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Comparison of Two Theories of ‘‘Ratio”’
and ‘‘Difference’” Judgments

Michael H. Birnbaum

University of Illinois at Urbana-Champaign

This article examines the hypothesis that judges compare stimuli by ratio and
subtractive operations when instructed to judge ‘‘ratios’” and ‘‘differences.”
Rule and Curtis hold that magnitude estimations are a power function of
subjective values, with an exponent between 1.1 and 2.1. Accordingly, the
two-operation model tested assumes magnitude estimations of ‘‘ratios’” are a
comparable power function of subjective ratios. In contrast, Birnbaum and Veit
theorize that judges compare two stimuli by subtraction for both *‘ratio’” and
‘difference”’ instructions and that magnitude estimations of ‘‘ratios’’ are ap-
proximately an exponential function of subjective differences. Three tests
were used to compare the theory of one operation with the two-operation
theory for the data of nine experiments. The results strongly favor the theory

that observers use the same operation for both instructions.

The most puzzling and challenging prob-
lem in psychophysics, and perhaps the big-
gest headache, has been the failure of con-
vergent operations to define a single scale
of sensation. Scaling methods based on
“‘ratio’’ instructions and ratio models usually
yield scales that differ drastically from the
scales obtained with ‘‘interval’’ instructions
and subtractive models.! For example,
magnitude estimations and category ratings
of the same stimuli are often nonlinearly
related.

Several theories have been advanced to
account for this discrepancy. For example,
Stevens (1971) argued that humans are un-
able to compute differences and that category
ratings are ‘‘biased.”’ Attneave (1962) hy-
pothesized that numerical magnitude esti-
mations are nonlinearly related to subjective
values because the subjective values of
numbers are nonlinearly related to objective
number. Torgerson (1961) theorized that
observers compare two stimuli in the same
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way regardless of ‘‘difference’ or ‘‘ratio”
instructions.

These theories could not be strongly
distinguished in the early research on this
problem. For example, Torgerson’s (1961)
theory that judges perform the same opera-
tion for ‘‘ratios’’ and ‘‘differences’’ cannot
be tested on ordinal grounds without a multi-
factorial experiment. In a unifactor experi-
ment, actual ratios and differences are
monotonically related, since X/Y and X
— Y are monotonically related when Y is a
constant. However, if X and Y are inde-
pendently (e.g., factorially) manipulated,
X/Y and X — Y will not be monotonically
related. For example, 4/1 > 7/3but4 — 1 <
7 — 3. Thus, if observers do perceive
two relations between a pair of stimuli,
judgments of ‘‘ratios”’ and ‘‘differences”’
should not be monotonically related in
general, but should show the appropriate
differences in rank order (Birnbaum &
Veit, 1974a; Krantz, Luce, Suppes, &
Tversky, 1971).

A number of recent studies using factorial

' Quotation marks are used to denote instructions to
the observer to judge ‘‘ratios’ or ‘‘differences’” and
for numbers obtained using these instructions. Quotes
are not used for theoretical statements, models, or for
actual (numerical) ratios and differences.
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designs conclude that judgments of ‘‘ratios”
and ‘‘differences’’ are monotonically related,
consistent with Torgerson’s (1961) sugges-
tion that observers instructed to judge
“‘ratios’’ and ‘‘differences’® compare the
stimuli in the same way for both tasks (Birn-
baum, 1978; Birnbaum & Elmasian, 1977;
Birnbaum & Mellers, 1978; Birnbaum &
Veit, 1974a; Hagerty & Birnbaum, 1978;
Rose & Birnbaum, 1975; Schneider, Parker,
Farrell, & Kanow, 1976; Veit, 1978; Elmasian
& Birnbaum, Note 1).

In a comment on Veit’s (1978) paper,
Rule and Curtis (1980) argued that judges
may use two operations but that perhaps
the experiments have failed to detect them.
They analyzed simulated data that were
generated by two operations in an attempt
to show how one might reach the erroneous
conclusion that only one operation was
present. Veit (1980) replied that the methods
of data analysis used by Rule and Curtis
were not applied by Veit (1978), that the
procedure used by Veit (1978) correctly
diagnoses their simulated data, and that
their simulated data do not adequately
reproduce Veit's (1978) empirical data.

Although they have not proposed a theory
of ‘‘ratio”” judgments and have not pub-
lished tests of ratio models, Rule and Curtis
have proposed a two-stage model that relates
magnitude estimations of ‘‘differences’ to
magnitude estimations of single stimuli.
The present article addresses the following
question: Can the Rule and Curtis theory of
magnitude estimation be successfully
extended to account for judgments of *‘ratios”’
and “*differences’” with the two correspond-
ing operations?

Analyses designed to highlight the dif-
ference between the theory of Birnbaum
and Veit (1974a) and the theory of two
operations are presented in the present
article. Data for nine experiments are re-
viewed, using metric and nonmetric analyses
that have greater power for distinguishing
theories than the procedure of Rule and
Curtis (1980). It will be shown that the
predictions of the two theories are quite
distinct and, furthermore, that the data
strongly favor the hypothesis that judges
use only one operation for both tasks.
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Null Hypothesis: No Effect of Instructions

The following analogy may facilitate
discussion. In the classical analysis of an
experiment, the experimenter manipulates
an independent variable and looks for a
corresponding change, or difference, in the
dependent variable. When a substantial
effect is observed, one that would be im-
probable given the null hypothesis, the null
hypothesis can be rejected in favor of the
rival hypothesis that the independent vari-
able has an effect on the dependent variable.
However, when a difference is not observed,
both the null hypothesis and the alternate
are retained. No experiment can conceivably
refute the general alternate hypothesis that
a very tiny effect remains as yet undetected.
However, as the power of the experiment
grows, the magnitude of the likely effect
is restricted by the data. Furthermore, one
can reject specific alternatives, for example,
that the effect exceeds some small value.
From a Bayesian viewpoint, the plausibility
of the null hypothesis grows with repeated
experiments finding negligibly small effects.

In this analogy, the independent variable
corresponds to the differential instructions
to judge ‘‘ratios’ or ‘‘differences’, the
dependent variable is the rank order in the
factorial matrix, the null hypothesis is that
instructions have no effect on the rank
order, and the alternative is that the instruc-
tions will produce rank orders compatible
with ratio and difference models. The power
of the experiment depends on the ability to
distinguish ratio from subtractive orders.

Birnbaum and Veit are in the uncom-
fortable position of defending the null
hypothesis. But sometimes, as in the Michael-
son-Morley experiment, the finding of no
difference is the surprising one (Einstein,
1961). Michaelson and Morley were unable
to detect a measurable difference in the
speed of light dependent on the direction
of the earth’s motion. Their experiments
could not disprove the hypothesis that a
very small difference does exist. However,
their experiments were a severe blow to the
classical theory of mechanics based on the
assumption that the earth moves through a
fixed ether—a theory that predicted a sizable
effect. Fortunately, the theory of Attneave,
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Rule, and Curtis can be extended to provide
a specific alternative with which the Birn-
baum-Veit theory can be compared and
allows one to discuss the power of the
experiments to discriminate between the
two theories.

Two Theories of ‘‘Ratios™
and ‘‘Differences’’

Attneave (1962) theorized that magnitude
estimation represents a special case of
cross-modality matching, in which the sub-
jective values of numbers are matched to
the subjective values of the stimuli scaled.
Atineave postulated that the observer in
magnitude estimation selects a number, ¢y,
such that the subjective value of the number,
sn, is equal to the subjective value, s¢, of
the stimulus being scaled, ¢¢. If sy = Hy(y)
is the psychophysical function for number
and sc = Ho(épo) 1s the psychophysical
function for the continuum being scaled,
and if sy = s¢, then Hy(¢y) = He(de), or
oy = Hy' [He(do)]s thus, ¢y = Hy '(s¢).
Therefore, the output (judgment) function
for magnitude estimation, which relates sub-
jective value to overt numerical response,
should be the inverse of the input (psycho-
physical) function for number.

If the psychophysical function for number,
H, is a power function (sy = ¢y"), Attneave
noted, the exponents obtained in magnitude
estimation studies could be “‘off’’ by a
multiplicative factor (¢y = ¢c¢'*) and their
ratios would still predict exponents from
cross-modality matching experiments.
Attneave proposed that category ratings
produce equal intervals, though some have
questioned why one kind of numerical
judgment (category ratings) should differ
from another (magnitude estimation). Based
on limited evidence, Attneave estimated
the exponent for numerals to be about .4.
Subsequent developments by Curtis, Att-
neave, and Harrington (1968) and others
(summarized by Rule and Curtis, in press)
revised this estimate upward but retained
the general theory.

Attneave’'s theory can be extended as
follows. If the psychophysical functions are
assumed to be power functions, s = ¢,
where k is the exponent for the psycho-
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physical function, and if judges use two
operations for ‘‘ratio”” and ‘‘difference’’
instructions, then magnitude estimations
of ‘‘ratios’’ (MR) and magnitude estimations
of “*differences’” (MD) might be represented
as follows:

MR;; = ar(d*/dF)™ + by, n

MD;; = ap(¢p/ — ¢*)" + by, 2

where m = 1/n (the output function is the
inverse of the psychophysical function for
numerals). The constants ay and ap reflect
such factors as the modulus and the standard
‘*difference.’” The constants by and by, allow
for order effects or ‘‘response bias’’ in
scale usage (e.g., if the subject compares a
stimulus with itself, the subject might not
judge the ‘‘ratio’’ to be 1 or the ‘*difference”
to be 0).2

and

Research of Curtis and Rule

In the research of Curtis and Rule with
magnitude estimations, the standard stimulus,
¢;, is a constant or unspecified. Equation
1 is then written:

MEj =a d)jkm + b, (3)

where ME; is the magnitude estimation of
stimulus j, and 4 and b are constants. If
the input transformation (represented by the
exponent k) is the same for both tasks, and
if the output exponent for magnitude estima-
tion (m) is the same for both tasks, then the
exponent estimated from magnitude estima-
tions of single stimuli (km in Equation 3)
should be the product of the input (k) and
output (m) exponents separately estimated
from magnitude estimations of **differences”
using Equation 2. Curtis, Rule, and their
associates conclude that they have found

2 Rule and Curtis do not consider the additive
constants in Equations 2 and 3 to be of deep theoretical
significance and have not estimated these values from
comparisons of two stimuli of equal value (Rule &
Curtis, 1973b; Rule et al., 1974). In the experiments of
Table 1, symmetric designs (including comparisons of a
stimulus with itself) are used, and in this research, the
observers almost always judge a zero physical dif-
ference to be ‘‘zero’ for the ‘‘difference’” task or
“‘one’’ in the *‘ratio”” task. Birnbaum and Veit (1974a,
Footnote 1) describe graphical and statistical tests
that are consistent with by = 0.



COMMENTS

reasonable agreement between these two
estimates.

In this theory, m represents the inverse
of the psychophysical function for number.
Attneave (1962) estimated m to be about
2.5 (1/.4) on the basis of evidence available
at the time. Marks (1974) has noted that
magnitude estimations can be approximated
as a power function of category ratings
using an exponent of 2.0, though his inter-
pretation of this finding differs.

Ten experiments in which Equation 2
was fit to magnitude estimations of *‘dif-
ferences’ (Curtis, 1970; Curtis & Rule,
1972; Rule & Curtis, 1973a, 1973b; Rule,
Curtis, & Markley, 1970; Rule, Laye, &
Curtis, 1974) yielded estimates between 1.1
and 2.1, with an average value of m = 1.47
(see Rule & Curtis, in press, for a summary).

Scaling of number (Rule & Curtis, 1973a,
in press) yielded an exponent for n of .63
(implying that m = l/n = 1.59), which
agrees well with estimates obtained by Rule
(1972), Banks and Hill (1974), scales for
number estimated from range-frequency
theory (Birnbaum, 1974), scales estimated
from the subtractive model (Rose & Birn-
baum, 1975), and others. Rule and Curtis (in
press) list estimates of n between .63 and .75,
implying that m is between 1.33 and 1.59.

In sum, the theory of Curtis and Rule
assumes that magnitude estimations are a
power function of subjective value, with
an exponent near 1.47. In agreement with
Attneave’s (1962) theory, the output func-
tion for magnitude estimation is considered
to be the inverse of the psychophysical
function for number.

A Two-Operation Theory

One can test the theory that subjects
use two operations without assuming
that the psychophysical functions for all
stimulus continua are power functions.
Indeed, the model can be tested using social
stimuli, for which physical values are not
defined. Equation 1 can be rewritten as

follows:
Rij = aR(s,-/si)"' + bRs (4)

where R;; is the magnitude estimate of
“ratio,”” and s; and s; are the subjective
scale values (which may or may not be
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power functions of physical values). Assum-
ing by = 0, it follows from Equation 4 that
if one takes the log of both sides,

5)

Therefore, log magnitude estimations of
“‘ratios’’ should fit a subtractive model, and
when the log response is plotted as a func-
tion of the dividend stimulus, s;, with a
separate curve for each divisor, s;, then the
curves should be parallel. Such plots are
usually roughly parallel (see, e.g., Birnbaum
& Veit, 1974a, Figure 6), consistent with
Equation 5.

The marginal mean log ‘‘ratio’’ judgment
(averaging over levels of i) should be given
by the following expression:

log(R;) = mlogs; — mlogs, + logag.

17
->log(Rp) =mlogs;+c¢, (6)

Fi=1

where r is the number of rows of the matrix,
and ¢ is a constant (independent of j).

Equation 6 implies that if ‘‘ratio’” judg-
ments are a power function of subjective
ratios, then the marginal mean log ‘‘ratio”
should be a logarithmic function of the
scale value. If it is assumed that ratings of
‘*differences’’ are linearly related to sub-
jective differences (as evidenced by the
near-parallelism in tests of the subtractive
model), then the marginal mean *‘difference’’
ratings are a linear function of the scale
values. In principle, even if it is only as-
sumed that *‘differences’’ are a monotonic
function of subjective intervals, it is possible
to derive estimates of scale values for the
subtractive model from nonmetric analysis.
Therefore, assuming two operations and the
principle of scale convergence (that scale
values are independent of task), marginal
mean log ‘‘ratios’ should be a logarithmic
function of subtractive model scale values
derived from judgments of ‘‘differences.”

Ratio-Difference Theory of Birnbaum
and Veit

Birnbaum and Veit (1974a) proposed that
“‘ratio’’ judgments may be computed by
subtraction:

Ry = Jr(s; — 54), N

where J is assumed to be strictly monotonic
(it is usually found to be approximately
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exponential). Ratings of differences, D,
are also assumed to obey the subtrac-
tive model:

Dy = Jp(s; — s54), ®

where D;; represents the rating of the dif-
ference between stimuli j and i, and Jp, is
the strictly monotonic judgment function for
ratings, which is typically estimated to be
nearly linear.

If Jy is represented as an exponential and
Jy as alinear function, Equations 7 and 8 can
be specified, respectively,

®
(10)

Ry = a explb(s; — 5))];
Dij = C(Sj - Si) +d.

Taking logarithms of both sides of Equa-
tion 9 implies

InRy =b(s; —s;) +a', (11)

where a' = In a. Equation 11 shows that
scale values can be estimated from the
marginal means of the logarithms of the
“‘ratio”” responses. Equation 10 shows
that estimates of the same scale values
can be estimated from marginal mean ‘‘dif-
ference’’ ratings. The two sets of estimates
are expected to be linearly related, ac-
cording to this theory, in contrast with the
logarithmic prediction of the two-operation
theory.

Another implication of Equations 9 and 10
is that logarithms of ‘‘ratios’’ are pre-
dicted to be linearly related to ‘*difference’”
ratings:

In Ri]‘:bl Dij +d’, (12)

where b’ = b/candd’ = a’' — bd/c. Equa-
tion 12 implies that ‘‘ratios’’ are exponentially
related to ‘‘differences.”

In the next section of this article, the two
theories are compared by three tests applied
to data for nine experiments. First, marginal
means of log ‘‘ratios’’ are plotted against
marginal mean ‘‘differences.”” The one-
operation theory predicts that the relation-
ship should be linear (Equations 11 and 12),
whereas the two-operation theory predicts
that the relationship should be logarithmic
(Equation 6). Second, ‘‘ratios’ are plotted
against ‘‘differences.”” The one-operation
theory predicts that the relationship should
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be monotonic, and the special case of Equa-
tion 12 predicts that it should be exponential.
Third, the models are compared according
to their relative success in reproducing
the data.

A Reanalysis of Nine Experiments
Test 1: Marginal Means

Figure 1 shows the predicted relation-
ship between marginal mean log ‘‘ratios’
and marginal mean ‘‘differences’’ for the
two theories. According to the theory of
Birnbaum and Veit, assuming./ in Equation
7 to be exponential, the relationship should
be linear (Equation 11). According to the
theory of two operations, however, the
relationship should be logarithmic (Equa-
tion 6), and the domain of the log function
will depend on m. Figure 1 shows that for
values of m from 1 to 2.5, it should be pos-
sible to discriminate the two theories. How-
ever, as m approaches infinity, the theories
become harder to distinguish. The average
estimate, reported by Rule and Curtis (in
press), is m = 1.47, which is intermediate
among the values shown in Figure 1. Thus,
if m is assumed to be a constant, the theories
should be distinguishable on the basis of the
test in Figure 1.2

Results: Marginal Means

Table 1 lists experiments for which the
above test has been carried out. The table

3 The predicted curve for the two-operation model
was fit to the endpoints in Figures 1 and 2 as follows.
First, the marginal mean log ‘‘ratios’” were com-
puted, the smallest marginal mean log was subtracted
from all of them, and the antilog transformation was
applied. This procedure theoretically sets the smallest
estimated scale value (s;) to 1.0, and the largest to
(s1/s1)™. Then the largest ‘‘ratio’’ scale value was raised
to the .68 power (to correct for the presumed output
function, m = 1.47), yielding s,. Second, the *‘dif-
ference’” task marginal means were linearly trans-
formed to the range of values determined above from
the marginal mean log ‘‘ratios’’ (i.e., from 1 to s;).
Finally, the log of each recalibrated **difference’” scale
value was multiplied by 1.47 to find the predicted
curve shown in Figure 2 for the two-operation theory.
In Figure 1 the same procedure was used, except both
abscissa and ordinate have been calibrated to the same
endpoints to highlight the effect of m. The predicted
curves for the one-operation theory are straight lines
through the endpoints.
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shows that the studies have used a variety
of stimulus continua and experimental
procedures, in which the stimulus range,
spacing, and manner of stimulus presenta-
tion have varied.*

Figure 2 shows the results of the first
test for nine experiments. Straight lines
have been drawn between the endpoints
to represent the prediction of one-operation
theory (Equation 11). Curves representing
the theory of two operations (Equation 4)
have also been fit through the endpoints;
the value of m = 1.47 was used to generate
the predictions (see Footnote 3). The points
always fall below the logarithmic prediction
of two-operation theory (Equation 6) and
closer to the straight line prediction of
one-operation theory (Equation 11).

The analyses of Figure 2 have also been
carried out for the data of individuals, with
the result that the vast majority of judges
yielded data consistent with the group
averages. For example, Birnbaum and
Elmasian (1977) found that data for all
eight judges had marginal mean log ‘ratios’’
that were close to a linear function of mar-
ginal mean ‘‘differences’’ (see open squares
in Figure 2 of Birnbaum & Elmasian, 1977).

In sum, marginal means for nine experi-
ments appear more consistent with one
operation than with the theory of two opera-
tions, assuming the value of m to be between
1 and 2.5.

Test 2: Direct Ordinal and Metric
Comparison

Because it is possible that two distinct
rank orders can be transformed by separate
weak monotonic functions to a degenerate
solution (Rule & Curtis, 1980; Veit, 1980), it
is preferable to compare the two rank orders
directly, rather than ask if the two orders
can be transformed to the same order. The
left side of Figure 3 shows a comparison
of actual ratios and differences fora 7 x 7,
evenly spaced design. The scale values
used for this example were the successive
integers from 1 to 7. A ratio of 7:1 for
the scale values was chosen for the ex-
ample because the largest ‘‘ratio’’ judg-
ment is often about 7. Actual ratios are
plotted on the ordinate against actual dif-
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ferences, with a separate curve for each row
of the factorial design (subtrahend or divisor).
Thus, each curve represents s;/c plotted
against s; — ¢, where ¢ is the value of the
subtrahend or divisor. The slope should be
inversely related to the value of ¢, and the
curves should cross where s, — ¢ =0
(abscissa) and s;/c = | (ordinate). For
example, a difference of 4 could receive a
ratio as large as 5 (5/1), or as small as 2.33
(7/3). Although 6/3 has the same ratio as
2/1,6 — 3 > 2 — 1. For constant differences,
the ratio should approach I as the value of
¢ increases. For constant ratios, the absolute
difference should increase as ¢ increases.
The left of Figure 3 shows how different
“ratios’” and *‘differences’’ should be if the
judge actually uses two operations and if
magnitude estimations of ‘‘ratios’’ can be
taken at face value (m = 1.0).

However, the theory of Attneave, Rule,
and Curtis does not take magnitude estimates
at face value. If the observer reports that
one stimulus is ‘‘seven times’’ as intense
as another, the subjective ratio is assumed
to be only 7Y™, Assuming m = 1.47, the
subjective ratio would be only 3.76. The
predictions of this ratio theory were there-
fore calculated for a 7 x 7 design with
subjective scale values spaced evenly
between 1 and 3.76. Ratios were calculated
according to Equation 4, and accordingly,
each ratio was then raised to the 1.47 power.
These values are plotted on the right of
Figure 3 in the same way as on the left—
the ordinate shows (sy/¢ )47 vs 2.17(s; — ¢).
The predictions, though less extreme, are
quite distinct and follow the same general
pattern as the ratios and differences on the
left, Thus, even assuming that ‘‘ratios’” are a
power function of subjective ratios (using
the exponent of Rule and Curtis), ‘‘ratios”’
and ‘‘differences’” should not be mono-
tonically related if judges use two opera-
tions, but should follow the pattern of
predictions on the right of Figure 3.

On the other hand, if judges use only one

* Not listed in Table | are two experiments by Rose
and Birnbaum (1975) that used the same response
procedure for both tasks (a linemark) and therefore
require a different analysis, Those experiments
yielded conclusions consistent with the others.
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Figure 1. Theoretical relationships between marginal
mean log ‘‘ratio’’ and marginal mean ‘‘difference.””
(One operation theory of Birnbaum and Veit [1974a]
predicts a straight line; the theory that subjects use
two operations predicts logarithmic curves. If the out-
put function is a power function with exponent {m]
greater than 1, then the domain of the log function is
reduced. Rule and Curtis [in press] give an average value
of m = 1.47; therefore, if this value of m is assumed
to apply to ‘‘ratio’’ judgments, it should be possible
to discriminate the two-operation theory from the
one-operation theory.)
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operation, according to Equations 7 and 8,
then ‘‘ratios’” and ‘‘differences’’ should be
monotonically related, because Jg '(R;) =
§; — s; = JJp7i(Dy;). Therefore, Ry = Jg-
[Jp~¥D;;)]. Furthermore, if Ji is exponential
and Jy, is linear, then the relationship be-
tween ‘‘ratios’’ and ‘‘differences’’ will be
exponential.

Results: Ordinal and Metric

Figure 4 plots the data as in Figure 3 for
the nine experiments listed in Table 1. Figure
4 shows that ‘‘ratios’” are very nearly a
monotonic function of “‘differences,” as
predicted by the theory of Birnbaum and
Veit (1974a). The data appear more con-
sistent with the hypothesis that the points
fall on the same monotonic function than
with the predictions in Figure 3.

The relationship between ‘‘ratios’” and
‘‘differences’ is predicted to be exactly
exponential when ‘‘ratios’’ are an exact
exponential function of subjective differences
and ‘‘differences’ are linearly related to
subjective differences. (In general, the judg-
ment functions for both tasks are assumed
to depend upon context effects such as the
value of the modulus, the examples used
to illustrate the scale, and the stimulus

Table 1
Experiments With ‘‘Ratio’’ and ‘' Difference’’ Tasks
Largest
response
Reference Dimension Design Stimulus range example
Birnbaum & Veit (1974a) Heaviness of lifted weight? 7 x 7  50-200 g (linear spacing) 400
Birnbaum & Elmasian (1977)  Loudness of 1000 Hztones® 5 x 9 42-90 dB (log spacing) 400
Birnbaum (1978) Darkness of dot patterns® 7 x 7 8-90 dots (log spacing) 800
Veit (1978, Experiment 1) Darkness of gray papers*® 7 x 7 .063-.572 800
Birnbaum & Mellers (1978) Easterliness® of U.S. cities 7 x 7  San Francisco-Philadelphia 800

Westerliness® of U.S. cities

Hagerty & Birnbaum (1978)

Elmasian & Birnbaum (Note 1) Pitch of 78 dB (SPL) tones®

Likableness of adjectives?

7 x 7  Philadelphia—San Francisco 800
4 x 7 cruel-sincere 800
5x9 191-844 Hz (log spacing) 400
5x9 191-3730 Hz (log spacing) 400

4 Both stimuli in each pair were simultaneously presented; pairs were presented in random order.
b Stimuli were presented sequentially in restricted random orders.

¢ All stimuli were simultaneously presented.
d Between-subjects design.
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Figure 2. Marginal mean log ‘‘ratio’” as a function of marginal mean ‘‘difference’’ for nine studies.
(Straight lines drawn through the endpoints represent predictions of the one-operation theory of Birn-
baum & Veit [1974a]. Curves drawn through endpoints show predictions of the two-operation theory

assuming m =

1.47, which is the average value reported by Rule and Curtis. Abscissa scale has been

linearly transformed for each experiment for comparability. A constant has been added to the marginal
mean log ‘‘ratios’” to make the smallest value zero in each case.)

distribution. Therefore, this relationship is
expected to vary as a function of these
variables). Exponential functions are drawn
in Figure 4 through the highest point and
the point (0,1) to permit assessment of the
exponential relationship. Although there
appear to be systematic deviations from
the exponential curves (especially for
“‘ratios’’ near one and ‘‘differences’’ near
zero), these curves do capture the ap-
proximate form.?

Test 3: A Direct Comparison of Fit

Another way to test between theories is
to compare their relative success in re-

> Curtis, Rule, and associates typically collect data
for **differences’” representing the upper triangle of a
factorial matrix, excluding comparisons of a stimulus
with itself (the diagonal). Unfortunately, their magni-
tude estimation experiments have not independently
manipulated standard and comparison. Therefore, the
key test shown in Figure 3 cannot be performed using
their data.
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producing the numerical data. Accordingly,
to assess the theory of Birnbaum and Veit,
the data for nine experiments were fit to
the following models:

Dy = ap(s; — s1) + by (13)

(14)

where D;; and R, are the predicted *‘dif-
ferences’ and ‘‘ratios’’; ap, ag, bp, b,
s;, and s; are parameters to be estimated
from the data. The value of s, was fixed
to 1.0, leaving 6 scale values to be estimated
for each 7 X 7 design.

To represent the theory of two opera-
tions, Equation 14 was replaced with the
ratio model,

Rij = aR(Sj/Si)m + bR- (15)

Note that Equation 15 uses one additional
parameter, m, in addition to the parameters
required by Equation 14. To compare
theories with an equal number of parameters,

and X
Rij = dagr eXp(Sj - Si) + bR’
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For each of the symmetric experiments
described in Table 1, it was assumed that
the scale values were independent of posi-
tion. For those experiments (heaviness,
darkness of grays, darkness of dots, easter-
liness, and westerliness), 10 parameters
were estimated from each set of 98 (7 X 7 +
7 x 7) data values. For the asymmetric
designs (loudness, pitch, and likeableness),
different scale values were estimated for
rows and for columns. For the likeable-
ness experiment, different adjectives were
used for row and column. In the loudness
and pitch experiments, the tones were
presented sequentially (the rows represent
the first stimulus and the columns represent
the second).

The index of fit was the sum of the propor-
tions of total variance in the residuals added
up over both ‘‘difference’’ and log ‘‘ratio”
matrices. This index, L, was defined as
follows:

m was initially fixed to 1.47, the average | — 23Dy, - D_“)2 + 23(ry — fuy) ., (16)
estimate of Rule and Curtis (in press). 33(D;; — Dy 33(r; — P2
T+ I B
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Figure 3. Left: Theoretical relationship between actual ratios and differences for an evenly spaced,
7 x 7 design using successive integers from 1 through 7. Right: Theoretical relationship for same design
assuming ‘‘ratios’’ are a power function of subjective ratios with an exponent [m ] of 1.47. (Note that
ratios and differences are not functionally related: For a constant difference, the ratio approaches 1
as the divisor and subtrahend [curve parameter] increases.)
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where L is the index to be minimized, D;;, respectively. Because the standard errors
Dj;, and D;; are the ratings of ‘“difference’” for the ‘‘ratio” task vary directly with the
between stimuli j and {, the predicted “*dif- mean ‘‘ratio,”” the deviations in the logs of

ference,”” and the mean ‘‘difference,” the ‘‘ratios” (r; = log Ry, &; = log Ry, F =
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Figure 4. Magnitude estimations of *‘ratios’’ as a function of ratings of **differences’” with a separate
type of symbol for each *‘divisor,”" plotted as in Figure 3. (Curves show exponential functions drawn
through the point [0,1] and the largest value for each experiment. Arrows show ‘‘zero difference’
judgment:; abscissa scales have been linearly transformed for each experiment for comparability.
Results approximate a monotonic function more closely than they do the theoretical predictions in
Figure 3, consistent with the hypothesis that *‘ratios’” and *‘differences™ are both governed by the
same operation.)
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mean log R) were minimized. A computer
program was written to accomplish the
minimization, utilizing the STEPIT subroutine
(Chandler, 1969).

Results: Comparison of Fit

Equations 13 and 14, which model the
one-operation theory, gave reasonable ap-
proximations to the data for all of the experi-
ments. For example, for the darkness of
grays experiment (Veit, 1978, Experiment 1),
the residuals accounted for less than 1% of
the total systematic variance for both *‘dif-
ferences”” and log ‘‘ratios,”” yielding an
overallindex of L = .019 summed over both
sets of data. Six of the nine experiments
had values of L = .022.

The one-operation model (Equations 13
and 14) gave a better fit to the data for all
nine experiments than the model of two
operations (Equations 13 and 15), with m
fixed to the Rule and Curtis value of 1.47.
The fit of the two-operation theory improves
as m increases, but even with m fixed to 3.0,
the Birnbaum-Veit theory provided a better
fit for all but one experiment (likeableness).
When m was free to vary, the estimated
values of m were greater than 3 in all but
one case, and the fit for the model of one
operation was better than or equal to the fit
of the model of two operations for all but
one of the nine experiments.

If judges actually used only one opera-
tion, one would expect the fit of the two-
operation theory to approach the fit of the
one-operation theory as m increased (see
Figure 1). Whenm = 2.5, actual differences
in an equally spaced 7 X 7 design (with a
largest ‘‘ratio’’ of 7 as in Figure 3) would
not be a weak monotonic function of ratios
calculated from Equation 15. However,
when m exceeds 3.0, actual differences
are a weak monotonic function of actual
ratios for this design. Thus, in order for the
theory of two operations to provide a reason-
able fit to the data, it is necessary for it to
make predictions that are essentially equiv-
alent to those of the one-operation theory.

In sum, comparisons of fit indicate that
to retain the theory that observers use
two operations according to Equations 13
and 15 requires the conclusion that the expo-
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nent (of the output function for magnitude
estimation of ‘‘ratios’’) exceeds 3. How-
ever, values beyond 3 appear unacceptable
for the theory of two operations if m is sup-
posed to be the reciprocal of the exponent
for numerals, which Rule and Curtis (in
press) find to be between .63 and .75.

Discussion

Comparisons and Contrasts

The psychophysical theories of Rule and
Curtis (1980, in press) and Birnbaum and
Veit (1974a), Birnbaum (1978), and Veit
(1978) have five points of agreement:

1. Both approaches view psychophysical
judgment as a composition of processes. For
example, both assume that magnitude esti-
mations can be represented as the com-
position

ME = JulH ($)],

where ME is the magnitude estimation of
stimulus ¢, H represents the psychophysical
(input) function, and Jy represents the
judgment (output) function.

2. Both agree that Jy is typically posi-
tively accelerated for magnitude estimation.

3. Both approaches agree that ‘‘dif-
ference” judgments can be represented
by subtraction, D;; = Jp[s; — s;], where the
output function, Jy, is presumed to depend
on the dependent variable (magnitude
estimation or category rating).

4. Both agree that the J function for
category ratings is more nearly linear than
the J function for magnitude estimation but
that the exact form of both functions depends
upon procedural details of the experiment.

5. Birnbaum and Veit (1974a) adopted
the premise that the psychophysical func-
tion, H, is independent of the task to judge
*‘differences’’ or ‘‘ratios.’”’ In the research
of Rule and Curtis, it is assumed that H is
independent of the task to estimate *‘dif-
ferences’ or ‘‘magnitudes.”’

The theories differ on three major ques-
tions, which are discussed below.

One operation or two? Rule and Curtis
(1980) questioned the conclusions of Veit
(1978) and suggested that observers may
indeed use both ratio and subtractive opera-
tions for the corresponding instructions.
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Birnbaum and Veit concluded that observers
use only one operation for both tasks.

The data for the nine experiments listed
in Table 1 appear consistent with the theory
that observers compare two stimuli by the
same process whether instructed to judge
‘*differences’” or ‘‘ratios.’”” The data do not
appear consistent with the theory that
judges use both operations and that ‘‘ratio”’
judgments are a power function of sub-
jective ratios with an exponent between 1
and 2.5. Although some small effect of instruc-
tions could exist, the difference due to task
instructions is much smaller than predicted
by the theory of two operations (Compare
Figure 1 with Figure 2 and Figure 3 with
Figure 4).

Is the output function for magnitude
estimation the inverse psychophysical
function for number? Rule and Curtis
follow Attneave’s (1962) theory that J~! is
the psychophysical function for number.
They assume that Jy should be the same

- for magnitude estimations of ‘‘differences’’
and magnitude estimations of single stimuli.
Birnbaum and Veit (1974a), on the other
hand, assume that J, represents a judg-
mental transformation that depends law-
fully on context effects such as the examples
used to illustrate the scale, the stimulus
distribution, and other such details of
experimental procedure.

The estimates of the psychophysical
function for number from several studies
using a variety of scaling techniques have
been fairly consistent (Rule and Curtis, in
press). However, estimation of m assuming
two operations for the experiments of Table
1 would yield exponents that deviate from pre-
vious values by more than a factor of two.

The output function for magnitude estima-
tion appears to depend on the range of
examples used in the instructions to il-
lustrate the magnitude estimation scale.
Veit 1978, Experiment 1; Note 2) used the
same stimuli (darkness of grays) with 2
different sets of examples ranging either
from 25 to 400 or from 12.5 to 800 and found
that the largest mean ‘‘ratio’” was only 531
when examples ranged from 25 to 400, com-
pared with 735 when the examples ranged
from 12.5 to 800. For the data in Figure 4,
the largest ‘‘ratio’’ estimation appears to be
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larger for experiments using 800 as the
largest example (lower panel). The largest
“‘ratio’’ judgment is smaller for heaviness,
loudness, and pitch—experiments that used
400 as the largest example. Robinson (1976)
reached similar conclusions for magnitude
estimations of single stimuli. Apparently,
the output function for magnitude estima-
tion depends on the range of examples
used to illustrate the scale in the instruc-
tions. Variations among individuals can
often be attributed to variations in J (Rule
& Curtis, 1977). It seems reasonable to
suppose that the context effects in magnitude
estimation described by Poulton (1968) can
also be attributed to the output function,
though most of the research cited by Poulton
provides no basis for determining the locus
of contextual effects.

Both schools of thought agree that the
output functions depend upon experimental
manipulations such as the value of the
modulus, stimulus range, response range,
and so on, but their interpretations differ.
Rule (Note 3) tends to view these effects
as perturbations that could increase or
decrease the estimated exponent in different
studies; he believes different estimates
contain a true value that should on the
average represent the psychophysical func-
tion for number. Birnbaum and Veit (1974a),
however, view the J functions as labile and
highly sensitive to variations in procedure.
In their view, J is potentially predictable
from principles of judgment but could attain
a wide variety of forms, depending on the
experimental conditions. Thus, Birnbaum
and Veit view the J function as a predictable,
but variable, transformation that should not
be assumed to represent the subjective
values of numbers.

Power or exponential? Rule and Curtis
assume that the output function for mag-
nitude estimation is a power function,
whereas Birnbaum and Veit assume that
it can be approximately exponential under
certain experimental conditions.

The exponential output function for mag-
nitude estimation explains how ‘‘ratio”
judgments can fit a ratio model, even though
the comparison operation is subtraction.
If Ry = exp(s; —s;), then Ry = exp(s;)/
exp(s;) = s;*/s;*, where s* = exp(s). An
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Table 2

COMMENTS

Response Scales for ‘'Difference’’ and ‘‘Ratio’’ Tasks

**Difference’” rating scale

“*Ratio’’ estimation scale

—3 = "*A is much less than B”’ 12.5 = **A is one eighth B”’
-2 = **Ais less than B’ 25 = ‘A is one fourth B”
—1 = **A is slightly less than B’ 50 = ‘‘Ais one half B”

0 = ‘*A equals B’ 100 = ‘A equals B”

1 = **Ais slightly greater than B™* 200 = ‘A is twice B”

2 = **A is greater than B’ 400 = “*Ais four times B"’

3 = **A is much greater than B"’ 800 = ‘*Ais eight times B™

exponential output function explains why
magnitude estimations of ‘‘averages’ show
bilinear divergence (Weiss, 1972) and
explains otherwise contradictory results for
the size—weight illusion. For further dis-
cussion, see Birnbaum and Veit (1974b)
and Birnbaum (1978, pp. 52-53).

The following reasoning may help clarify
conditions that produce the exponential
judgment function for magnitude estimation.
Magnitude estimation can be considered a
type of category judgment in which the cate-
gory names (numbers) used by the subject
can be geometrically spaced (Birnbaum,
1978). The theory of Birnbaum and Veit
assumes that the judge would be equally
willing to use either of the response scales
shown in Table 2, using corresponding
categories (indicated by arrows) for the
same stimulus pair. The examples in Table 2,
if used in the instructions, can build in an
exponential relationship between magnitude
estimates and ratings. If the judge uses only
one operation, subtraction, but uses the
numbers next to the examples for magnitude
estimations of ‘‘ratios,’’ then the J,; function
will be exactly exponential. If individuals
choose different ranges of the response
scale, but have identical subjective values,
then judgments of ‘‘ratios’” for different
individuals will be related by power func-
tions. Experimental manipulation of the
range of the examples would be expected
to influence Jy, such that results with dif-
ferent response ranges will be related by
power functions.

Suppose for the moment that the sub-
jective locations of U.S. cities can be repre-
sented by locations on a two-dimensional
“‘mental map’’ with arbitrary origin (Birn-
baum & Mellers, 1978). If so, then ratios are

meaningless. Suppose the observer com-
putes a directed distance, d, when asked
to find the ‘‘ratio’”” of the easterliness of
Philadelphia to that of San Francisco.
Since this distance is the greatest that the
observer is asked to report during the
experiment, the observer uses the largest
‘‘ratio’’ response given in the instructions,
800 (‘‘eight times’’). When asked to judge
the “‘ratio’’ of the easterliness of San Fran-
cisco to that of Philadelphia, the directed
distance is —d. However, an equal and
opposite subjective distance receives a
reciprocal response, which in this case
would be the smallest example in the response
scale, 12.5 or ‘‘one eighth.”” Thus, three
points that are psychologically equidistant,
—d, 0, and d, produce responses of 12.5,
100, and 800, which are separated by equal
ratios. In this fashion, equal subjective
differences can produce equal ratios. In-
deed, Birnbaum and Mellers (1978) found
that ‘‘ratios’” of easterliness and wester-
liness gave good fits to the ratio model. In
other words, if the judge compares stimuli
by subtraction, the instructions for mag-
nitude estimation can induce an exponential
judgment function, which causes the ratio
model to give a good apparent fit.
Systematic deviations of fit from the ratio
model applied to ‘‘ratio’’ judgments may be
attributable to departures from the expo-
nential judgment function rather than to any
specific problem with the *‘ratio’’ task itself.
The theory of Birnbaum and Veit (1974a)
predicts that if the examples are not geo-
metrically spaced, the exponential function
will be violated, in which case the ratio model
would not be expected to fit the raw data
but would require monotonic transforma-
tion. Furthermore, the theory of Birnbaum
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(1978) predicts that when different standards
(or sets of standards) are used for different
groups of subjects, the estimated exponent
relating magnitude estimations to physical
values should change, since the J function
depends upon the stimulus and response
distributions.

Beyond Torgerson’s Indeterminacy

Torgerson (1961) concluded that if judges
perceived only a single relation between a
pair of stimuli, then it would be impossible
to discover the nature of the single rela-
tion. Whichever representation for stimulus
comparison was chosen would be a *‘decision
not a discovery.”” However, Birnbaum
(1978, 1979), Hagerty and Birnbaum (1978),
and Veit (1978) have concluded that judges
do use both ratio and subtractive opera-
tions, at least when they are instructed to
judge ‘‘ratios of differences.”” Therefore,
it is possible to discover whether the com-
parison process is best represented as a dif-
ference or ratio.

It appears that when subjects are instructed
to judge ‘‘ratios’’ and ‘‘differences’” of
stimulus ‘‘differences,” the data are con-
sistent with the following:

RD = Jyp (ll’AB/lpCD) an

and

DD = JDD (lllAB - (IICD)’ (18)

where RD and DD are judgments of ‘‘ratios
of differences”” and ‘‘differences of dif-
ferences,” Jyp and Jpp, are strictly mono-
tonic judgment functions, and yi,5 and Ycp
represent subjective ‘‘differences.”’ In prin-
ciple, Equations 17 and 18 define a ratio
scale of “‘differences’’ ({14) and thus permit
one to discover the comparison function
Yap = $4 O 53, where © is the comparison
operation (Birnbaum, 1978). The data permit
the following:

Yap = Sa 19

where s, and sy are subjective scale values.
Therefore, Equation 19 is not arbitrary but
implied by the data.

One could ask why observers should use
two operations when the stimuli are dif-
ferences, but not when the stimuli are

— S8

317

magnitudes. It seems reasonable to suppose
that humans possess the ‘‘mental machinery”
to perform both operations but that they use
subtraction whenever ratios are not mean-
ingful, If the stimuli are inherently no more
than an interval scale, like locations on a
cognitive map, then ratios are not meaning-
ful. However, differences between points
always have a well-defined zero point (x —
y = 0ifx = y) even when the original scale
is only an interval scale. For example, it is
meaningful to ask, ‘*What is the ratio of the
distance from San Francisco to Denver
relative to the distance from San Francisco
to Philadelphia?’’ Thus, ratio of differences
is a meaningful operation on an interval
scale. If visual length intervals are repre-
sented as differences between points, then
perhaps observers can use two operations
for ‘‘differences’’ and ‘‘ratios’ of length.
Parker, Schneider, and Kanow (1975) con-
cluded that subjects use two operations for
length comparisons.

In order to retain the ratio model for
“ratio’’ judgments, it appears necessary
either to suppose a very complex function
for ‘‘ratios of differences’” (Birnbaum, 1978;
Veit, 1978), to abandon the principle of
scale convergence, or to suppose that sub-
jects “‘reinterpret’’ one of the four-stimulus
tasks (‘‘differences of differences’’) so that
it can be represented by a log (ratio of ratios)
model (Birnbaum, 1979; Eisler, 1978).
Furthermore, the subtractive theory permits
“ratios’’ and ‘‘differences’’ of easterliness
and westerliness to be represented by a
single cognitive map (Birnbaum & Mellers,
1978), and it permits one to retain a nega-
tively accelerated psychophysical function
for number (Rose & Birnbaum, 1975),
whereas the ratio model requires two mental
maps and a positively accelerated number
function. For these reasons, Birnbaum
(1978, 1979) concluded that the subtractive
theory gives the most parsimonious ac-
count of the data.

Conclusion

The tests described in this article appear
capable of distinguishing the theory that ob-
servers use two operations for ‘‘ratios”
and ‘‘differences’’ from the theory that ob-
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servers use only one operation for both
tasks. Data for nine experiments using a
variety of stimulus continua and experimental
procedures strongly favor the theory that
judges use only one operation whether in-
structed tojudge ‘‘ratios’’ or ‘‘differences.”’

Reference Notes

1. Elmasian, R., & Birnbaum, M. H. A harmonious
note on pitch. Unpublished manuscript, 1979,

2. Veit, C. T. Effect of instructions on the output
function for magnitude estimation, Unpublished
experiment, 1974.

3. Rule, S. J. Personal communication, 1979.

References

Attneave, F. Perception and related areas. In S. Koch
(Ed.), Psychology: A study of a science (Vol. 4).
New York: McGraw-Hill, 1962.

Banks, W. P., & Hill, D. K. The apparent magnitude
of number scaled by random production, Journal
of Experimental Psychology, 1974, 102, 353-376.
(Monograph)

Birnbaum, M. H. Using contextual effects to derive
psychophysical scales. Perception & Psychophysics,
1974, 15, 89-96.

Birnbaum, M. H. Differences and ratios in psycho-
logical measurement. In N. J. Castellan & F. Restle
(Eds.), Cognitive theory (Vol. 3). Hillsdale N.J.:
Erlbaum, 1978.

Birnbaum, M. H. Reply to Eisler: On the subtractive
theory of stimulus comparison. Perception & Psycho-
physics, 1979, 25, 150-156.

Birnbaum, M. H., & Elmasian, R. Loudness ‘‘ratios’’
and ‘‘differences’’ involve the same psychophysical
operation. Perception & Psychophysics, 1977, 22,
383-391.

Birnbaum, M. H., & Mellers, B. A. Measurement
and the mental map. Perception & Psychophysics,
1978, 23, 403-408.

Birnbaum, M. H., & Veit, C, T. Scale convergence
as a criterion for rescaling: Information integra-
tion with difference, ratio, and averaging tasks.
Perception & Psychophysics, 1974, 15, 7-15. (a)

Birnbaum, M. H., & Veit, C. T. Scale-free tests of
an additive model for the size~weight illusion.
Perception & Psychophysics, 1974, 16, 276-282. (b)

Chandler, J. P. STEPIT: Finds local minima of a
smooth function of several parameters. Behavioral
Science, 1969, 14, 81-82,

Curtis, D. W. Magnitude estimations and category
judgments of brightness and brightness intervals:
A two-stage interpretation. Journal of Experimental
Psychology, 1970, 83, 201-208.

Curtis, D. W., Attneave, F., & Harrington, T. L. A
test of a two-stage model of magnitude judgment.
Perception & Psychophysics, 1968, 3, 25-31.

Curtis, D. W., & Rule, S. J. Magnitude judgments of
brightness and brightness difference as a function of
background reflectance. Journal of Experimental
Psychology, 1972, 95, 215-222.

COMMENTS

Einstein, A. Relativity: The special and the general
theory. New York: Crown, 1961.

Eisler, H. On the ability to estimate differences: A
note on Birnbaum'’s subtractive model. Perception
& Psychophysics, 1978, 24, 185-189.

Hagerty, M., & Birnbaum, M. H. Nonmetric tests of
ratio vs. subtractive theories of stimulus com-
parison. Perception & Psychophysics, 1978,24, 121~
129.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A.
Foundations of Measurement. New York: Academic
Press, 1971.

Marks, L. E. On scales of sensation: Prolegomena
to any future psychophysics that will be able to come
forth as a science. Perception & Psychophysics,
1974, 16, 358-376.

Parker, S., Schneider, B., & Kanow, G. Ratio
scale measurement of the perceived lengths of lines.
Journal of Experimental Psychology: Human Per-
ception and Performance, 1975, 104, 195-204.

Poulton, E. C. The new psychophysics: Six models
for magnitude estimation. Psychological Bulletin,
1968, 69, 1-19.

Robinson, G. H. Biasing power law exponents by
magnitude estimation instructions. Perception &
Psychophysics, 1976, 19, 80-84,

Rose, B. J., & Birnbaum, M. H. Judgments of dif-
ferences and ratios of numerals. Perception &
Psychophysics, 1975, 18, 194-200.

Rule, S. J. Comparisons of intervals between sub-
jective numbers. Perception & Psychophysics,
1972, 11, 97-98.

Rule, S. J., & Curtis, D. W. Conjoint scaling of sub-
jective number and weight. Journal of Experimental
Psychology, 1973, 97, 305-309. (a)

Rule, S.J., & Curtis, D. W. Reevaluation of two models
for judgments of perceptual intervals. Perception &
Psychophysics, 1973, 14, 433-436. (b)

Rule, S. J., & Curtis, D. W. Subject differences in
input and output transformations from magnitude
estimations of differences. Acta Psychologica, 1977,
41, 61-65.

Rule, S. J., & Curtis, D. W. Ordinal properties of
subjective ratios and differences: Comment on Veit.
Journal of Experimental Psychology: General,
1980, 109, 296~300.

Rule, 8. J., & Curtis, D. W. Levels of sensory and
judgmental processing: Strategies for the evaluation
of a model. In B. Wegener (Ed.), Social attitudes
and psychophysical measurement. Hillsdale, N.J.:
Erlbaum, in press.

Rule, S. J., Curtis, D. W., & Markley, R. P. Input and
output transformations from magnitude estimation.
Journal of Experimental Psychology, 1970, 86, 343~
349,

Rule, S. J., Laye, R. C., & Curtis, D. W. Magnitude
judgments and difference judgments of lightness
and darkness. A two-stage analysis. Journal Experi-
mental Psychology, 1974, 103, 11081114,

Schneider, B., Parker, S., Farrell, G., & Kanow, G.
The perceptual basis of loudness ratio judgments.
Perception & Psychophysics, 1976, 19, 309-320.

Stevens, S. S. Issues in psychophysical measure-
ment. Psychological Review, 1971, 78, 426-450.



COMMENTS 319

Torgerson, W. S. Distances and ratios in psycho- Experimental Psychology General: 1980, 109,
logical scaling. Acta Psychologica, 1961, 19, 201~ 301-303.
205. Weiss, D. J. Averaging: An empirical validity criterion
Veit, C. T. Ratio and subtractive processes in psycho- for magnitude estimation. Perception & Psy-
physical judgment. Journal of Experimental Psy- chophysics, 1972, 12, 385-388.

chology: General, 1978, 107, 81-107.
Veit, C. T. Analyzing ‘‘ratio”” and ‘'difference”’ .
judgments: A reply to Rule and Curtis. Joarnal of Received May 22, 1979 »



