of the location of the FFA and the
seemingly low FFA–FFA overlap. Finally, Monte Carlo simu-
lations revealed the most stable formula—the most resistant to
ROI size variations—to be the average of the two single-ROI-
denominator-based overlap indices. In sum, ROI overlap analy-
sis is not a reliable tool for assessing category specificity, and
caution should be exercised with regard to ROI overlap defi-
nition, underlying assumptions, and interpretation. &

INTRODUCTION

For a wide variety of theoretical reasons, measures of
the convergence of functional magnetic resonance im-
aging (fMRI)-derived activations across different task
conditions, or cognitive conjunction (Friston, Holmes,
Price, Buchel, & Worsley, 1999; Price & Friston, 1997), has
been widely used in the neuroimaging field. To give just
a few examples, researchers have identified common
activations for perception and imagery (Kosslyn, Ganis,
& Thompson, 2001; Mellet, Petit, Mazoyer, Denis, &
Tzourio, 1998), object and motion perception (Kourtzi,
Bulthoff, Erb, & Grodd, 2002), primary and secondary
language processing in bilinguals (Chee et al., 2000),
and between working memory and spatial attention net-
works (Hopfinger, Buonocore, & Mangun, 2000; LaBar,
Gitelman, Parrish, & Mesulam, 1999). Despite its popu-
larity, conjunction analysis has recently been challenged
regarding the degree of common cognitive process in-
volved (Caplan & Moo, 2004) and issues regarding the
statistical assumptions (Friston, Penny, & Glaser, 2005;

Nichols, Brett, Andersson, Wager, & Poline, 2005). These
discussions have greatly enriched our understanding and
raised practical concerns about how to best perform and
interpret conjunction analyses.

In a similar vein, the present study focuses on a
particular form of conjunction analysis: the region-of-
interest (ROI) overlap comparison. Specifically, an ROI
overlap index is the number of overlapping voxels
between two ROIs divided by a common denominator.
By comparing the overlap percentage across different
tasks or conditions, a number of studies have used this
overlap index difference to infer the degree of conver-
gence or segregation between functionally defined ROIs.
For example, O’Craven and Kanwisher (2000) measured
the percentage of overlap of the fusiform face area (or
FFA; Kanwisher, McDermott, & Chun, 1997) derived
from participants imagining faces and from participants
actually viewing faces. They reported a high degree of
overlapping voxels in the FFA between the two condi-
tions, and argued that this result supported a shared
representation for face perception and face imagery.

In another study, Grill-Spector, Knouf, and Kanwisher
(2004) compared the FFA derived from a localizer scan
(passive viewing of faces vs. objects) and from an
identification task using a variety of stimuli, such as
faces, birds, flowers, houses, guitars, and cars. In their
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study, two overlap indices were calculated. Based on
our interpretation of Table 1 (p. 559), the numerator
was the number of overlapping voxels between the FFA
from the localizer and the specific category that was
tested; the denominator was either the voxels for the
FFA localizer or the FFA task. Both indices showed sig-
nificantly higher overlap between the FFA localizer and
the FFA task compared to the overlap between the lo-
calizer and the other task-derived object-selective areas.
However, their ROI overlap comparison was derived
from novices’ data (n = 5), so whether car experts, for
example, might show higher overlap between FFA and
fusiform car-selective areas was unclear.

With similar results to those of Grill-Spector et al.
(2004), Rhodes, Byatt, Michie, and Puce (2004) reported
the overlap between the FFA and a fusiform Lepidoptera
area (Lepidoptera are commonly know as butterflies
and moths), or FLA, in both Lepidoptera novices (Ex-
periment 1) and experts (Experiment 2). They scanned
people with an initial FFA localizer (or LO), which con-
sisted of passive viewing of faces and objects, followed
by a similar passive viewing (or PV) of faces, objects,
and Lepidoptera, and a subsequent individuation (or IN)
task, requiring participants to recognize the items they
viewed in the previous session (half of them were from
the previous session or ‘‘old’’). The FFA–FLA overlap
index was defined as the overlap between face- and
Lepidoptera-selective voxels in the fusiform gyrus (FG)
divided by the face-selective voxels in the FG or (FFA \
FLA)/FFA.1 For the purpose of comparison, the FFA–FFA
overlap across the three tasks (LO, PV, and IN) was di-
vided into two values, (FFApv \ FFAlo)/FFApv and (FFApv \
FFAin)/FFApv, and was calculated for each participant to
provide the baseline overlap index, which was a mean
of 26.2% in Experiment 1 and 28.3% in Experiment 2
(across both left and right hemispheres, Table 1, p. 194).
In comparison, the average FFA–FLA overlap, or the
mean of (FFApv \ FLApv)/FFApv and (FFAin \ FLAin)/
FFAin, across both hemispheres, was 10.7% in Experi-
ment 1 and 6.7% in Experiment 2. The significant dif-
ference between the FFA–FFA and FFA–FLA overlap
was taken as support for the face specificity hypothesis
(Downing, Chan, Peelen, Dodds, & Kanwisher, 2006;
Kanwisher, 2000).

In addition to the above studies, which are directly
related to the decade-long debate between the face
specificity and the perceptual expertise hypotheses
(Gauthier & Bukach, 2007; Bukach, Gauthier, & Tarr,
2006; Kanwisher, 2006; McKone & Robbins, 2006;
McKone & Kanwisher, 2005; Gauthier, Skudlarski, Gore,
& Anderson, 2000; Gauthier, Anderson, Tarr, Skudlarski,
& Gore, 1997; Kanwisher et al., 1997), a recent com-
mentary (Peelen & Downing, 2005a) also reported the
ROI overlap of imagined extrastriate action-related area
(ARA; Astafiev, Stanley, Shulman, & Corbetta, 2004) and
the extrastriate body-part area (EBA; Downing, Jiang,
Shuman, & Kanwisher, 2001) as only 14%, implying a

possible segregation between ARA and EBA. In their
later reply, Astafiev et al. (2004) pointed out that a low
index may be biased by the use of the larger ROI (here
EBA) as the denominator. They suggest that the overlap
may have been larger if the smaller ARA was used. This
raises two important concerns in interpreting ROI over-
lap results: (1) the percentage of overlap should be
compared to an appropriate baseline condition, just as
the FLA–FFA overlap was compared to the repeated FFA
overlap used in the Rhodes et al. (2004) study; (2) the
choice of the denominator can greatly affect the calcu-
lated overlap percentage. This second point will be
elaborated in the next section.

The Choice of the Denominator in ROI
Overlap Comparison

Although the ROI overlap has been used in a number
of studies for a variety of purposes, a careful examina-
tion of the extant studies that adopted the ROI over-
lap analyses reveals one surprising finding: Although
the numerator used in the overlap equation was always
the total number of overlapped voxels between the
two ROIs, the chosen denominator varied from study
to study. As mentioned earlier, Peelen and Downing
(2005a), Grill-Spector et al. (2004), Rhodes et al. (2004),
and O’Craven and Kanwisher (2000) used a single ROI as
the denominator, whereas other studies used the sum
(Ganis, Thompson, & Kosslyn, 2004), the mean (Nieto-
Castanon, Ghosh, Tourville, & Guenther, 2003), or the
union (Sawamura, Georgieva, Vogels, Vanduffel, & Orban,
2005) of the two ROIs as overlap denominators. In most
of these studies, the reasons for the use of a particular
denominator were not discussed, nor were alternatives
considered. In a real example of how the choice of
denominator can drastically affect the overlap ratio, we
recalculated the data from Table 1 of O’Craven and
Kanwisher (2000, p. 1016). This study compared the
overlap for imagining and viewing faces. When the
voxel overlap (mean size = 9) was divided by the face
imagery condition (mean size = 11 voxels), the mean
overlap was 84%. However, when the voxel overlap was
divided by the face perception condition (mean size =
63 voxels), the average overlap dropped to 22%. There-
fore, it is reasonable to infer that in the Rhodes et al.
(2004) study, the low overlap value (<30%) may have
been due to the use of the comparatively larger ROI
as the denominator; they reported a larger FFApv than
FFAlo (1440 vs. 813 mm3) for the FFA–FFA overlap, and a
larger FFA than FLA in both the FFApv–FLApv and FFAin–
FLAin overlaps (1440 vs. 650 and 1759 vs. 1346 mm3,
respectively).

Agreeing that the volume (e.g., FFA vs. FLA) differ-
ences may account for some variation in the degree of
overlap between faces and Lepidoptera, Rhodes et al.
(2004) emphasized that ‘‘. . .it cannot account for the
relatively modest degree of overlap between faces and
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Lepidoptera (7%) compared with the two sets of face
stimuli (27%)’’ (p. 194). Indeed, although the choice of
a single larger ROI as the denominator seems unable
to explain the consistently larger FFA–FFA overlap
compared to FFA–FLA overlap, the magnitude of the
overlap difference (27% vs. 7%) can surely be adjusted
by the denominator chosen. Figure 1 shows the results
of three different ROI overlap indices using data from
the Rhodes et al. report. When the choice of denomi-
nator changes from a single ROI (what Rhodes et al.
used) to either the union or the sum of the two ROIs,
the overlap difference drops from 20% to 16% to 13%,
respectively. Although a 4–7% decrease in overlap dif-
ference may appear trivial, it does call for the need to
systematically examine the effect of the denominator
in the ROI overlap comparison, and to evaluate which
formula might fare best in the current ROI overlap
scenarios in assessing functional selectivity of the ROI.

How Consistent is the FFA (across Runs
and Sessions)?

Another interesting issue raised in the Rhodes et al.
(2004) study was their somewhat contradictory finding of
low FFA–FFA overlap (27%), and a high consistency in the
location of the FFA across tasks, runs, and sessions re-
ported in the literature (Peelen & Downing, 2005c; Grill-
Spector et al., 2004; Gauthier, Tarr, Anderson, Skudlarski,
& Gore, 1999; Kanwisher et al., 1997). Rhodes et al. state
that ‘‘given the apparent robust consistency of previous
research demonstrating activation of FG [fusiform gyrus]
to faces, it should be noted that the measure of overlap

used here is a conservative index as it is the degree
of overlap in activated regions thresholded to the same
conservative criterion for both tasks’’ (p. 194). First, it is
not clear why their uncorrected p value thresholds of
.001 should be considered ‘‘conservative’’ compared to
other published FFA studies which used p value thresh-
olds of .0001 (uncorrected) or less (Kanwisher, Tong, &
Nakayama, 1998; Kanwisher et al., 1997). Second, even if
the threshold was indeed conservative, further explana-
tion is needed regarding how statistical threshold affects
the FFA–FFA overlap, including whether a lenient statis-
tical threshold elevates the ROI overlap and whether a
more stringent threshold decreases it, and if so, by how
much. It is unclear whether changes in the threshold
would have any substantial effect on the overlap index.
Any increase of the threshold, say from p = .05 to p =
.10, will likewise increase the sizes of both ROIs in the
denominator and their overlap in the numerator (and
similarly, a decrease in the threshold would also be per-
petuated equally), in many cases, rending the final out-
come equipotent.

In the current study, we will (1) further explore the
relationship between the FFA sizes, distances, and their
resulting overlaps (defined by various formulae); and (2)
compare the FFA–FFA and FFA–FXA overlap (X being
the object of expertise category) under several statistical
thresholds to see whether there is any systematic rela-
tionship. The latter point not only addresses the use of
different statistical thresholds and the effect on the low
FFA–FFA overlap specifically but also more generally
tests the effect of statistical criterion on various ROI
overlap comparison results.

Figure 1. Illustrations of

how ROI percentage overlap

in Rhodes et al. (2004) varies

with various denominators:
(1) single ROI (FFA from the

passive viewing session, or

FFApv), (4) the other single

ROI (FFA from the localizer
session, or FFAlo), (2) the

union, and (3) the sum of

FFApv and FFAlo. As shown,
the differences of the ROI

overlap (FFA–FFA minus

FFA–FLA overlap) decreased

from 20% (27%�7%) in (1),
to 16% (21%�5%) in (2), or

13% (18%�5%) in (3). In

addition, the FFA–FFA overlap

increased from the original
27% to 49% by just switching

the denominator from FFApv to

FFAlo. These FFA values were

derived from Table 1 of
Rhodes et al. (2004, p. 194).
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Goal of the Present Study

Based on the above review and discussion, the goal of
the present study is to examine: (1) the effect of the
denominator choice (or the formula used) on ROI
overlap comparisons; (2) the relationship between FFA
location and the overlap index, and (3) how ROI overlap
is affected by the choice of statistical threshold. To
achieve this, we tested 10n Greeble novices with three
runs of a localizer scan (consisting of blocks of faces,
objects, and Greebles). Five of these participants were
subsequently given 2 weeks of training to become
‘‘Greeble experts’’ (Gauthier & Tarr, 1997). These five
laboratory-trained experts were further scanned in two
additional sessions with the same localizer, once during
training and again immediately following training (train-
ing procedure = 2 weeks; Rossion, Kung, & Tarr, 2004;
Gauthier, Williams, Tarr, & Tanaka, 1998). With the data
we sought to (1) replicate previous results using an over-
lap analysis similar to the one used by Rhodes et al.
(2004); (2) further examine six different denominators
and compare their results; (3) reconcile the issue of FFA
location consistency across runs and sessions and corre-
sponding FFA–FFA overlap measures; and (4) evaluate
the effect of varying statistical thresholds on ROI overlap
formula and their values.

In our assessment of FFA–FFA overlap, we compared
the same task, face stimuli, and epoch length across
three separate scanning sessions. We expected no dif-
ference in the FFA size across scans and predicted no
differences regardless of which single FFA served as the
denominator. In addition, we predicted that the size of
the FFA would be larger than the FGA (‘‘fusiform
Greeble-selective area’’), and this size difference would
lead to inconsistencies in the ROI overlap measure,
dependent on the particular formula used. More spe-
cifically, when using only the larger face area as the
denominator, we predicted that the FFA–FFA overlap
would be significantly larger than the FFA–FGA overlap,
consistent with the face specificity prediction. However,
when a combination of both FFA and FGA are used as
the denominator, we predicted that the resulting mean
overlap between FFA–FFA and FFA–FGA would not be
significantly different, consistent with the prediction of
the perceptual expertise hypothesis. To test these pre-
dictions, we used six different denominators. The nu-
merator was the same across all formulae, that is, the
number of overlapping voxels (represented as ROIa \
ROIb in the formulae below).

ðaÞðROIa \ ROIbÞ=ROIa

ðbÞðROIa \ ROIbÞ=ROIb

For formulae a and b, the number of voxels for a
single category is used as the denominator. For example,
the number of active voxels in the FG calculated for a

face localizer task could be used (ROIa), which might be
measured as 1000 voxels. Alternatively, the number of
active voxels for a Greeble localizer task could be used as
the denominator (ROIb), which might be measured as
50 voxels. If our number of overlapping voxels for faces
and Greebles was 25 voxels, this would yield an overlap
index of 2.5% in the case of formula a, and 50% in the
case of formula b.

ðcÞðROIa \ ROIbÞ=ðROIa þ ROIbÞ

For formula c, the denominator is the sum of the
active voxels for two categories. For example, if there
were 1000 voxels for faces and 50 for Greebles, the de-
nominator would be 1050 voxels. With 25 overlapping
voxels, this would yield a percent overlap of 2.38% using
formula c.

ðdÞðROIa \ ROIbÞ=½ðROIa þ ROIbÞ=2�

In formula d, the mean volume of two ROIs is cal-
culated. For example, if there were 1000 voxels for
faces and 50 for Greebles, the denominator would be
525 voxels. Using our example of 25 overlapping voxels,
this would yield a percent overlap calculation of 4.76% in
the case of formula d.

ðeÞðROIa \ ROIbÞ=ðROIa [ ROIbÞ

In formula e, the union of both ROIs is calculated and
used as the denominator. This differs from the sum of
voxels in that the shared voxels for Greebles and faces
are not counted twice. For example, if the face area was
1000 voxels and the Greeble area was 50 voxels, but 25
of these voxels are shared, then the denominator would
be 1025 voxels (975 unique face voxels + 25 unique
Greeble voxels + 25 shared voxels). Using our example
of 25 overlapping voxels again, this would yield a per-
cent overlap calculation of 2.43% using formula e.

ðfÞ½ððROIa \ ROIbÞ=ROIaÞ þ ððROIa \ ROIbÞ=ROIbÞ�=2

Formula f is the average of formulae a and b. Thus,
for this formula, we take the mean overlap index for
formula a (2.5%) and formula b (50%), yielding an overlap
index of 26.25%. From these examples, we can see that
the overlap index varies widely with the use of different
denominators. However, the critical issue here is how
much these different overlap denominators affect the
comparison of the overlap for repeated measures of the
face-selective area (e.g., FFA–FFA overlap) versus the over-
lap between face-selective and another category-selective
area, in this case, Greebles (e.g., FFA–FGA overlap). We
examined each of these formulae using fMRI data for
Greebles and faces.
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METHODS

Participants

Ten undergraduate or graduate students at Brown Uni-
versity participated in the one-session scan (6 women,
1 left-handed, mean age = 25.9 years, SD = 4.2 years).
Five of them (3 women, mean age = 25 years, SD =
4.74 years) continued with two additional scans, a week
apart, during the middle and end of 2 weeks of Greeble
expertise training. Behavioral performances in both
picture-naming and picture-name verification tasks were
monitored to make sure the participants achieved ex-
pertise criterion, for example, no significant difference
between basic- and subordinate-level objects in accuracy
and response time (Tanaka & Taylor, 1991). Participants
typically achieved criterion by the eighth or ninth train-
ing session (Rossion et al., 2004). All the participants
gave informed consent as approved by the Brown Uni-
versity Institutional Review Board (IRB).

Stimuli

The stimuli consisted of 90 full-color Caucasian front-
view face photographs (half male), 100 full-color object
photos (sampled from commercial object image CDs),
and 80 asymmetric Greeble images created using 3-D
Studio Max R4 (www.discreet.com). The complete set
of the Greeble stimuli, both images and 3-D models, is
available at www.tarrlab.org/. The asymmetric Greebles
were created by randomly repositioning the ‘‘boges,’’
‘‘quiff,’’ and ‘‘dunth’’ within a particular placement range.
In interviews before and after training, participants indi-
cated that the asymmetric Greebles did not appear face-
like. The stimuli, which subtended approximately 88 of
visual angle, were projected onto an opaque screen and
were viewed by participants through a mounted mirror
on the head coil.

fMRI Procedure

Each scan session began with an MPRAGE structural scan
(1 mm3) and followed by three runs of functional FFA
localizers. The FFA localizers consisted of blocks of faces,
objects, and Greebles (20 images per block), interleaved
with the fixation baseline (Figure 2). Participants were
instructed to press a button with their dominant hand
when they detected a stimulus repetition (1�back iden-
tity task). Forty-five 3-mm axial EPI slices (in-plane res-
olution = 3 	 3 mm2, TR = 3600 msec, TE = 38 msec,
flip angle = 908, gap = 0 mm, 76 measurements) were
acquired in the 1.5-T Siemens scanner located at Memo-
rial Hospital of Rhode Island.

fMRI Data Analysis

We used BrainVoyager 2000 v4.96 (Brain Innovation) to
(1) discard the first two volumes in each run; (2)

preprocess using 3-D motion correction, slice scan time
correction (interleaved ascending), linear trend removal,
and high-pass filtering at 3 cycles/sec. Structural images
were warped into Talairach space for group analysis. The
volume time-course files were analyzed using a general
linear model (Boynton, Engel, Glover, & Heeger, 1996)
with three convolved predictors: faces, objects, and
Greebles, corrected for autocorrelation (AR1), and re-
stricted by the gray matter mask. Subsequent contrasts
of faces minus objects ( p = .05, corrected for main
experiment, with p = .01 and.10 for additional analyses)
were applied either to each run (for all 10 Greeble
novices), or to each session collapsing over three runs
(for the five Greeble experts). The face-selective voxel
cluster, or FFA, was determined by confirming the co-
localization of (1) a reasonable anatomical range (x TAL:
35 to 40; y TAL: �40 to �60; z TAL: �15 to �25), (2) a
higher average BOLD response for faces than for other
object categories (Figure 2), and (3) a significant mean
percent signal change (PSC) of about 1% for faces com-
pared to fixation, and a smaller PSC for objects and
Greebles.

RESULTS

Within- and Between-session FFA
Spatial Consistency

Our first analysis sought to reconcile the discrepancy
between the low FFA–FFA overlap (M = 27%) reported
by Rhodes et al. (2004), and the consistent within-
subject FFA spatial location measured across runs and
sessions commonly reported in the literature (Peelen &
Downing, 2005c; Gauthier et al., 1999; Kanwisher et al.,
1997). All the participants’ FFA locations (center-of-mass
Talairach coordinates) and size (mm3) are listed in Table 1.
Examples of the spatial location of the FFA are shown
for four participants in Figure 3. The top two rows show
the data by run and the bottom two rows show data by

Figure 2. A representative subject’s time course and sample stimuli

from our FFA localizer study. Horizontal axis denotes TR number,
vertical axis denotes percent signal change.
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session. Several points can be made about these data.
First, there are considerable between-subject differences
for the overlap indices, in both the between-run and
between-session calculations. For example, using formu-
la f, two participants exhibited overlap in the range of

60% to 70% (Rows 1 and 3), whereas the two remain-
ing participants exhibited overlap of only 
3% (Row 2)
and 
20% (Row 4). Second, as expected, the larger the
FFA–FFA distance, the smaller the overlap index. This
inverse relationship was significant for all the correla-
tions between the FFA–FFA distances and the six overlap
indices (a, b, c, d, e, and f ), both across-run [n = 10,
r(29) = �.50, �.52, �.76, �.76, �.76, and �.66; all

p < .05] and across-session [n = 5, r(14) = �.64, �.80,
�.78, �.78, �.74, and �.83; all p < .05]. One example of
the correlation results for a single formula (formula f ) is
shown in Figure 4. Third, the by-session analysis com-
bined data over three runs, resulting in FFA sizes that
were larger than the by-run analysis [t(9) = 3.36, p = .008
for 10 novices; and t(14) = 2.71, p = .016 for 5 experts
who underwent 3 scans] and more consistent in size,
which was indicated by the highly significant FFA–FFA
volume correlation [r(14) = .91, p < .0001] combining
all 15 possible pairings for the across-session analysis
(5 participants 	 3 sessions). In comparison, the across-
run FFA volume correlation [r(29) = .39, p > .05] was

Table 1. FFA Volume (mm3) and the Center-of-Mass Talairach Coordinates (x, y, z) of the Present Experiment, Across-Run
(n = 10, One Session) and Across-Session (n = 5, 3 Sessions)

(a) FFA—run 1 FFA—run 2 FFA—run 3

S TAL (x, y, z) Size (mm3) TAL (x, y, z) Size (mm3) TAL (x, y, z) Size (mm3)

1 38, �55, �11 218 38, �55, �10 105 40, �54, �13 308

2 44, �48, �17 140 45, �44, �19 83 46, �40, �21 1017

3 40, �54, �13 33 38, �52, �10 36 38, �53, �11 22

4 37, �43, �20 1301 35, �41, �22 1032 36, �35, �21 533

5 35, �52, �12 46 36, �56, �15 6 35, �51, �14 10

6 40, �45, �14 95 41, �45, �14 139 41, �43, �13 194

7 48, �46, �17 227 51, �42, �16 286

8 44, �48, �17 26 45, �44, �19 102 46, �40, �21 482

9 42, �45, �9 2202 38, �42, �10 6 41, �46, �12 1678

10 41, �41, �23 733 42, �42, �23 729 41, �43, �23 1004

Average (n = 10) 502 252 583

(b) FFA—session 1 FFA—session 2 FFA—session 3

S TAL (x, y, z) Size (mm3) TAL (x, y, z) Size (mm3) TAL (x, y, z) Size (mm3)

1 39, �55, �12 346 38, �56, �13 641 40, �54, �11 365

2 44, �42, �21 1181 44, �40, �22 499 44, �44, �14 503

3 38, �52, �11 72 38, �50, �12 46 37, �60, �13 214

4 37, �39, �23 2206 32, �42, �21 2308 34, �41, �22 1784

5 35, �54, �12 71 32, �56, �13 409 37, �59, �14 252

6 41, �44, �14 370

7 47, �41, �16 364

8 39, �45, �13 618

9 42, �44, �10 1679

10 41, �43, �22 1431

Average (n = 5) 775 780 623

Average (n = 10) 834
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much smaller, possibly reflecting the combined effects
of fewer data points per run and within-subject noise (in-
cluding adaptation, fatigue, etc.), which jointly contrib-
ute to larger variability in FFA size across runs. Finally,
the range of center-of-FFA Talairach coordinates are con-
sistent with what has been reported in the literature:
Across Tables 1 and 2, the coordinates are in the range
of: x = 35 to 45, y = �40 to �60, z = �10 to �25.

Our FFA results, in terms of the location and size,
were both within the ranges reported in the literature,
therefore supporting the qualitative notion of FFA ‘‘con-
sistency.’’ However, the substantial differences in calcu-
lated overlap indices between individuals reveal several

important factors related to overlap calculations. Consis-
tency in the spatial location of the FFA can be linked to
‘‘small’’ center-of-FFA distance variations (e.g., ±5 mm
in the y-axis) and high correlations among the calcu-
lated sizes of the FFA (at least across sessions). In con-
trast, the FFA–FFA overlap index was concurrently ‘‘low’’
(e.g., based on the equation shown in Figure 4, with
5 mm FFA-center distance, the expected mean overlap
is 
35%), yielding the impression of a discrepancy
between spatial location and overlap. This apparent
‘‘inconsistency’’ can be resolved by a quantitative com-
parison. We found a significant negative correlation
between FFA-center distance and the corresponding

Figure 3. The axial slice map

of the FFA location (Talairach

coordinates and FFA sizes, in

mm3, shown on top of each
slice) of four representative

subjects (upper two rows for

within-session, lower-two rows
for across-session analysis).

With a revised overlap index

(formula f ) which averages

two single-ROI-as-denominator
overlap indices, the mean

FFA–FFA overlap was: 64% and

3% for the upper two, and 67%

and 27% for the bottom two
rows. In general, our results

are congruent with Peelen and

Downing (2005b), who found
that, for individual subjects

across runs or sessions, the

location and size of the FFA is

relatively consistent, with some
across-subject variation.
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overlap, shown in Figure 4. These data indicate that, as
you would expect, as the distance between the center
points of calculated face-selective areas increases, the
amount of overlap decreases. Our results, therefore, sug-
gest that FFA consistency depends on what one defines
as the measure of consistency, and where you place
the cutoff for ‘‘consistent’’ versus ‘‘inconsistent.’’ If con-
sistency is measured as center-of-FFA distance, several
millimeters is thought to be trivial and data are inter-
preted as indicative of as a stable, functionally defined
area. However, when measured as FFA–FFA overlap, the
result appears much smaller (e.g., <50%), which might
be interpreted as indicative of a less stable area, even
though these measures are significantly correlated.

Comparison of FFA–FFA vs. FFA–FGA Overlap

As a basis for later comparisons with different overlap
formulae, the first step of our FFA–FFA versus FFA–FGA
comparison was to replicate previous results showing
larger FFA–FFA overlap compared to the overlap between
FFA and the category-selective responses arising from
a second domain of expertise, including Lepidoptera
(Rhodes et al., 2004) and cars (Grill-Spector et al., 2004).
Here we used asymmetric Greebles, and created experts
with a training paradigm that has been shown to be
effective in a number of published studies (Rossion et al.,
2004; Gauthier et al., 1998, 1999). Across 10 Greeble
novices, using a single FFA measure as the denomina-
tor and p = .05 as the statistical threshold for the face
minus object contrast (the middle bars for each graph
in Figure 5), we found a significantly larger mean FFA–
FFA overlap (40.8%) compared to the mean FFA–FGA
area overlap (21.7%), t(9) = 2.81, p = .02. This result is

Figure 4. The significantly negative correlations between FFA-center

distance and the corresponding FFA–FFA overlap (using formula f

only here) in the current study. Upper row (A) represents across-run

analysis (n = 10, each had 3 runs), and bottom row (B) represents
across-session analysis (n = 5, each had 3 sessions). The mean

FFA–FFA overlap decrease, based on the two regression equations,

was about 10% per mm distance increase.

Table 2. Data from Selected Studies that Reported the Location of Representative FFA (in Talairach Coordinates),
Average FFA Size (if Documented), and the FFA Localizer Tasks

Study FFA Localizer Task
Right FFA Talairach

Coordinates
Right FFA

Size (mm3)

McCarthy, Puce, Gore, & Allison, 1997 View faces or flowers among objects 40, �59, �22 143

Kanwisher et al., 1997 Face vs. object passive viewing 40, �55, �10 1000

Gauthier et al., 1999 Face vs. object passive viewing 41, �55, �10 990

O’Craven & Kanwisher, 2000 Perceiving and imaging face vs. houses 37, �36, �18 2187

Joseph & Gathers, 2002 Picture detection task (among faces, natural
and man-made objects, and fixations)

42, �45, �27 346

Druzgal & D’Esposito, 2003 Face vs. object passive viewing 820

Rhodes et al., 2004 Face vs. object passive viewing 44, �48, �20 1422

Grill-Spector et al., 2004 Face vs. object passive viewing 39, �40, �16

Lehmann et al., 2004 Face vs. chair passive viewing 44, �48, �20 117

Grill-Spector et al., 2006 Face vs. object passive viewing 35, �52, �13
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consistent with Rhodes et al. (2004) and Grill-Spector
et al. (2004). Note that Rhodes et al. used FFA activation
as measured in an initial passive viewing session as
the denominator, rather than using the FFA activation
for faces measured during the experimental tasks (e.g.,
individuation for the trained novices, Experiment 1 or
an average of passive viewing and individuation for the
untrained novices in Experiment 1 and the experts in
Experiment 2). In our case, because there was no
systematic size difference for face activation across the
three runs, we averaged the FFA–FFA overlap across
all three comparisons (FFAr1–FFAr2, FFAr2–FFAr3, and
FFAr1–FFAr3).

In order to compare the effect of different denomi-
nators on ROI overlap, we calculated six plausible varia-
tions of the overlap index by fixing the numerator as the
number of overlapping voxels for ROIa and ROIb, and

then varying the denominator from formula a to f (see
Methods). Figure 5A summarizes the mean results of the
six different within-session FFA–FFA and FFA–FGA over-
lap comparisons. Using the p = .05 threshold level, we
find significant FFA–FFA and FFA–FGA overlap differ-
ences [for a, t(9) = 2.81, p < .05; for b, t(9) = �4.66,
p < .001], but only when overlap is calculated with a
single ROI as the overlap denominator (the two leftmost
comparisons in Figure 5). However, there were no
significant overlap differences for the remaining overlap
formulae [for c and d, t(9) = �0.19, p = .84; for e, t(9) =
�0.03, p = .97; for f, t(9) = �1.7, p = .12], in which the
denominator included both ROIs. Thus, at least using
p = .05 for the threshold level, we replicated previous
results, finding a significant overlap difference between
FFA–FFA and FFA and another class of objects. However,
it is important to note that this difference is obtained

Figure 5. The six chosen ROI overlap indices (various denominators) calculated either across- or within-sessions (across runs) for FFA–FFA

and FFA–FGA (‘‘fusiform Greeble area’’) overlap analyses, with three levels of statistical thresholds ( p = .01, .05, and .10, all corrected), using

our fMRI data from 10 subjects. The upper row (A) represents the within-session, the lower row (B) the cross-session ROI overlap comparison.
Across the two rows, both the first and second panels use a single ROI as the denominator of ROI overlap index and reveal significant FFA–FFA

and FFA–FGA overlap differences (e.g., consistent with the face specificity prediction). Using denominators that take both ROI sizes into

account (panels 3–6), we find no systematic differences in FFA–FGA versus FFA–FFA overlap. *p < .05, **p < .001.
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only when we rely on a formula that uses only a single
ROI as the denominator. In contrast, overlap formulae
that take both ROIs into account reveal no significant
differences between the overlap of two face localizers
and the overlap of faces and Greebles.

In Figure 5A, the FFA–FFA overlap was calculated for
three separate run comparisons, FFAr1–FFAr2, FFAr2–
FFAr3, and FFAr1–FFAr3, and then averaged together. How-
ever, due to the limited number of Greeble-selective
voxels in each run, the FFA–FGA overlap was averaged
across three runs within a single session, FFAr123–FGAr123,
and then compared. Because this was not a direct com-
parison (across-run in the FFA–FFA comparison vs. a
combined-run comparison in FFA–FGA overlap), we also
calculated the overlap comparison for the five Greeble
experts over three scanning sessions so that across-
session FFA–FFA and FFA–FGA overlap comparisons,
calculated identically for both, were possible. These
across-session results are shown in Figure 5B. Again for
a p = .05 threshold, we observed a significant FFA–FFA
and FFA–FGA overlap difference [for formula a, t(14) =
2.58, p = .02; for formula b, t(14) = �2.64, p = .019] in
the first two columns. For the remaining four overlap
comparisons, in which both ROIs were taken into ac-
count in the denominator, there were no significant
differences between the overlap for face areas and the
overlap for face and Greeble areas [for formulae c and d,
t(14) = 1.26, p = .22; for e, t(14) = 1.31, p = .20; for f,
t(14) = �0.4, p = .96].2 A comparison of Figure 5A
and B shows highly similar FFA–FFA and FFA–FGA over-
lap results for each overlap formula, regardless of how
the sessions were combined. This demonstrates a con-
sistency in the results across runs and sessions in our
study. Together, these data strongly support the pro-
posal that ROI overlap varies significantly across differ-
ent calculation methods using different denominators.

It is worth pointing out that in Figure 5, the FFA–FFA
versus FFA–FGA overlap comparisons for two formulae
(a and b) only differed in the FFA–FGA comparison [21%
in a vs. 79% in b, t(9) = �0.68, p < .0001 for the across-
run analysis; 18% in a vs. 60% in b, t(14) = �4.41, p =
.0005 for the across-session analysis], but did not differ
substantially in the FFA–FFA overlap [41% in a vs. 35%
in b, t(9) = 1.81, p = .10 for the across-run analysis;
40% in a vs. 38% in b, t(14) = 0.23, p = .81 for the
across-session analysis]. This suggests a reverse pattern
(e.g., ‘‘FFA–FFA > FFA–FGA’’ in a, vs. ‘‘FFA–FFA < FFA–
FGA’’ in b) by merely changing the overlap denom-
inator from the larger FFA in a to the smaller FGA
in b. Another minor point of interest is, similar to the
point raised in Figure 1, whether the denominator size
alone can explain the current ROI overlap comparison
pattern. The observation that the mean denominator
sizes (for the FFA–FGA overlap in both across-run and
across-session analyses) in formulae a (774 mm3) and b
(212 mm3) were indeed smaller than in c (986 mm3) and
in e (828 mm3) seems to support the importance of

denominator size per se in explaining the pattern of
overlap comparison across formula, despite the case of
formula d (493 mm3), whose denominator size was in
between those of formulae a and b, but with a similar
overlap comparison pattern as with formulae c and e.
More complicated, the results of formula b also signify
the problem in changing the denominator across FFA–
FFA and FFA–FGA comparisons (because the FFA was
the denominator for calculating FFA–FFA overlap, and
the FGA was the denominator for calculating FFA–FGA
overlap), whose significant size differences surely con-
tributed to the final significant overlap difference [mean
FFA vs. FGA: 834 vs. 230 mm3, t(9) = 3.23, p = .01 for
the across-run analysis; 714 vs. 194 mm3, t(14) = 3.23,
p = .005 for the across-session analysis]. Therefore,
inspections of formulae (a, b) versus (c, d, e, and f ) in
Figure 5 suggest that it is the combination of several
factors, including at least the denominator size and the
use of the identical denominator for the baseline and
category-selective overlap calculations, that affects the
final overlap comparison results.

Effects of Statistical Threshold
on Overlap Analysis

Because the definition of ROI overlap is based on the
ROI sizes and their area of overlap, all of which are
determined by the given statistical threshold in the
fMRI data analysis procedure (e.g., face–object contrast
after the general linear model), overlap analysis is
tremendously dependent on the statistical threshold.
So far, we have only discussed the results for a thresh-
old of p = .05, corrected, a common threshold used in
many studies (Downing et al., 2006; Hasson, Nir, Levy,
Fuhrmann, & Malach, 2004). To qualify Rhodes et al.’s
(2004) claim that the conservative threshold can, in
part, explain low ROI overlap calculations (<30%),
and, more importantly, to address how statistical thresh-
old affects the ROI overlap in general, we carried out
two additional overlap analyses using p = .01 and p =
.10, both corrected. These data are shown alongside
the p = .05 bars in Figure 5. The general pattern is
that for a threshold of p = .01, the overlap value slightly
decreases, and for a threshold of p = .10, the overlap
value increases, when compared to the original p =
.05 analysis. Examined individually, a threshold increase
(from p = .05 to p = .01) yielded three significant FFA–
FFA and FFA–FGA overlap differences in the by-session
analysis: formulae c and d, t(14) = 2.28, p = .038; and
formula e, t(14) = 2.29, p = .037. In contrast, the
threshold decrease (from p = .05 to p = .10) yielded
nonsignificant or marginally significant results for for-
mula a in the by-run analysis [t(9) = 1.62, p = .13], and
formula b in the by-session analyses [t(14) = �1.88,
p = .07]. In order to further examine the interaction
between statistical threshold and overlap formula, we
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ran a 3 ( p = .01, p = .05, and p = .10) 	 6 (the six
formulae presented in the Methods) analysis of variance.
With the mean ROI overlap difference as input, the in-
teraction between statistical threshold and overlap for-
mula was not significant [F(10, 162) = 0.38, MS = .02,
p = .95 for the by-run analysis; F(10, 72) = 0.23, MS =
.01, p = .99 for the by-session analysis], suggesting that
quantitatively, the overall effect of statistical threshold
change did not interact with the formulae chosen (refer
to Figure 5). Taken together, these results suggest that
the overall effect of statistical threshold on the mean
ROI overlap is, indeed, contingent on the statistical
threshold chosen. When examined individually, these
threshold shifts can result in changes in whether an ROI
overlap index passes or fails a significance test. Thus, the
result of the local overlap comparison does depend on
the specific threshold chosen. However, the global ef-
fect of threshold shift on ROI overlap is about the same
across the different overlap formulae, with no significant
interaction found between threshold and the different
overlap formulae.

Lastly, our additional analyses only found partial
support for Rhodes et al.’s (2004) claim that the more
conservative threshold decreases the overlap value (and
a more lenient threshold increases the overlap value).
In our study, such increases or decreases were small
or moderate, and clearly not the only contributing fac-
tor to the overall low overlap values. It is more likely
that the low FFA–FFA overlap reported in their study
(27%) was primarily due to the large FFA chosen as
the denominator, not the conservative statistical criteria
they adopted.

Monte Carlo Simulations

A comprehensive evaluation of the overlap analysis is
not complete without an objective assessment of the
expected overlap range under each overlap formula.
Computing the mean overlap index using various ROI
sizes provides the chance to compare the results from
the fMRI data analysis with those from the simulation.
Also, the simulation serves as an important selection
criterion for determining the ‘‘best’’ overlap formula
for use in the type of study presented here. We define
‘‘best’’ as the formula that is least biased for the com-
parison of two ROIs, regardless of whether the ROI sizes
are quite similar (e.g., FFA–FFA) or largely different
(FFA–FXA, X being any given object category of exper-
tise).3 Here, we used a Monte Carlo simulation to
determine the range of mean expected values under
systematic ROI size variations.4

Figure 6 shows the simulation results of 10,000 iter-
ations for each of the six formulae used in our ROI
overlap comparisons. The mean ROI overlap is repre-
sented along the vertical axis, and the horizontal axis
indicates the size difference between the two virtual

ROIs. To simulate the potential size relationships be-
tween category-selective brain regions, we used 50-unit
increments for ROI1 (ranging from 50 to 1000 units) and
held ROI2 constant at 1000 units. This produced 19 steps,
with the ROI differences becoming systematically smaller
(e.g., 950 to 0) as the simulations progress toward the
right in Figure 6. Three observations are apparent. First,
the overlap index varied by formula when the ROI sizes
were equal (ROI1 and ROI2 = 1000). For formulae a, b,
d, and f (Figure 6A, B, D, and F) it was 50%, for formula c
it was 25% (Figure 6C), and for formula e it was 33%
(Figure 6E). Second, the effect of ROI size differences
on the estimated overlap index differed substantially
across formula, as represented by the slopes of the bar
graphs. For example, when the denominator was a sin-
gle ROI, the overlap index varied substantially with ROI
size difference (Figure 6A and B). Formulae c, d, and e
yielded intermediate slopes (Figure 6C, D, and E), which
showed a plateau at an ROI1 size of 500 units (ROI size
difference of 500). In contrast, formula f was robust to
changes in the size difference, yielding the same mean
overlap (50%) across all ROI size differences (Figure 6F).
Not surprisingly, our empirically established ROI overlap
results fall within the range of values predicted by the
Monte Carlo simulations. For example, in the third panel
of Figure 5, the mean overlap values hovered around
0.20, close to the Monte Carlo simulation result in Fig-
ure 6C. Similar ranges of mean ROI overlap values can
also be found in the fourth panel of Figure 5 (0.2–0.4)
versus Figure 6D (0.2–0.5), the fifth panel of Figure 5
(0.2–0.3) versus Figure 6E (0.2–0.3), and the sixth panel
of Figure 5 (0.3–0.4) versus Figure 6F (
0.5). Figure 6A
and B, in contrast, clearly show a more drastic change in
the overlap index as the size difference varies when a
single ROI is used as the denominator, reflected by a
larger slope of change (compared with c, d, e, and f ).
This variability makes it more difficult to compare the
simulations with real fMRI data.

DISCUSSION

The present study examined whether the functional
properties of category-selective brain regions can be in-
ferred on the basis of the degree to which ROIs overlap.
Under this proposal, we expect a high overlap index
for tasks or object classes that are thought to recruit
common functional systems, for example, the FFA in
perceiving and imagining faces (O’Craven & Kanwisher,
2000), or in passively viewing two sets of faces (Rhodes
et al., 2004). At the same time, we expect a low degree
of overlap for categories or tasks that we believe are
processed by distinct functional systems. Obviously, this
argument relies on the assumption that spatially local-
ized brain regions correspond, at least roughly, to func-
tional mechanisms. Although this logic is widely accepted
in the neuroimaging literature, spatial localization (or
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co-localization) may not entirely address the issue of func-
tional commonalities. For example, as will be discussed
in more detail later, higher-resolution imaging might re-
veal functional separability at a finer level of analysis
(e.g., Grill-Spector, Sayres, & Ress, 2006). As Astafiev
et al. (2004) suggest, a low overlap index may be the re-
sult of using a large, single area as the denominator—
a proposal tested systematically by our current study.

Consistent with Astafiev et al.’s (2004) claims, the re-
sults of our FFA–FFA and FFA–FGA (‘‘fusiform Greeble
area’’) overlap comparisons reveal a clear influence of
the choice of denominator: When a single FFA is used,
the FFA–FFA overlap is significantly larger than the FFA–
FGA overlap (replicating Rhodes et al., 2004). Impor-
tantly, this overlap difference disappeared altogether
when the overlap denominator was a combination of
both ROIs, be it the sum, the union, or the average.
Monte Carlo simulations corroborated this empirical
result, and further revealed that, compared to a single
ROI denominator, when a combination of the two ROIs
was used, the overlap index was much more resistant to

ROI size variations, and the average of two single ROIs as
the denominator was the best among the six formulae
tested in the current context (comparing FFA–FFA and
FFA–FXA overlap), in which within-subject ROI size
variation was a central issue.5

In addition to finding significant changes in the over-
lap index depending on the formula chosen, our re-
sults also address the issue of consistency in the FFA
across tasks. Although both 1�back identity and pas-
sive viewing tasks are commonly used as default FFA
localizer tasks, and some studies have found no signifi-
cant difference between the two tasks (Tong, Nakayama,
Moscovitch, Weinrib, & Kanwisher, 2000), the nature
of passive viewing may still vary within the task con-
text. In the Rhodes et al. (2004) study, participants were
told to ‘‘passively view’’ the stimuli in both the initial
FFA localizer and the ensuing experimental scans with
faces. However, the mean FFA size ratio for the localizer
(FFAlo) was almost half of that in the experimental face
scans (FFApv) (813 mm3 vs. 1440 mm3). Rhodes et al.
suggested that this difference was the result of using

Figure 6. Six simulation

results (over 10,000 iterations

each) of changing the size of

ROI1 in 50-unit steps (from
50 units to 1000 units) shown

along the horizontal axis (ROI2

was kept constant at 1000
units); the vertical axis plots

the mean overlap index. Given

that each different formula has

different asymptote overlap
value (ranging from 25% to

50%) and a different degree of

stability over ROI size changes,

the most consistent overlap
formula is the average of A \
B/A and A \ B/B (F), which

also seems best suited for
comparing FFA–FFA to

FFA–FGA (typically having

different-sized ROIs) in the

current study.
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different stimuli and epoch lengths. In contrast, several
studies have found that the FFA is consistent across ses-
sions and/or experimental block length (Gauthier et al.,
1999; Kanwisher et al., 1997). In our study, we compared
face activation in the same task (1�back identity) across
three runs within a session, or three separate scanning
sessions. Consistent with these early reports, we found
little size variation (mean FFA size: 775 mm3 in FFA1,
780 mm3 in FFA2, and 623 mm3 in FFA3) and a high cor-
relation across three scan sessions [r(14) = .91, p <
.0001], indicating that FFA activation was relatively sta-
ble, at least across sessions, in terms of small center-of-
FFA distance variation (several millimeters). In addition,
we found a proportionate decrease in terms of ROI over-
lap indices as the center-of-FFA distance increased, both
across runs and across sessions (Figure 4). Thus, the
issue of FFA ‘‘consistency’’ depends on how consistency
is defined, either in terms of distance between center-of-
mass Talairach coordinates (relatively small) or in terms
of ROI overlap indices (larger decrements).

Our results are congruent with the majority of the FFA
literature demonstrating the reliable consistency of re-
peated FFA measures. In addition, we are able to explain
what has been an incongruence between overlap mea-
sures and center-distance measures. Despite the ap-
parent disparity between these measures, we found a
systematic relationship between FFA-center distance
and corresponding FFA–FFA overlap. Furthermore, the
correspondence between 
40% FFA–FFA overlap calcu-
lated from the fMRI data, and the 50% overlap calculated
from the Monte Carlo simulation (both from formula f,
which is least resistant to ROI size variations), suggests
that even in a highly consistent region like the FFA, the
expected overlap across runs or sessions is only about
50%. In support of this finding, if we recalculate the
overlap for several studies using formula f, we find sim-
ilar results. The average FFA–FFA overlap for O’Craven
and Kanwisher (2000) is 53%, and for Rhodes et al.
(2004) is 38%. These calculations are similar to our
findings using a 1�back identity task, both across-run
(38%) and across-session (39%). The only higher-than-
expected overlap index for the FFA–FFA was found for
Grill-Spector et al. (2004). Using formula f to recalculate
their data, we find a mean overlap of 72%. Among other
possibilities, this high overlap may be due to differences
in task, or to the small sample size (n = 5) in their study.

It is also important to note that, although our data
were generally consistent with the predictions of the
‘‘perceptual expertise hypothesis’’ (Bukach et al., 2006),
our participants only exhibited behavioral evidence for
Greeble expertise by the third scan (Gauthier et al.,
1999; Gauthier & Tarr, 1997). Thus, it is somewhat sur-
prising that we found no significant difference in the
overlap index for Greebles and faces from the initial
scans onward. This apparent dissociation may be ex-
plained, in part, by previous studies that have shown
that fusiform activity is related to task demands (Rogers,

Hocking, Mechelli, Patterson, & Price, 2003) and high
within-family homogeneity of the stimulus class (Gauthier,
Tarr, et al., 2000; Gauthier et al., 1997). In particular, we
may have failed to find a change in the degree of FFA–
FGA overlap with training because we employed a 1�back
identity task—a task that has been associated with in-
creased focal fusiform activity relative to passive viewing
(Kanwisher et al., 1998). Such task-related activation might
also help account for previous results which show a non-
linear relationship between behavioral measures of ex-
pertise and FFA activity for objects of expertise (e.g., car
experts viewing cars) when using a 1�back identity task
(Gauthier, Skudlarski, et al., 2000). This heightened acti-
vation for an object category in the 1�back task may ex-
plain why we found similar overlap for the FFA–FGA and
FFA–FFA in participants’ first scans, prior to expertise train-
ing. Regardless of one’s preferred explanation, the signif-
icant FFA–FFA and FFA–FGA overlap we observed before
expertise training is certainly not easily explained by cur-
rent instantiations of the face specificity hypothesis.

Last year, two fMRI studies explored the effect of ‘‘ex-
pertise training’’ of novel objects in the whole brain
(Moore, Cohen, & Ranganath, 2006) or in the extrastriate
cortex (Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006).
After training, participants in Moore et al.’s study showed
increased activation in the dorsolateral prefrontal, inferior
parietal, and occipito-temporal cortices. In Op de Beeck
et al.’s study, they found increased activation in the lateral
occipital complex (LOC). Both studies failed to find a sig-
nificant increase in FFA activity after training. A closer
look at the training paradigms for these studies, however,
reveals disparate tasks used in training and scanning. In
previous Greeble training studies (Rossion et al., 2004;
Gauthier et al., 1998), object naming tasks (e.g., what is
this Greeble’s name?) and shape–name verification (Is
this Greeble’s name ‘‘Tezi’’?) were alternated. This al-
ternation of different tasks was intended to increase
the speed of subordinate-level access, a characteristic
of expert-level recognition (Tanaka, 2001). During scans,
a simple delayed-matching or passive-viewing task was
typically used (Gauthier et al., 1999). In contrast, in the
Moore study, simultaneous match-to-sample, delayed rec-
ognition, family placement, and family discrimination
tasks were used during training, and a typical working
memory task (cue–delay–probe) was used during scan. In
the Op de Beeck study, discrimination learning was used
during training, and a demanding color-change detection
task was used during the scan. Therefore, the task differ-
ences and, more importantly, the disparate underlying
representations the participants may have acquired in
these studies, may explain their failure to find significantly
increased FFA activity after training. Such conjecture,
however, calls for future studies that systematically com-
pare various training paradigms on (a) specific ‘‘aspects
of expertise’’ acquired during training, (b) the different
neural manifestations underlying training process, and (c)
the different patterns of neuronal reorganization.
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Finally, as mentioned earlier, a recent discussion of high-
resolution fMRI studies of the FFA (Baker, Hutchison,
& Kanwisher, 2007; Grill-Spector, Sayres, & Ress, 2007;
Simmons, Bellgowan, & Martin, 2007; Grill-Spector et al.,
2006) further reinforces our arguments regarding the
importance of formula definition for the particular re-
sults and ensuing conclusions. Grill-Spector et al. (2006)
scanned five novices and used [Preferred � Nonpre-
ferred] / [Preferred + |Nonpreferred|] as the category
selectivity index. They found evidence, at 1-mm3 voxel res-
olution, for category-selective voxels to faces, animals,
cars, and even sculptures. However, as Baker et al. (2007)
and Simmons et al. (2007) pointed out, the analysis
method used by Grill-Spector et al. was flawed due to
the voxel selection procedure (dependent vs. indepen-
dent) and the lack of a baseline adjustment. Especially rel-
evant to our study is the commentary of Simmons et al.,
in which they argue that using the absolute value of the
nonpreferred condition in the selectivity index can in-
flate the voxel selectivity for other categories within the
FFA. Sidestepping the issue of whether the FFA is homo-
geneously face selective or intermingled with other non-
face-selective voxels (Grill-Spector et al., 2007; Peelen &
Downing, 2005b; Schwarzlose, Baker, & Kanwisher,
2005), our study highlights the importance of choosing
a sound index and verifiable rationale, and then cau-
tiously interpreting the results.

To conclude, an overlap index, when appropriately
used, can provide useful information and complement
other analyses. However, it is not a suitable measure to
assess category specificity on its own, as demonstrated
in our study. We found that changing the denominator
using six perfectly plausible alternatives significantly
changed the results of the overlap comparison. These
data suggest that finding a significant difference between
FFA–FFA overlap and FFA–FXA (X being any given
category of domain experts) overlap may be largely a
result of choosing a denominator that biases the results
in this direction, rather than reflecting a robust differ-
ence between face areas and areas of expertise. Further-
more, using ROI overlap comparisons to test the face
specificity and perceptual expertise hypotheses is not
ideal, in particular, because we found equivalent FFA–
FFA and FFA–FXA overlap even in novices. In addition,
the mean overlap value for different face measures,
using the least-biased overlap formula, was only about
50%. Therefore, it is our contention that different models
of FFA function, including face specificity (McKone
& Kanwisher, 2005; Grill-Spector et al., 2004; Spiridon &
Kanwisher, 2002; Kanwisher, 2000), distributed (O’Toole,
Jiang, Abdi, & Haxby, 2005; Hanson, Matsuka, & Haxby,
2004; Haxby et al., 2001) and perceptual expertise ac-
counts (Gauthier & Bukach, 2007; Bukach et al., 2006;
Tarr & Gauthier, 2000), may be better served by focusing
more on why certain stimuli, tasks, analysis methods are
chosen, and how these particular concatenations do or
do not give rise to category selectivity.
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Notes

1. Instead of using a functionally defined FFA as the unit of
the face-selective cluster, Rhodes et al. (2004) actually used an
anatomical approach, which summed the total activated voxels
in the FG as the unit of their overlap analysis. The anatomical
approach in defining FFA is seldom used in the literature, and
may miss some FFA voxels that extend into adjacent gyri or
sulci. Despite this, in order to better compare our results with
those of Rhodes et al., we drew the face-selective voxels in FG
anatomically for one participant and found that, although the
number of individual voxels included in the FFA increased,
the overall pattern of the overlap comparisons was relatively
unchanged.
2. Because of the small sample size (n = 5 experts) in this
cross-session overlap comparison, the expected differences be-
tween mean FFA–FFA and FFA–FGA overlap with a single ROI as
denominator were not significant [FFAs1 \ FFAs2)/FFAs1 = 0.595,
(FFAs1 \ FGAs1)/FFAs1 = 0.212, (FFAs2 \ FFAs3)/FFAs2 =
0.204, (FFAs2 \ FGAs2)/FFAs2 = 0.111; (FFAs3 \ FFAs1)/FFAs3 =
0.376, (FFAs3 \ FGAs3)/FFAs3 = 0.216, all p > .05]. It was sig-
nificant only after combining these three across-session com-
parisons [t(14) = 2.56, p < .02], suggesting an advantage for
combining the three across-session comparisons. The same pat-
tern holds for the remaining five overlap formulae.
3. We have to emphasize that the Monte Carlo simulation,
under the current context, was used to test which overlap
index was best when comparing the relative stability across
various ROI size variations. The point here is whether size
variation is an issue; when it is not, many studies have used
the sum of the two ROIs as the denominator (e.g., the high-
resolution FFA study by Grill-Spector et al., 2006). They de-
fined the selectivity index as (Preferred � Nonpreferred)/
(Preferred + |Nonpreferred|). Although there may not be a
single overlap index suitable for all situations, our simulation
reveals the robustness of each formula in the present context.
4. Matlab code for Monte Carlo simulations is provided below:

for j = 1:20
a( j) = 1000; % cluster 1
b( j) = 50*j; % cluster 2

tot( j) = a( j) + b( j);

for i = 1:10,000 % number of iterations
v = zeros(1,tot( j));
r = randperm(tot( j));
v(r(1:a( j))) = v(r(1:a( j))) + 1;
r = randperm(tot( j));
v(r(1:b( j))) = v(r(1:b( j))) + 1;
ovp(i) = length(find(v==2));

end
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%computing mean ROI overlaps in 6 formula
mean_ovp1( j) = mean(ovp(i))/a( j);
mean_ovp2( j) = mean(ovp(i))/b( j);
mean_ovp3( j) = mean(ovp(i))/tot( j);
mean_ovp4( j) = mean(ovp(i))/(tot( j)/2);
mean_ovp5( j) = mean(ovp(i))/(tot( j) � mean(ovp( j)));
mean_ovp6( j) = (mean(ovp(i))/a( j)+mean(ovp(i))/b( j))/2;

end

5. With the recommended formula of d0 ¼ ½Mpreferred � Mnonpreferred �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

preferred
þ s2

nonpreferred

2

q

(Afraz, Kiani, & Esteky, 2006), we also adopted and recalculated

the overlap index with the formula
½ROIa \ ROIb�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ROI2a þ ROI2
b

2

q (the standard

deviation in the denominator was not available because each ROI
had only the size information here, unlike the case of d0 with
four responses: faces, objects, sculptures, and animals, for each
voxel). The results of the FFA–FFA versus FFA–FGA overlap is
0.291 versus 0.363, t(9) = 0.64, p = .53 for across-run, and 0.332
versus 0.397, t(14) = �0.696, p = .497 for across-session analysis,
consistent with the results from formulae c, d, e, and f.
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