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Chapter 16: Bayesian Inference and Human Inference

In this chapter you will learn about Bayes theorem, a rational procedure for revising
beliefs. You will learn how to set up a Web-based experiment that tests if the theorem is
descriptive of human inference, and you will also learn how to analyze the data from such an
experiment.

If you toss a coin, what is the probability that it will be heads? What is the probability that
a major league baseball player will hit more than 68 home runs in the next baseball season?

The first question dealing with tossing a coin refers to an experiment that can be repeated.
One assumes that the coin has no memory, and that it will behave in the same way from day to
day and year to year. One can develop and test a physical theory that the two sides of the coin are
equally likely to fall facing up, independent of history and the actions of other coins. Evidence
from the past can be used to infer the probability of what will happen in the future. The second
question (home runs) refers to a unique event that will either happen or will not happen, and there
is no way to calculate a proportion that is clearly valid. One might look at what other ball players
have done and can ask if those who are likely to accomplish the feat seem healthy, but players
change, the conditions (e.g., pitchers) change, and it is never really the same experiment. This
type of situation is sometimes referred to as one of uncertainty, and the term subjective
probability is sometimes used to refer to the psychological strength of belief that the event will
happen.

Nevertheless, people are willing to use the same term, probability, to express both types of
ideas. People are willing to gamble on both types of predictions—on repeatable, mechanical
games of chance (like dice, cards, and roulette) and on unique events (like horse races and

sporting contests). In fact, people are even willing to use the same language after something has
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happened (a murder, for example) to discuss the "probability” that a particular event occurred
(e.g., this defendant committed the crime).

The Rev. Thomas Bayes (1702-1761) derived a theorem for inference from the
mathematics of probability. Philosophers recognized that this theorem could be interpreted as a
calculus for rational thought. Psychologists have investigated if Bayes theorem also describes
how people form and revise their beliefs (Birnbaum, 1983; Birnbaum & Mellers, 1983; Edwards,
1968; Gigerenzer & Hoffrage, 1995; Koehler, 1996; Novemsky & Kronzon, 1999; Shanteau,
1975a; Troutman & Shanteau, 1977; Wallsten, 1972).

A. Bayes Theorem

To illustrate how Bayes theorem works, it helps to work through an example. Suppose
there is a disease that infects one person in 1000, completely at random. Suppose also that there
is a blood test for the disease that yields a “positive” test result in 99.5% of cases of the disease
and gives a false “positive” in only 0.5% of people who do not have the disease. Suppose a
person in this study tests “positive,” what is the probability that he or she has the disease? Think
for a moment and see if you can intuitively arrive at a judgment of the likelihood that a person
who tests “positive” is actually sick with the disease in this case. The solution, according to Bayes
theorem, may surprise you.

Before you read on, you should load the experiment, Bayes.htm, from the CD, and participate
as a judge in the experiment on the Cab Problem. This experiment was constructed with the help
of factorWiz. Later in this chapter, you will learn to analyze data from this experiment and
compare them with the theory of Bayes.

Suppose there are two hypotheses, H and not-H (denoted H’). In the example above, they are
hypothesis that the person is sick with the disease (H) and the complementary hypothesis (H’) that

the person does not have the disease. Let D refer to the datum that is relevant to the hypotheses.
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In the example, D would refer to a “positive” test result, and D’ would be a “negative” result from
the blood test.

The problem stated that 1 in 1000 have the disease, so P(H) = .001; i.e., the prior probability
(before we test the blood) that a person has the disease is .001, and the probability that the person
is not sick with the disease, is .999 = P(H’) =1 - P(H).

The problem also gave information about the diagnostic value of the test. The conditional
probability that a person will test “positive” given that person has the disease is written as
P(“positive”| H) = .995, and the conditional probability that a person will test “positive” given he
or she is not sick is P(“positive”| H) = .005. These two probabilities are also called the HIT
RATE and FALSE ALARM RATE in signal detection, and they are also known as power and
significance (o) in statistics. We need to calculate P(H| D), the probability that a person is sick,
given the test was “positive.” This calculation is known as an inference.

The conditional probability of A given B is not the same as the conditional probability of B
given A. For example, the probability that someone is male given he or she is a member of the
U.S. senate is quite high because there are few women in the senate. However, the probability
that a person is a member of the U.S. senate given that person is male is quite low, since there are

so few senators and so many males. Conditional probability is defined as follows:

P(A[B) = % (16.1)
P(BIA) =% (16.2)

So, if A is the set of U.S. Senators (of which there are 100), and B is the set of males (of
which there are billions), we see that the probability of A given B will be quite small, but the

probability of B given A can be quite high.
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The situation is as follows: we know P(H), P(D|H) and P(D|H"), and we want to calculate
P(H|D). From the definition of conditional probability:

P(HND)

P(H|D)= P(D)

(16.3)

Also, from the definition of conditional probability, P(H n D)= P(D|H)P(H). In addition, D

can happen in two mutually exclusive ways, either with H or without it, so

P(D)=P(DnH)+P(DnH"). Each of these conjunctions can be written in terms of

conditionals, so by substitution the formula is as follows:

P(D[H)P(H)

P(HID) = P(D|H)P(H)+P(D|H)P(H")

(16.4)

Equation 16.4 is known as Bayes Theorem. Substituting the values given for the blood test
problem yields the following result:

(.995)(.001) ~
(.995)(.001) + (.005)(.999)

P(sick |" positive™) =

Does this result surprise you? Think of it this way: Among 1000 people, there is only one sick
person. If all 1000 were given the test, the test would probably give a “positive” test result to that
one person, and it would also give a “positive” test result to about five others (of the 999 healthy
people 0.5% should test positive). Thus, of the six people who test “positive,” only one is really
sick, so the probability of being sick, given a “positive” test result, is only about one in six.
Another way to look at the .166 is that it is 166 times bigger than the probability of being sick
given no information about the person (.001), so there has indeed been considerable revision of
opinion given the positive test.
B. Bayesian Calculator

The calculations of Equation 16.4 can be facilitated by the Bayesian calculator included

on your CD. You can load it from the index of examples for this chapter. To use the calculator,
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first you need to define H and D. Then identify and type in P(H), P(D|H), P(D|H’) into the first
column. (Leave the second column and the last row value blank). Press the calculate button, and
the answer, P(H|D), will appear in the last row. Test the calculator with the disease problem
given above. Instructions are also given in the Web page for the calculator.

If you view the page source of the calculator, you will see that the first half uses HTML
forms used to define the table, and the second half is a JavaScript program that does the

calculations. JavaScript will be explained Chapters 17-19. The appearance of the calculator is

shown in Figure 16.1. |Insert Figure 16.1 about here|
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Figure 16.1. The Bayesian Calculator. This calculator is written in JavaScript, which will be

explained in Chapters 17-18. Rev. Thomas Bayes is pictured on the calculator.
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C. The Cab Problem

The experiment on the Cab problem is based on a problem used by Tversky and
Kahneman (1982; see also Kahneman & Tversky, 1973). Instructions for the Cab problem on
your CD read (in part) as follows:

“A cab was involved in a hit-and-run accident at night. There are two cab companies in the
city, the Blue and Green. Your task is to judge (or estimate) the probability that the cab in the
accident was a Blue cab. You will be given information about the percentage of accidents at night
that were caused by Blue cabs, and the testimony of a witness who saw the accident.

“The percentage of night-time accidents involving Blue cabs is based on the previous 2
years in the city. In different cities, this percentage was either 15%, 30%, 70%, or 85%. The rest
of night-time accidents involved Green cabs.

“Witnesses were tested for their ability to identify colors at night. The witnesses were
presented 100 Blue and 100 Green cabs to identify at night.

“The MEDIUM witness correctly identified 60% of the cabs of each color, calling Green
cabs "Blue™ 40% of the time and calling Blue cabs "Green" 40% of the time.

“The HIGH witness correctly identified 80% of each color, calling Blue cabs "Green" or
Green cabs "Blue" on 20% of the tests. ”

When you have completed the task, use the calculator to find the Bayesian calculations
assuming that the prior probabilities are P(H) = .15, .30, .70, or .85, where H = the hypothesis that
the cab was Blue. Suppose the Medium credibility witness has P(“B”|H) = .6 and P(“G”|H’) = .4;
and suppose the High credibility witness has P(“B”|H) = .8 and P(“B”|H’) = .2. For example, if
15% of accidents involve Blue cabs and the High credibility witness says the cab was “Green,”
the Bayesian probability that it was a Blue cab is only .04. The datum that the witness said the cab

was “Green” tends to exonerate the Blue cab. To find that value, realize that the probability that
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the witness would say “Green” given the cab was Blue is only .2 and the probability that the
witness would say “Green” given it was Green is .8. In the calculator, enter .15 for P(H), .2 for
P(D|H) and .8 for P(D|H’).

Suppose there are 15% Blue cabs but the High credibility witness said “Blue.” In this
case, the Posterior Probability (Probability it was Blue given witness said “Blue”) is .413.

There are additional complications to the Bayesian solution to the cab problem. One
involves the extrapolation of the witness’s performance during the test to the conditions on the
night of the accident (Birnbaum, 1983). Another involves the inference from the percentage of
accidents caused by Blue cabs in some period to the prior probability that the cab was Blue. Ina
later section, a more general, subjective Bayesian model will be presented that allows such
complications.

D. Extract the Data for the Cab Problem and Find Means

The first step is to filter the data. In Excel, open the data file, clean.xls, from the CD.

Type variable names in the first row, if you have not done so already. Click in Cell Al, and select
Filter:Autofilter from the Data menu. Then click the drop down selection arrow in the Al and
select bayes. Copy the data to a new file, and save the file as an Excel Workbook with the name
bayes.xls. (A completed file of bayes.xls is included on the CD to allow you to check your work.)

The variable names are included at the end of the bayes data, so cut them and copy them
in the first row. To make the variable names, take the experiment and type in the stimuli rather
than answers. Then, in NotePad, replace the date, time, and sex with the names of these variables.

The second step is to remove blank lines and multiple submissions from the data. Use
conditional formatting to check for responses that are out of bounds (e.g., negative numbers or

values above 100. The techniques for conditional formatting are described in Chapter 12. The

resulting data file is shown in Figure 16.2. [Insert Figure 16.2 about here|
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To find means, click in the row after the last row of data in Column H, and click Insert:
function: Average to find the mean judgment of probability for the case of 15% Blue cabs have
accidents at night and a High credibility witness says that the cab was “Green.” Then use
AutoFill to find the other column means, using the technique described in previous chapters.

The third step is to use Copy and Paste Special to copy the means to a new worksheet in
the same workbook. Be sure to keep the means linked so that any change in the data will be
reflected in the rest of the workbook. Then cut and paste to arrange the means in matrix form.
This process was also described in previous chapters. Next, add labels for the rows and columns.

The matrix of means is shown in Figure 16.3.

lInsert Figure 16.3 about here|.
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Figure 16.2. Appearance of data in file, bayes.xIs.
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Figure 16.3. Mean judgments of the probability (expressed as a percentage) that the cab was

Blue, given the Base rate (of blue cabs involved in accidents at night) and the testimony of a

witness (who said the cab was either “Blue” or “Green.”) H = high credibility witness; M =

medium credibility witness.
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E. Graph the Data

To graph the data, select Cells A2:F6, then select Chart from the Insert menu. From the
Chart wizard, choose XY scatter, with data points connected by lines. In the second step of the
chart wizard, specify that the data are in columns (that will plot the data as a function of the prior
probability, or base rate, of Blue cabs). After suitable labels have been added for the axes, and

adjustments have been made in the fonts, marker styles, and other features of the graph, the graph

appears as in Figure 16.4. |Insert Figure 16.4 about here.|

Clearly, people use both the base rate and the witness information. The spread between
curves represents the effect of the witness testimony, and the slopes of the curves represent the
effect of the base rate. Research on the “base rate fallacy” contended that people do not attend to
base rates (Kahneman & Tversky, 1973), based on a nonsignificant result in a between-subjects
design. If people did not attend to the base rate, the curves in Figure 16.4 would haveslopes of
zero; i.e., they would be flat. However, Figure 16.4 shows that people do attend to base rate, even
in the cab problem, when base rates are manipulated within-subjects. As noted in Chapter 9, it
can be tricky to compare data between groups of subjects who judge different stimuli. Birnbaum
and Mellers (1983) studied the same Bayesian problem within- and between-subjects and found
quite different results. The data in Figure 16.4 are within-subjects, and they show that people
utilize the base rate.

Note that the curve for no witness is steeper than the other curves, and even crosses over
two of the other curves. As you will learn in a later section, this crossover is not consistent with
additive models (Novemsky & Kronzon, 1999), including a subjective version of Bayes theorem
(Wallsten, 1972). Instead, the crossover is indicative of an averaging model. To understand how
the data differ from Bayesian theory, you will graph predictions for Bayes theorem.

F. Compute Bayes Theorem
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To construct predictions for Bayes Theorem, type in the base rates, .15, .3, .7, and .85 in
Cells H3:H6 of the worksheet with the matrix of means. Select those cells, and type in the name
BR (for Base rate) in the name box, and hit enter. Then type in Cells 12:M2 the values of P(D|H)
=.2,.4,.5, .6, and .8 for the H witness who says “G”, for M witness who says “G”, no witness, M
witness who says “B”, and H witness who says “B.” Select all cells in 12:M2 and type PDGH in
the Name Box (Probability of the Datum Given the Hypothesis), then hit enter. Next, in Cells
11:M1 type the values of P(D|H") = .8, .6, .5, .4, and .2; name them PDGNH (for Probability of the
Datum Given Not the Hypothesis). In Cell 13, type the following expression (Bayes Theorem):

=(PDGH*BR)/(PDGH*BR+PDGNH*(1-BR))
Next hit enter, and the value .042 will appear in Cell 13. Next, click the mouse pointer in the
lower right corner of cell I3 until you see the AutoFill “+”. Drag down to fill in the first column,
and while the column is selected, drag to the right to AutoFill the matrix. If you did everything
right, the matrix will appear as in Figure 16.5. If you have a problem, check to see the names you
gave the variables, and check the expression typed in Cell 13 very carefully. You can undo your
most recent steps with the Undo function (Edit menu); so when you catch an error, keep selecting

Undo until you have removed the error. Then retype the correct expressions.

lInsert Figure 16.5 about here|
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Figure 16.4. Figure of the mean judgments for the Cab Problem. Judgments of the
P(“Blue”|witness testimony) are plotted as a function of the prior probability of Blue, with a

separate curve for each level of the witness testimony.
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G. Graph Predictions of Bayes Theorem

The next step is to plot the predictions in the same manner as was done for the data. The

predictions are shown in Figure 16.6. |Insert Figure 16.6 about here,| The predictions, shown in

Figure 16.6 can be compared to the data shown in Figure 16.4. This comparison shows that
judgments are “conservative” relative to Bayes Theorem. If 85% of night time accidents are
caused by Blue cabs and the High witness says the cab was “Blue”, Bayes Theorem predicts a
value of .96, but the mean judgment is only 78% (.78). Only 7 of 153 people gave responses
greater than .95 for this case. Probabilities predicted to be close to zero (when P(B) = .15 and the
High witness said “Green”) are also regressed toward .5. The Bayesian prediction is .04 and the
mean response is 31.6% (.32). This failure to give judgments as extreme as those calculated by
Bayes Theorem was described as “conservatism” in early literature, reviewed by Edwards (1968).
Another aspect of the data can be seen in the following comparions. When the base rate is
.85 and the High witness says “Green,” the prediction is .58; when the base rate is .15 and the H
witness says “Blue,” the prediction is .41; Bayes theorem says the .15 base rate outweighs a High
credibility (.8) source. However, the mean judgments in these two cases have the opposite
relation (48% to 53%). This pattern might be indicative of underweighting of base rate
information, a less extreme form of the type of base rate neglect argued for by Tversky and

Kahneman (1982).
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Figure 16.5. Bayesian calculations. Each entry is Excel’s calculation according to Bayes
Theorem (the expression typed in Cell 13, shown in the formula line). Check these calculations

with the Bayesian Calculator.
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Figure 16.6. Predictions of Bayes Theorem, assuming that P(B) are the values for the previous

two years and that P(D|H) and P(D|H’) are the same as the values in the previous two years. The

comparison of predictions like these and data as shown in Figure 16.4 led to the conclusion that

people are “conservative” relative to Bayes Theorem. In other words, people deviate less from .5

than they are predicted to do by use of these values.
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H. Subjective Bayesian Theory

Perhaps people use Bayesian reasoning, but they do not assign their subjective priors to
the values given in the problem for Blue cabs involved in accidents at night. In addition, they
may use different subjective values for the hit rate and false alarm rates of the witnesses from
those specified in the problem. Indeed, the test used an equal number of Blue and Green cabs, but
on the night of the accident, the witness may have been aware of the base rate and taken that into
account. Wallsten (1972) suggested such a subjective version of the Bayesian model. A
monotonic transformation converts the subjective Bayesian model into an additive model
(Birnbaum & Mellers, 1983; Novemsky & Kronzon, 1999).

We can represent a Bayesian process with subjective values by using the equation of
Bayes Theorem and solving for the values of the evidence. To do this, multiply the predictions by
100 (to express them as percentages, comparable to the data), and take the difference between
data and predictions. Next, use the solver to minimize the sum of squared differences between
data and predictions. In Cells A9:F14 construct the same matrix as in the previous analysis,
except multiply each entry by 100. Next, click in Cell G15 (any convenient cell would do), and
from the Insert menu, choose Function. Select SUMXMY2, the function that computes the sum
of squared differences between two arrays. Select the data for the first array (B3:F6). Then

specify the predictions for the second array (B11:F14). The sum of squared differences is 6334.4.

This step is shown in Figure 16.7. [Insert Figure 16.7 about here)
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Figure 16.7. Predictions and Data. The selected cell shows the sum of squared differences prior

to use of the Solver.
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Figure 16.8. Solution to the Subjective Bayesian Theory, after the Solver has done its work. Note

03/28/16

20

that the subjective values of the priors are .26 to .49. Note also the contrast between the

subjective values of the hit and false alarm rates and the objective values in Figure 16.7.
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Figure 16.9. Graph of the Subjective Bayesian Theory. Although these predictions are closer to

the data than the previous predictions, they do not explain the curve for no witness.
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The next step is to select Solver from the Tools menu. Select Cell G15 as the target cell;
choose to Minimize (click the radio button next to Min); click in the box for By changing cells and
select the prior probabilities, hit and false alarm rates (i.e., Cells A11:A14 and B9:F10). After the
Solver has worked, the cells change and the sum of squared differences changes, as shown in
Figure 16.8. The new predictions, shown in Figure 16.9, are closer to the data, but still do not

predict the crossover of the dashed curve, representing judgments when there was no witness.

lInsert Figure 16.8-16.9 about here|

I. Averaging model of Source Credibility

Another theory is that people aggregate probabilistic information by an averaging process,
rather than by Bayes theorem in either the objective, subjective, or additive form (Anderson,
1974; Shanteau, 1975a; Birnbaum & Mellers, 1983). An averaging model can be written as

follows:

R =0 (16.5)

where R is the subjective impression of probability, w; and s; are the weight and scale value of
source of information i, and wp and sp are the weight and scale value of the initial impression.
The base rate information should have a single weight and scale values that depend on the
percentage of Blue cabs in accidents at night. The scale value and weight of the sources depend
on the hit rates and false alarm rates of the sources (Birnbaum & Mellers, 1983). The greater the
difference between hit rate and false alarm rate, the greater the weight. The scale value depends
on whether the source said the cab was “Blue” or “Green” and the tendency of the witness (bias)
to say cabs are “Blue” or “Green” (the sum of hit rate and false alarm rate, which was constant in

this study). When no witness is presented, the weight of the witness is zero. The averaging
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model predicts that the effect of the base rate is greater when there is no witness because the
weight of the witness drops out of the denominator, increasing the relative weight of the base rate.

You can also use Excel to fit this theory. Figure 16.10 shows the spreadsheet set up with
weights and scale values. Note that the equations in the Cells are different, depending on whether
the source said “Green”, “no witness”, or “Blue.” The variable names assigned in Excel are wy
=W _0; sp = S_0, the weight of a source is W_S. The scale value of “Green” is S_G, the scale
value of “Blue” is S_B, scale value of the base rate is S_BR, and the weight of the base rate is
W_B. The expression when the source says “Green” is
=100*(W_0*S_0+W_B*S_BR+W_S*S_G)/(W_0+W_B+W_5S)
when the source says “Blue”, the expression is the same, except the scale value of S_B is
substituted, as follows:
=100*(W_0*S_0+W_B*S_BR+W_S*S B)/(W_0+W_B+W_S)

When there is no witness, the weight of W_S is set to zero, so the expression simplifies as
follows:
=100*(W_0*S_0+W_B*S BR)/(W_0+W_B)

Type in these expressions, and use AutoFill again to compute the predictions in each
respective sub-portion of the matrix. Next, compute the sum of squared differences between the
data and the predictions, as before. The initial values of the parameters are set as follows: the
weights are all set to 1, scale values of the prior probabilities are set to their objective values, S_B

issetto.8and S_Gissetto.2. Based on these initial estimates, the predictions are as shown in

Figure 16.10. |Insert Figure 16.10 about here)

Next, use the Solver to find the best-fit solution to the averaging model. The sum of

squared discrepancies between data and theory is only 22.96 for this model, which is much better
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fit than for the Subjective Bayesian model. The solution is shown in Figure 16.11, and the

predictions are graphed in Figure 16.12. |Insert Figures 16.11 and 16.12 about here |

The averaging model provides a better fit to the data than either version of the Bayesian
model. Apparently, people combine information by averaging the prior estimate with the
evidence of the witness. When there is no witness, the relative weight of the prior information is
greater than when there is a witness. This change in relative impact of information is evidence
against the additive models and the subjective Bayesian models as well.

These results for the Cab Problem agree with the results and theory of Birnbaum and
Mellers (1983) and Birnbaum and Stegner (1979). Birnbaum and Mellers (1983) asked judges to
estimate the probability that a used car would last a certain period of time given the opinion of a
mechanic who examined the car and base rate for that type of car. They also found that the effect
of a source of information was inversely related to the number and credibility of other sources of
information. These phenomena are evidence of averaging rather than additive models. Their
study also investigated the effect of bias of witnesses, a factor not studied in the Cab problem.

J. Summary

In this chapter you learned about Bayes theorem as a mathematical theory of how people
should revise their beliefs and also as a descriptive theory attempting to predict how people do
make inferences. The chapter reviewed a Web experiment, constructed with the help of
surveyWiz, which replicated previous results obtained in the lab. People attend to the base rate,
contrary to the claim of a base rate fallacy; however, people do not combine base rates with
witness evidence by a Bayesian or additive process. Instead, they appear to average evidence.
You should know how to construct such an experiment and analyze the results.

K. Exercises
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1.

Examine the materials for the Cab problem in a text editor. Use factorWiz to create another
variation of the Cab problem with different base rates: .20, .50, and .80. Use sources that have
hit rates of .85 and false alarm rates of .15. This manipulation reverses numerical relationship
between the witness and base rate; the source is now more diagnostic than the base rate. Also
include a “source” of no witness.

Calculate predictions of Bayes theorem for the above 3 by 4 design using the Bayesian
calculator.

Calculate predictions of Bayes theorem for the above 3 by 4 design using Excel.

Project idea: Construct the materials for a replication of the Cab problem study with the
Lawyer/Engineer problem. In this problem, the judge is given the relative frequencies of
lawyers and engineers in a sample, and is asked to infer if Tom is a lawyer or engineer based
on a thumbnail description. For example, suppose Tom "likes jazz, and enjoys playing chess.”
What is the probability that Tom is a lawyer rather than an engineer? The proportion of
lawyers or engineers is one factor (base rate), and the testimony and credibility of the
thumbnail descriptions is the other factor.

Project idea: Construct the materials for an experiment on the bookbags and poker chips
problem. An experimenter will draw a sample of chips from one of two bookbags. Bag R has
80 red chips and 20 white ones. Bag W has 20 red chips and 80 white ones. The experimenter
decides randomly which bag to choose, and presents a random sample of chips from that bag
to the judge. The judge's task is to infer which bag the sample came from. For example,
suppose the experimenter flipped a coin, and chose one of the bags; suppose the sample of
chips was 4 Reds and 1 White chip. Which bag do you think was chosen? What is the
probability that the bag sampled was Bag R? There are many parameters that can be

manipulated in this situation, making many interesting studies that can be done.
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Figure 16.10. Spreadsheet set up to fit averaging model.
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Figure 16.11. Spreadsheet after Solver has found best-fit to the averaging model. Note that the
sum of squared deviations for the Subjective Bayesian model are more than five times greater

(worse) than the fit for the averaging model.
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Figure 16.12. Predictions of the Averaging Model. Note that this model correctly predicts the

cross over of the no witness curve.
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