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a b s t r a c t

Three new properties are devised to test a family of lexicographic semiorder models of risky decision
making. Lexicographic semiorder models imply priority dominance, the principle that when an attribute
with priority determines a choice, no variation of other attributes can overcome that preference. Attribute
integration tests whether two changes in attributes that are too small, individually, to be decisive can
combine to reverse a preference. Attribute interaction tests whether preference due to a given contrast
can be reversed by changing an attribute that is the same in both alternatives. These three properties,
combined with the property of transitivity, allow us to compare four classes of models. Four new studies
show that priority dominance is systematically violated, that most people integrate attributes, and that
most people show interactions between probability and consequences. In addition, very few people show
the pattern of intransitivity predicted by the priority heuristic, which is a variant of a lexicographic
semiorder model with additional features chosen to reproduce certain previous data. When individual
data are analyzed in these three new tests, it is found that few people exhibit data compatible with any
of the lexicographic semiorder models. The most frequent patterns of individual data are those implied
by Birnbaum’s transfer of attentionmodel with parameters used in previous research. These results show
that the family of lexicographic semiorders is not a good description of how people make risky decisions.

© 2010 Elsevier Inc. All rights reserved.

Risky decision making involves making choices between
gambles such as the following:

Would you rather have gamble A with 0.5 probability to win
$40 and 0.5 probability to win $30, or would you prefer gamble B,
in which you win $100 with probability 0.5 and win nothing with
probability 0.5? Some people prefer A, which guarantees at least
$30; whereas other people prefer B, which has the higher expected
value. Models of risky decision making attempt to describe and to
predict such decisions.

The features that differ between gambles such as the probability
to win the highest prize, the value of the highest prize, and the
value of the lowest prize are called ‘‘attributes’’ of a gamble. We
denote gambles A and B in terms of their attributes as follows:
A = ($40, 0.5; $30, 0.5) and B = ($100, 0.5; $0, 0.5).

The purpose of this paper is to present empirical tests of critical
properties that can be used to testmodels of risky decisionmaking.
Critical properties are theorems that can be deduced from one
theory but which are systematically violated by at least one rival
theory. Three new critical tests are proposed here and evaluated
empirically in order to compare a class of lexicographic semiorder
models against alternative models. The property of transitivity
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of preference, which also distinguishes classes of models, is also
tested.

Three new properties are described that are implied by
lexicographic semiordermodels that are violated by other decision
making models. Priority dominance is the assumption that if a
person makes a decision based on a dimension with priority, then
no variation of other attributes of the gambles should reverse
that decision. Integrative independence is the assumption that two
changes in attributes that are not strong enough separately to
reverse a decision cannot combine to reverse a decision. Interactive
independence is the assumption that any attribute that is the
same in both gambles of a choice can be changed (to another
common value) without changing the preference between the
gambles. If lexicographic semiorder models are descriptive of how
people make decisions, we should not expect violations of these
properties, except due to random error. Lexicographic semiorder
models can violate transitivity, which is implied by many other
models. Let A ! B represent systematic preference for gamble A
over gamble B. Transitivity is the assumption that if A ! B and
B ! C , then A ! C .

The rest of this paper is organized as follows. The next sec-
tion describes four classes of decision making models that can be
evaluated by testing these four properties. In addition, two spe-
cific models are described including parameters chosen from pre-
vious research that will be used to make predictions to the new
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experiments. The section titled ‘‘New Diagnostic Tests’’ presents
the properties to be tested in greater detail. The ‘‘Predictions’’ sec-
tion presents a summary of the predicted outcomes of the tests ac-
cording to the classes of models. This section also includes a de-
scription of the model of random error that is used to evaluate
whether or not a given pattern of observed violations is system-
atic or can be attributed instead to random variability. The next
four sections present experimental tests of priority dominance, at-
tribute integration, attribute interaction, and transitivity, respec-
tively. The results show systematic violations of the three prop-
erties implied by lexicographic semiorders that were predicted in
advance using a model and parameters taken from previous re-
search. The fourth study searched for violations of transitivity pre-
dicted by a specific lexicographic semiorder model; the data failed
to confirm predictions of that model. The discussion summarizes
the case against lexicographic semiorders as descriptive models of
risky decision making, including related findings in the literature.
Additional technical details concerning the test of integrative in-
dependence, proofs, true and error model, and supplementary sta-
tistical results are presented in Appendices.

1. Four classes of decision models

Themost popular theories of choice between risky or uncertain
alternatives are models that assign a computed value (utility)
to each alternative and assume that people prefer (or at least
tend to prefer) the alternative with the higher utility (Luce, 2000;
Starmer, 2000;Wu, Zhang, & Gonzalez, 2004). These models imply
transitivity of preference.

The class of transitive utility models includes Bernoulli’s
(1738/1954) expected utility (EU), Edwards’ (1954) subjectively
weighted utility (SWU), Quiggin’s (1993) rank-dependent util-
ity (RDU), Luce and Fishburn’s (1991; 1995) rank-and sign-
dependent utility (RSDU), Tversky and Kahneman’s (1992) cumu-
lative prospect theory (CPT), Birnbaum’s (1997) rank
affected multiplicative weights (RAM), Birnbaum’s (1999; Birn-
baum& Chavez, 1997) transfer of attention exchange (TAX)model,
Marley and Luce’s (2001; 2005) gains decomposition utility (GDU),
Busemeyer and Townsend’s (1993) decision field theory (DFT), and
others.

These models can be compared to each other by testing ‘‘new
paradoxes’’, which are critical properties that must be satisfied by
proper subsets of the models (Birnbaum, 1999, 2004a,b, 2008b;
Marley & Luce, 2005). Although these transitive utility models can
be tested against each other, they all have in common that there
is a single, integrated value or utility for each gamble, that these
utilities are compared, and people tend to choose the gamble with
the higher utility. For the purpose of this paper, these models are
all in the same class.

Let U(A) represent the utility of gamble A. All members of this
class of models assume,

A ! B ⇔ U(A) > U(B), (1)

where ! denotes the preference relation. Aside from ‘‘random
error,’’ these models imply transitivity of preference, because A !
B ⇔ U(A) > U(B) and B ! C ⇔ U(B) > U(C) ⇒
U(A) > U(C) ⇔ A ! C . That is, because these models
represent utilities of gambles with numbers and because numbers
are transitive, it follows that preferences are transitive.

Let A = (x, p; y, 1 − p) represent a ranked, two-branch gamble
with probability p to win x, and otherwise receive y, where x >
y ≥ 0. This binary gamble can also be written as A = (x, p; y). The
two branches are probability-consequence pairs that are distinct in
the gamble’s presentation: (x, p) and (y, 1 − p).

In EU theory, the utility of gamble A = (x, p; y, 1 − p) is given
as follows:

EU(A) = pu(x) + (1 − p)u(y) (2)

where u(x) and u(y) are the utilities of consequences x and y. In
expected utility, the weights of the consequences are simply the
probabilities of receiving those consequences.

A transitive model that has been shown to be a more accurate
description of risky decision making than EU or CPT is Birnbaum’s
(1999) special transfer of attention exchange (TAX) model.
Birnbaum (2008b) has shown that this model correctly predicts
data that refute CPT. This model also represents the utility of a
gamble as a weighted average of the utilities of the consequences,
butweight in thismodel depends on the probabilities of the branch
consequences and ranks of branch consequences in the gamble. In
this model, people assign attention to each branch as a function of
its probability, but weight is transferred among ranked branches,
according to the participant’s point of view. A person who is risk-
averse may transfer weight from the branch leading to the highest
consequence to the branch with the lowest consequence, whereas
one who is risk-seeking may transfer attention (and weight) to
higher-valued branches. This model can be written for two branch
gambles (when ω > 0) as follows:

TAX(A) = au(x) + bu(y)
a + b

(3)

where a = t(p)−ωt(p), b = t(q)+ωt(p), and q = 1−p. Intuitively,
when the parameterω > 0 there is a transfer of attention from the
branch leading to the best consequence to the branch leading to
the worst consequence. This parameter can produce risk aversion
evenwhen u(x) = x. In the casewhereω < 0,weight is transferred
from lower-valued branches to higher ones; in this case, a = t(p)−
ωt(q) and b = t(q)+ωt(q). The formulas for three-branch gambles
include weight transfers among all pairs of branches (Birnbaum,
2004a, 2008b; Birnbaum & Navarrete, 1998).

The special TAX model was fit to data of individuals with the
assumptions that t(p) = pγ and u(x) = xβ ; for example, Birnbaum
and Navarrete (1998) reported median best-fit parameters as
follows: β = 0.41, γ = 0.79, and ω = 0.32.

For the purpose of making ‘‘prior’’ predictions for TAX in this
article, a still simpler version of the TAX model is used. Let
u(x) = x for 0 < x < $150; t(p) = p0.7, and ω = 1/3.
These functions and parameters, which approximate certain group
data for gambles with small positive consequences, are called
the ‘‘prior’’ parameters, because they have been used in previous
studies to predict new datawith similar participants, contexts, and
procedures. They have had some success predicting results with
American undergraduates who choose among gambles with small
prizes (e.g. Birnbaum, 2004a, 2008b). Use of such parameters to
predict modal patterns of data should not be taken to mean that
everyone is assumed to have the same parameters. Themain use of
these prior parameters is for the purpose of designing new studies
that are likely to find violations of rival models.

Several papers have shown that the TAXmodel ismore accurate
in predicting choices among risky gambles than CPT or RDU
(Birnbaum, 1999, 2004a,b, 2005a,b; Birnbaum, 2006; Birnbaum,
2007; Birnbaum, 2008b; Birnbaum & Chavez, 1997; Birnbaum
& McIntosh, 1996; Birnbaum & Navarrete, 1998; Weber, 2007).
For example, CPT and RDU models imply first order stochastic
dominance, but the TAX model does not. Experiments designed
to test stochastic dominance have found violations where they
are predicted to occur based on the TAX model with its prior
parameters (e.g. Birnbaum, 2004a, 2005a). Similarly, TAX correctly
predicted other violations of this class of rank dependent models
(Birnbaum, 2004a,b, 2008b). This model has also been extended
to make predictions for choice response times as well as choice



Author's personal copy

M.H. Birnbaum / Journal of Mathematical Psychology 54 (2010) 363–386 365

probabilities and judgments (Birnbaum & Jou, 1990; Johnson &
Busemeyer, 2005).

For the purpose of this paper, however, TAX, CPT, RDU, GDU,
EU, DFT and other theories in this family are all in the same
category and (given selected parameters) can be virtually identical.
These models are all transitive, all imply that attributes are
integrated, and they all imply interactions between probability and
consequences. The experiments in this article will test properties
that these integrativemodels share in common against predictions
of other families of models that disagree. Therefore, it should be
kept in mind that what is said about TAX in this paper applies as
well to other models in its class.

A second class includes non-integrative but transitive models.
For example, suppose people compared gambles by just one
attribute (for example, by comparing their worst consequences).
If so, they would satisfy transitivity, but no change in the other
attributes could overcome a difference due to the one attribute
people use to choose.

A third class of theories assumes that people integrate contrasts
(differences between the alternatives) but can violate transitivity
(González-Vallejo, 2002). For the purpose of this paper, this class of
theories will be described as integrative contrast models, since they
involve contrasts and aggregation of the values of these contrasts.

An example of such a model is the additive contrastsmodel:

D(G, F) =
n−1∑

i=1

φi(piG, piF ) +
n∑

i=1

θi(xiG, xiF ) (4)

where D(G, F) > 0 ⇔ G ! F , φi are functions of branch probabili-
ties in the two gambles, and θi are functions of consequences on
corresponding branches of the two gambles. With gambles de-
fined on positive consequences, these functions are assumed to
be strictly increasing in their first arguments, strictly decreasing
in their second arguments; they are assumed to be zero when the
two components are equal in any given contrast; further, assume

φi(piG, piF ) = −φi(piF , piG) and θi(xiG, xiF ) = −θi(xiF , xiG).

This type of model can violate transitivity. For example,
consider three-branch gambles with equally likely outcomes,
G = (x1G, 1/3; x2G, 1/3; x3G, 1/3). Because the probabilities are all
equal, all φi(piG, piF ) = 0 in this case. Now suppose

θi(xiG, xiF ) =
{1 xiG − xiF > 0
0, xiG − xiF = 0
−1 xiG − xiF < 0

(5)

where G ! F ⇔ D(G, F) > 0. Let A = ($80; $40; $30) represent
a gamble that is equally likely to win $80, $40, or $30. It will be
preferred to B = ($70; $60; $20) because D(A, B) = 1 > 0 (A has
two consequences higher than corresponding consequences of B).
Similarly, B will be preferred to C = ($90; $50; $10) for the same
reason; however, C will be preferred to A, violating transitivity.

Rubinstein (1988) proposed a model in which small differences
are depreciated compared to large differences, and in which
people choose the alternative that is better on attributes that
are also dissimilar. He showed that such models could account
for the Allais paradox. Leland (1994) noted that such models
might account for other ‘‘anomalies’’ of choice, which are empirical
findings that violate expected utility theory. González-Vallejo
(2002) incorporated a normally distributed error component in an
additive contrast model called the stochastic difference model, and
showed that, with specified φi and θi functions, her model could fit
several empirical results in risky decision making. These functions
incorporated the difference in probability or in consequence
divided by themaximumprobability or consequence in the choice,
respectively.

Integrative contrast models can also violate stochastic domi-
nance. For example, suppose φi(piG, piF ) = 100(piG − piF ) for
i = 1, 2; and suppose θi(xiG, xiF ) = xiG − xiF , for all branches. It
follows that G = ($100, 0.7; $90, 0.1; $0, 0.2) will be preferred to
F = ($100, 0.8; $10, 0.1; $0, 0.1), even though F dominates G. In
this case,D(G, F) = 100(0.7−0.8)+100(0.1−0.1)+(100−100)+
(90− 10) + (0− 0) = 70. [To avoid such implications, some have
assumed that people first check for stochastic dominance before
employing such models (e.g. Leland, 1994). However, systematic
violations of stochastic dominance have been observed in empiri-
cal studies of such choices (Birnbaum, 1999, 2004a, 2005a, 2008b),
which is evidence against CPT, Security Potential/Aspirationmodel
of Lopes and Oden (1999), and other models that satisfy stochastic
dominance.]

Another type of contrast model includes products of terms
representing probabilities with terms representing contrasts in
consequence. Amember of this class of interactive models is regret
theory (Loomes, Starmer, & Sugden, 1991). See the discussion in
Leland (1998). Another example is themost probable winner model
(Blavatskyy, 2006), sometimes calledmajority rule (Zhang, Hsee, &
Xiao, 2006). These models can be written as follows:

D(G, F) =
n∑

i=1

φi(Ei)θi(xiG, xiF ). (6)

In this case, gambles are defined on mutually exclusive and
exhaustive states of theworld (‘‘events’’, Ei), which have subjective
probabilities, φi(Ei); and the θi are functions that represent, for
example, ‘‘regret’’ for having chosen gamble G instead of F given
their consequences under that state of the world. This model can
also violate transitivity (as in the example of Eq. (5)); but unlike the
additive contrasts model (Eq. (4)), this model allows interactions
between probabilities of events and their consequences.

A fourth class of models, explored in this paper, includes
non-integrative, non-interactive, intransitivemodels. Examples are
the lexicographic semiorder (e.g. Tversky, 1969) and the priority
heuristic (PH) of Brandstätter, Gigerenzer, and Hertwig (2006) in
restricted domains.

A semiorder is a structure in which the indifference relation
need not be transitive (Luce, 1956). Suppose two stimuli are
indifferent if and only if their difference in utility is less than a
critical threshold. Let∼ represent the indifference relation. IfA ∼ B
and B ∼ C it need not follow that A ∼ C .

A lexicographic order is illustrated by the task of alphabetizing a
list of words. Two words can be ordered if they differ in their first
letter. However, if the first letter is the same, one needs to examine
the second letters in the twowords. At each stage, letters following
the one on which they differ have no effect on the ordering of the
two words.

In a lexicographic semiorder (LS), people compare the first
attribute, and if the difference is less than a threshold, they go on to
examine the second attribute; if that attribute differs by less than
a threshold, they go on to the third, and so on.

1.1. Lexicographic semiorder model for risky decision making

For analysis of new tests that follow, it is useful to state a LS
model for the special case of two-branch gambles with strictly
non-negative consequences, A = (x, p; y, 1 − p) and B =
(x′, p′; y′, 1 − p′), where x > y ≥ 0 and x′ > y′ ≥ 0. Suppose
people consider first the lowest consequences of the two gambles,
next the probabilities of the two gambles, and finally, the higher
consequences of the two gambles, as follows:

If u(y) − u(y′) ≥ ∆L, choose A (7a)

If u(y′) − u(y) ≥ ∆L, choose B. (7b)
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In these expressions, people choose a gamble if the difference
in lowest outcomes exceeds the threshold, ∆L. Only if neither
condition ((7a) or (7b)) holds, does the decider examine the
difference between probabilities. In this stage, the decision ismade
as follows:

Else if s(p) − s(p′) ≥ ∆P , choose A (8a)

Else if s(p′) − s(p) ≥ ∆P , choose B. (8b)

Only if none of the above four conditions hold, does the decider
compare the largest consequences. In the case of two-branch
gambles, the decision would then be based on that attribute alone:

Else if u(x) > u(x′) choose A (9a)

Else if u(x) < u(x′) choose B. (9b)

If none of the above six conditions holds, then the decider has no
preference. 1

In two-branch gambles, there are six possible orders in which
to examine the attributes, which will be denoted: LPH, LHP, PHL,
PLH, HPL, and HLP. For example, the LPH semiorder is the one
described in Expressions (7)–(9) in which the lowest consequence,
probability, and highest consequence are examined in that order.
There are thus four ‘‘parameters’’ in the LS family for two-
branch gambles: the first attribute examined, the threshold for
deciding on that attribute; the second attribute examined, and
the threshold for deciding on that attribute (once the first and
second attributes have been chosen, the third is determined for
two-branch gambles). In addition, there are two functions, v(y)
and s(p) for LPH, u(x) and v(y) for LHP, etc.

1.2. Priority heuristic

The priority heuristic (PH), as applied to two-branch gambles
with strictly positive consequences, is similar to the LPH lexico-
graphic semiorder, but it has additional features and assumptions.
First, it is assumed that v(y) and s(p) are identity functions. In
many applications, such as studies with only two levels of x, p, or y,
this assumption adds no constraint. Second, the threshold for con-
sequences is assumed to be one tenth of the largest consequence in
either gamble, rounded to the nearest prominent number. [Promi-
nent numbers include integer powers of 10 plus one-half and twice
their values (e.g, 1, 2, 5, 10, 20, 50, 100, . . . ).] This figure yields
difference threshold for comparing lowest consequences: ∆L =
R[max(x, x′)], where R represents the rounded value of one-tenth.
For example, if the largest prize of either gamble were $90, 10%
of this would be $9, which would be rounded to ∆L = $10. (When
there aremore than twobranches in a gamble, it is further assumed
that ∆H = ∆L.)

Third, if
∣∣y − y′∣∣ ≥ ∆L, the decision is made as in Expressions

(7a) and (7b). Fourth, if this difference does not reach threshold,
then if

∣∣p − p′∣∣ ≥ ∆P = 0.1, people decide on probability.
Fifth, if the difference in probability is not decisive, people are
assumed to compare the best consequences. In the case of two-
branch gambles, if there is any difference in H, people decide on
that factor alone, as in Expressions (9a) and (9b). If none of these

1 A reviewer suggested imposing a threshold for the last attribute considered.
Introducing such a threshold would imply that the model reaches no decision
if all three differences fall short of threshold, even if all three favored the same
alternative, contrary to empirical data. Presumably, one would need to add a tie-
breaker rule to the LS to construct amore realisticmodel. Certainly if the tie-breaker
included an interactive and integrative component (such as the TAXmodel), such a
hybrid model would be a more realistic description of the data. However, I cannot
see why this parameter would improve the accuracy of the LS models without a
tie-breaker.

reasons is decisive, the priority heuristic holds that people choose
randomly between the gambles.

Although the title of Brandstätter et al. (2006) suggests that
their model has no ‘‘trade-offs,’’ the ratio of a difference to
the largest consequence does involve a tradeoff. A difference of
$10 would be decisive in the case of gambles with a maximal
prize of $100, but this difference would not be decisive in a
choice with a highest prize of $1000. So there is a tradeoff
between the difference in the lowest consequences and the highest
consequence. However, if the largest prize is fixed in a given
experiment (e.g., when the largest prize is always $100), and if
there are no more than two branches in a gamble, we can treat the
priority heuristic as a special case of the LPH LS model within that
restricted experimental domain.

1.3. Comparing models

This article will evaluate the descriptive adequacy of models
by two methods. First, the priority heuristic with its threshold
parameters is compared against the special TAX model with
its prior parameters. To compare models this way, one simply
counts the number of people who show the pattern of behavior
predicted by each model. This method puts both models on
equal footing since no parameters are estimated from the new
data. It has the drawback, however, that individual differences or
poor selection of parameters could lead to wrong conclusions. In
addition, conclusions about the general classes of models are not
justified from such tests.

The second method is to test predictions of a model that
hold true with any parameters. Testing critical properties has the
advantage that it allows rejection of an entire class of models
without assuming that all people are the same or that their
parameters are known in advance of the experiment. When there
are systematic violations, the model whose properties are violated
can be rejected, and the model whose predicted violations are
observed can be retained. The negative argument (against the
disproved class of models) is, of course, stronger than the positive
argument in favor of the model that predicted the violations for
two reasons: (1) other models might have also predicted the same
violations; and (2) some other test of the successful model might
lead to its rejection.

Although the second method, testing the critical properties, is
the more powerful method in principle, it still depends in practice
on parameterizedmodels for appropriate experimental design.We
cannot design a very effective test of critical properties unless
we use the rival model’s parameters to predict where to look for
violations. It is easy to conduct a ‘‘test’’ of a property that if violated
would be extremely powerful, but in which a class of models and
its rivals agree there should be no violation. That is, in principle
an experimental design may be fine, but in practice it is not likely
to disprove a false model. In order to ensure a good experimental
design, therefore, we use the parameterized version of the rival
model to design the critical test of the class ofmodels. In this study,
we use the parameterized TAX model to design the experiments
testing the three properties implied by lexicographic semiorders,
and we use the priority heuristic with its parameters to design
the tests of transitivity that have potential to unseat the family of
transitive models, including TAX.

1.4. Individual differences

Brandstätter et al. (2006) emphasize that the priority heuristic
has only one priority order, LPH for two-branch gambles. In
addition, they assume that there is only one threshold parameter;
indeed, they are skeptical about estimating parameters from data.
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Table 1
Classification of models with respect to testable critical properties. EU = Expected utility theory; CPT = cumulative prospect theory, TAX = transfer of attention exchange
model; GDU = gains decomposition utility; OAH = one attribute heuristic; ACM = Additive contrasts model; SDM = Stochastic Difference Model; MPW = most probable
winner; RT = regret theory; LS = lexicographic semiorder; PH = priority heuristic.

Model Testable property
Priority dominance Attribute integration Attribute interaction Transitivity

EU, CPT, TAX, GDU No Yes Yes Yes
OAH Yes No No Yes
ACM, SDM No Yes No No
MPW, RT No Yes Yes No
LS, PHa Yes No No No
a The PH allows integration and interaction between lowest and highest consequences when themaximal consequence is varied such that it rounds to different prominent

numbers; however, when the highest consequence is fixed, PH agrees with the LS model for two-branch gambles.

They argue that the thresholds are determined by the base-
10 number system. Presumably, all people who were educated
with the same, base-10 number system should have the same
parameters.

However, different people might have different priority orders
for the different factors. In addition, within any order, different
people might have different threshold parameters for comparing
the lowest consequences, highest consequences, and probabilities,
∆L, ∆P , and ∆H .

2. New diagnostic tests

Three new diagnostic tests allow us to test this entire class
of LS models against classes of rival models. Whereas LS models
have been used in previous studies to account for violations from
implications of the family of EU models, in this paper, a member
of the family of EU models is used to predict systematic violations
of LS models. Relations among theories and the properties to be
tested in four new studies are listed in Table 1.

The properties will be stated in terms of three attributes, L,
P, and H. These might represent any three factors that can be
manipulated, but for the tests presented here, L represents the
lowest consequence in a two-branch gamble, P is the probability
to win the highest consequence, and H is the highest (best)
consequence in the gamble. Let A = (xA, pA; yA) represent the
gamble to win xA with probability pA and otherwise win yA, where
xA > yA ≥ 0.

2.1. Priority dominance

Priority Dominance holds that attributes with lower priority
cannot over-rule a decision based on an attribute with higher
priority. Once a critical threshold is reached on an attribute with
priority, variation in all other attributes, no matter how great,
should have absolutely no effect.

The term ‘‘dominance’’ is used here by analogy to a dominant
allele in Mendelian genetics. A heterozygous genotype shows
the observed characteristic (phenotype) of the dominant allele.
Here, priority dominance refers to the implication that if an
attribute has priority and is the reason for one choice, if that same
dominant reason is present in a second choice and pitted against
improvements of attributes with lower priority, the attribute with
higher priority should determine the choice. Hence, no change
in ‘‘recessive’’ attributes can overcome a decision based on a
dominant attribute.

Priority dominance is the assumption that one and only one of
the three attributes has first (highest) priority and that all three of
the following conditions hold:

If L has first priority, then for all yA > yB > 0; pB > pA >
0; xB > xA > 0; p′

B > p′
A > 0; x′

B > x′
A > 0,

A = (xA, pA; yA) ! B = (xB, pB; yB)
⇔ A′ = (x′

A, p
′
A; yA) ! B′ = (x′

B, p
′
B; yB). (10a)

If P has first priority, then for all pA > pB > 0; xB > xA >
0; yB > yA ≥ 0; x′

B > x′
A > 0; y′

B > y′
A ≥ 0,

A = (xA, pA; yA) ! B = (xB, pB; yB)
⇔ A′ = (x′

A, pA; y′
A) ! B′ = (x′

B, pB; y′
B). (10b)

If H has first priority, then for all xA > xB > 0; pB > pA >
0; yB > yA ≥ 0; p′

B > p′
A > 0; y′

B > y′
A ≥ 0,

A = (xA, pA; yA) ! B = (xB, pB; yB)
⇔ A′ = (xA, p′

A; y′
A) ! B′ = (xB, p′

B; y′
B). (10c)

Note that in Expression (10a), there is only one reason to
prefer A ! B; namely, A has a better lowest consequence.
Both of the other attributes favor B. If L has first priority in a
lexicographic semiorder, then we know that the difference in
lowest consequence was enough to meet or exceed the threshold;
otherwise, the person would have chosen B. But if L has first
priority, then there should be no effect of any changes in P and
H. Therefore, because the same contrast in L is present in A′ and
B′, changing the levels of P and H cannot reverse the preference.
Similarly, if A′ ! B′, then if L has first priority, then A ! B by the
same argument.

The priority heuristic assumes that the first attribute considered
is lowest consequence (L). If L has first priority, and if a $20
difference is enough to prefer A to B, then no variation in the other
two attributes should reverse this preference. For example,

A = ($98, 0.10; $20) ! B = ($100, 0.11; $0)
⇔ A′ = ($22, 0.1; $20) ! B′ = ($100, 0.99; $0).
Suppose, however, that different participants might have

different priorities. In that case, wemust test all three propositions
(that each of the three attributes might be most important). If
each person obeys a LS model but different people have different
priorities, then each person could show priority dominance in one
of the three tests, aside from random error. However, if people use
a model with trade-offs such as EU or TAX, then people might be
found who violate all three of Expressions (10).

2.2. Attribute integration

Integrative independence is the assumption that small differ-
ences on two factors, if not large enough by themselves to reverse a
decision, cannot combine to reverse a decision. The term attribute
integrationwill be used to indicate systematic violations that cause
us to reject integrative independence. This independence property
will be tested by factorial manipulations in which two small dif-
ferences are independently varied. We examine whether the com-
bined effect of changes in two attributes produces a different deci-
sion from that produced by each one separately.

Each pair of attributes can be tested for integration by a set
of four choices. For example, four choices testing the integration
of factors L and H are choices between A = (xA, pA, yA) and
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B = (xB, pB, yB), where xA > yA ≥ 0 and xB > yB ≥ 0,
can be constructed from a 2 × 2 factorial design of Contrasts
in L [lower consequences, (yA, yB) or (y′

A, y
′
B)] by Contrasts in H

[higher consequences, (xA, xB) or (x′
A, x

′
B)]. A = (xA, pA, yA) versus

B = (xB, pB, yB), A′ = (x′
A, pA, yA) versus B′ = (x′

B, pB, yB), A
′′ =

(xA, pA, y′
A) versus B′′ = (xB, pB, y′

B), and A′′′ = (x′
A, pA, y

′
A) versus

B = (x′
B, pB, y

′
B). It is assumed that levels can be selected such that

u(x′
A) − u(x′

B) > u(xA) − u(xB) and v(y′
A) − v(y′

B) > v(yA) −
v(yB). Not all choices of levels satisfying the above constraints will
produce a diagnostic test between the family of LS models and a
particular integrative model.

In order to provide a diagnostic test against a specific integrative
model, the ten values in the factorial design above should be
chosen such that an integrative model predicts that people will
choose B, B′, and B′′ in the first three choices, and the fourth
reverses that decision. It is important to distinguish this pattern,
BB′B′′A′′′, which is evidence of integration (both changes are
required to produce the change) from the pattern, BA′A′′A′′′

(which is evidence that either manipulation suffices to change the
response).

It is possible to find sets of 10 levels for each test such that an
integrative model predicts the response pattern BB′B′′A′′′ and no
member of the family of LS models can account for this pattern. In
this paper, the TAX model with prior parameters is used to design
the experiments: levels were selected such that the parameterized
TAX model predicts the response pattern BB′B′′A′′′.

Depending on the experimental design, the test may not refute
all members of the family of LS models. To assess the diagnostic
value of a design, one can work out all possible combinations of
parameters to determine if any LS model is compatible with the
pattern BB′B′′A′′′. If no version of LS model can predict this pattern
and an integrative model predicts it, the experimental design is
called a proper test of integration. If only a proper subset of the LS
models can be refuted, the experimental design is called a partial
test of integration.

There are many ways to choose ten attribute values to produce
a proper test of integrative independence. Onemethod is to choose
x′
A ≥ xA > xB > x′

B > y′
A > yA > yB ≥ y′

B ≥ 0, and
pB > pA > 0. Under any monotonic u(x), v(y), and s(p) functions,
the above conditions will hold, and the test will be a proper test
of integrative independence, in which any LS model implies the
following:

If A = (xA, pA; yA) ≺ B = (xB, pB; yB), (11a)

And if A′ = (x′
A, pA; yA) ≺ B′ = (x′

B, pB; yB), (11b)

And if A′′ = (xA, pA; y′
A) ≺ B′′ = (xB, pB; y′

B), (11c)

Then A′′′ = (x′
A, pA; y′

A) ≺ B′′′ = (x′
B, pB; y′

B). (11d)

In this case, note that changing the highest consequences
results in the same choice between A′ and B′ as in the choice
between A and B ((11a) and (11b)). Similarly, changing the
lowest consequences ((11a) and (11c)) does not reverse the choice
between A′′ and B′′ (it is the same as that between A and B). If
people do not integrate information between these attributes, then
the combination of both changes (in (11d)) should not reverse the
choice between A′′′ and B′′′.

The above constraints imply that there are three mutually
exclusive possibilities for the threshold for H : u(x′

A) − u(x′
B) >

u(xA) − u(xB) ≥ ∆H , u(x′
A) − u(x′

B) ≥ ∆H > u(xA) − u(xB),
or ∆H > u(x′

A) − u(x′
B) > u(xA) − u(xB). Similarly, there are

just three possibilities for the threshold for L : u(y′
A) − u(y′

B) >
u(yA) − u(yB) ≥ ∆H , u(y′

A) − u(y′
B) ≥ ∆H > u(yA) − u(yB) and

∆H > u(y′
A)−u(y′

B) > u(yA)−u(yB). There are two possibilities for
P: either s(pB) − s(pA) ≥ ∆P or ∆P > s(pB) − s(pA) > 0. There are
therefore 3 × 3 × 2 = 18 threshold patterns by 6 priority orders,
yielding 108 LS models to consider. None of these 108 LS models

implies the pattern BB′B′′A′′′. When the data show this pattern and
none of the possible LS model can predict it, we say that attributes
L and H show evidence of attribute integration.

Appendix A proves that integrative independence is implied by
all LSmodels in a design satisfying the above constraints. The proof
consists of working out all possible combinations of assumptions
concerning priority orders and threshold parameters to show that
BB′B′′A′′′ is not consistent with any of the LS models. With three
attributes (e.g., binary gambles), there are three possible pair-wise
tests of attribute integration.

Other tests of integration can be constructed by nesting
factorial manipulation of contrasts in different constellations of
background levels for the attributes. Because there are ten values
to choose, there are many combinations that lead to proper tests
of integration. The proofs in each new case consist of working out
all possible response patterns produced by the family of LS models
that include all possible assumptions concerning the priority order
and relations between the thresholds and the contrasts used. Such
proofs have been conducted for each of the tests of integration in
Tables 4, 6 and 7, as well as for the other properties tested here.
Appendix A includes the proof for the test in Table 4, showing that
no LS model implies the same response pattern as does the prior
TAX model.

Note that if priority dominance held, (11a) is true if and
only if (11d) is true, assuming P is highest in priority. Priority
dominance must therefore be violated to observe evidence of
integration for two ‘‘recessive’’ attributes. However, violation of
priority dominance does not rule out integrative independence.

2.3. Attribute interaction

LS models and the priority heuristic assume no interactions
between probabilities and consequences. Thus, in a choice
between two binary gambles, if all four consequences are held
fixed, it should not be possible to reverse the preference by
changing the probability to win the larger consequence, as long as
that probability is the same in both gambles of each choice. Indeed,
if people consider one factor at a time, any factor that is the same
in both gambles of a choice should have no effect on the decision.
If people are unaffected by any factor that is the same in both
alternatives, they will show no attribute interaction. Interactive
independence for probability and consequences can be defined as
follows:

A = (xA, p; yA) ! B = (xB, p; yB)
⇔ A′ = (xA, p′; yA) ! B′ = (xB, p′; yB). (12)

In this case, the probability has been changed but it is the same
in both gambles within each choice. In order to find violations, we
choose xB > xA ≥ 0, yA > yB ≥ 0, and p′ > p > 0. For
example, A = ($55, 0.1; $20) ! B = ($95; 0.1; $5) if and only
if A′ = ($55, 0.9; $20) ! B′ = ($95, 0.9; $5) can be refuted.
According to any LS model, people should choose either A and A′

or B and B′, but they should not switch from A to B′. Violations of
interactive independence are evidence of attribute interaction.2

2 This test of interactive independence should not be confused with the test of
interaction in Analysis of Variance, which can be significant even when Expression
(12) is satisfied. Nor should it be confusedwith tests of sign dependence; Expression
(12) does not require negative or mixed consequences. Expression (12) has some
similarities to but is not the same as Birnbaum’s (1974a) ‘‘scale-free’’ test of
interaction. Violations of Expression (12) are stronger than Birnbaum’s scale-free
test because they represent reversals of preference rather than just inequalities of
strengths of preference.
Amore general formof interactive independence is also implied by LSmodels and

the priority heuristic; namely, as long as the contrast on a given factor is constant,
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3. Predictions

The predictions of classes of models are listed in Table 1. The
family of integrative, interactive, transitive utility models (includ-
ing EU, CPT, TAX, and many others) violates priority dominance,
violates integrative independence (displays integration), violates
interactive independence (shows interaction), and satisfies transi-
tivity. Predictions of the prior TAXmodel are used to represent this
class ofmodels and to show that it can predict violations of the first
three properties in each of the tests. (See Appendix B for proofs of
properties in Table 1 that are not included in the main text).

One-attribute heuristics (OAH) are transitive and show priority
dominance, but they show integrative independence and interac-
tive independence. If a person used only one attribute in making a
choice, he or shewould not show interactions or integration among
attributes.

Additive contrastmodels, including stochastic differencemodel
(González-Vallejo, 2002), violate priority dominance, exhibit
attribute integration, imply no attribute interactions and violate
transitivity. Leland’s (1994; 1998) version of the Rubinstein (1988)
similarity model is a hybrid that uses expected utility as a
preliminary step; this means that his version of the similarity
model can show integration and interactions between probability
and prizes due to its inclusion of EU as a preliminary step.

The majority rule model, most probable winner model, and
regret theory (Loomes et al., 1991; Loomes & Sugden, 1982)
violate priority dominance; these models show integration and
interaction, but they can violate transitivity.

The family of LSmodels satisfies priority dominance, integrative
independence, interactive independence, but it violates transitiv-
ity. As long as 10% of the largest consequence rounds to the same
prominent number, and we restrict our experiment to two-branch
gambles, the priority heuristic is a special case of the LPH LSmodel.
Predictions of LS models will be presented for each of the tests in-
cluded here.

3.1. Error model

With real data, it is not expected that critical properties will
hold perfectly. Indeed, when the same choice is presented to the
same person, that person does not alwaysmake the same decision.
For that reason, we need a model of response variability in order
to construct the statistical null hypothesis that a property holds,
except for random ‘‘error’’.

For example, suppose we conduct a proper test of integrative
independence. According to the LS models, we should not observe
response patterns where a person chooses B ! A, B′ ! A′, B′′ ! A′′

and yet A′′′ ! B′′′. Some violationsmight arise because a person has
the true pattern BB′B′′B′′′, which is compatible with the property,
but makes an ‘‘error’’ on the fourth choice. How should one decide
that a given number of violations refutes the property?

A ‘‘true and error’’ model allows us to address this question. The
error model used here is like that of Sopher and Gigliotti (1993)
and Birnbaum (2004b), except with an improvement that uses
replications to estimate the error rates. The use of replications

there should be no reversal in the effect due to the contrasts on other factors. This
more general version, however, requires that we can equate contrasts exactly. In
the priority heuristic, for example, it is assumed that equal probability differences
are equal (i.e., s(p) = p); therefore, the priority heuristic implies this more general
definition of interactive independence:

A = (xA, p; yA) ! B = (xB, q; yB) ⇔ A′ = (xA, p′; yA) ! B′ = (xB, q′; yB),
where p′ − q′ = p − q. This property is not tested in this paper, except in the case
where p = q.

avoids the problem that error terms are constructed within the
model to be evaluated (Birnbaum & Schmidt, 2008).

When there are replications, error rates can be estimated from
cases where the same person makes different decisions when
presented the same choices. Consider a choice between a ‘‘safe’’
and a ‘‘risky’’ gamble, denoted S and R, respectively. Let p represent
the ‘‘true’’ probability of preferring the safe gamble, S, and let e
represent the error rate. If this choice is presented twice, there
are four possible response patterns, SS, SR, RS, and RR, where
RR denotes choice of the ‘‘risky’’ gamble on both presentations.
The theoretical probability that a person would choose the risky
gamble on both replicates, P(RR), is then given by the following
expression:

P(RR) = pe2 + (1 − p)(1 − e)2. (13)

In other words, this observed pattern can come about in two
mutually exclusive ways: people who truly preferred the safe
gamble and made two errors or people who truly preferred the
risky gamble and twice expressed their preferences correctly.
Similarly, the predicted probability of switching from R in the first
choice to S in the second choice is given by the following:

P(RS) = pe(1 − e) + (1 − p)e(1 − e) = e(1 − e). (14)

The probability of making the opposite reversal of preferences,
P(SR), is also predicted to be e(1−e). The probability of two choices
of the ‘‘safe’’ gamble is P(SS) = p(1 − e)2 + (1 − p)e2.

This error model has been extended to test such properties as
gain loss separability (Birnbaum & Bahra, 2007), integration (Birn-
baum & LaCroix, 2008), and transitivity (Birnbaum & Gutierrez,
2007; Birnbaum & Schmidt, 2008); it will be used here to evalu-
ate the properties in Table 1. Additional information is provided in
Appendix C.

4. Study 1: A test of priority dominance

According to the class of LS models, once a decisive reason is
found, attributeswith lower priority are not considered. Therefore,
there should be no effect of altering the values of attributes with
lower priority, given that there is a decisive difference on the
attribute with priority. Priority dominance can be tested in a pair
of choices such as the following:

Choice 1: Do you prefer R or S?

R: 10 tickets to win $100
90 tickets to win $0

or

S: 10 tickets to win $98
90 tickets to win $20
Choice 2: Do you prefer R′ or S ′?

R′: 99 tickets to win $100
01 ticket to win $0

or

S ′: 10 tickets to win $22
90 tickets to win $20
In both choices, the risky gamble (R or R′) has a lowest

consequence of $0 and the safe gamble has a lowest consequence
of $20 (bold font). According to the LPH LS model with ∆L = $10,
people should choose the safe gamble in both cases (S and S ′,
because the lowest consequence has highest priority and is better
by $20 in both cases, which exceeds the threshold).

Now suppose that people used a LS model in which the highest
consequence had highest priority. If so, people following that
priority order might switch from S to R′ because the contrast in
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Table 2
Tests of priority dominance. TAX = predicted response based on prior parameters; ‘‘priority order’’ show predicted preferences under LS models; S = ‘‘safe’’ gamble; R =
‘‘risky’’ gamble. Last three rows show numbers of people (out of 238) showing each pattern.

Choice No. Choice TAX Priority order and threshold parameters
Risky gamble
(R)

Safe gamble
(S)

LPH-1 LPH-2 LHP-1,3 LHP-2,3 PLH-1 PLH-2 PHL-4 HPL-3 HPL-4 HPL-5

LHP-1,4 LHP-2,4 LHP-1,5 LHP-2,5 PHL-3 PHL-5 HLP-2,3 HLP-1,4 HLP-2,4
HLP-1,5

5, 13 10 to win $100 10 to win $98 S S R S Ra S R S R S Sb
90 to win $0 90 to win $20

9, 17 99 to win $100 10 to win $22 R S R S R R R R R R R
01 to win $0 90 to win $20

10, 18 10 to win $100 90 to win $90 S S S R R S S S R S R
90 to win $0 10 to win $0

6, 14 10 to win $100 90 to win $60 R R R R R S S S R R R
90 to win $55 10 to win $0

7, 19 90 to win $100 90 to win $60 R R R R R R R R R R R
10 to win $20 10 to win $22

11, 15 01 to win $100 99 to win $60 S S S S S S S S R R R
99 to win $0 01 to win $55

8, 20 01 to win $100 01 to win $22 S S R S R S R R R R R
99 to win $0 99 to win $20

12, 16 99 to win $100 99 to win $22 R S R S R S R R R R R
01 to win $0 01 to win $20

Number who showed pattern on first replicate 119 6 2 5 0 0 0 2 1 0 5
Number who showed pattern on second
replicate

119 10 1 5 2 0 1 0 1 1 3

Number who showed pattern on both
replicates

96 4 0 3 0 0 0 0 0 0 1

Notes: 1. $2 < ∆L ≤ $20; 2. $20 < ∆L ≤ $55; 3. $2 ≤ ∆H ≤ $10; 4. $10 < ∆H ≤ $40; 5. $2 < ∆H ≤ $10; all models assume 0 < ∆P ≤ 0.8.
a LHP-2,5 is same as LHP 2, 3, except it is indecisive on first choice.
b HLP-2,4 model is same as HPL-5, except indecisive on first choice.

the highest consequences is too small in the first choice to be
decisive ($2), but large enough in the second choice to be decisive
($88). In order to test the hypothesis that highest consequence has
priority against the theory that people are integrating information,
we need a test in which the highest contrast is fixed and the
other two attributes altered. By testing all three hypotheses as to
the attribute with highest priority, we can test the whole family
of LS models, allowing the possibility that different people have
different priorities and different threshold parameters. According
to the family of LS models, each person can show priority
dominance for one and only one of the three attributes. According
to the family of integrative models, priority dominance can be
violated for all three attributes.

Table 2 displays three such tests of priority dominance and
a fourth test that allow us to evaluate LS models with different
priority orders and different ranges for their threshold parameters.
The first two choices match those described above, which test the
hypothesis that the lowest consequence has priority. The next two
choices test if probability has priority, and the following two test
if highest consequence has highest priority (bold font). The fourth
test (Choices 8, 20, replicated in 12, 16) is a test of interaction. The
entries in bold font show the attributes that have fixed values in
each test.

With eight choices, there are 28 = 256 possible response
patterns in each replicate. The predicted response pattern of the
prior TAX model (with parameters used in previous research) are
shown in the column labeled ‘‘TAX’’. Each test was devised so that
TAX with its prior parameters predicts a reversal of preference in
violation of each dominance prediction: the pattern SRSRRSSR.

To calculate predictions of the LS models, a spreadsheet of the
six priority orderswas constructedwith each possible combination
of parameter values. Given the levels of the design in Table 2, there

are four mutually exclusive and exhaustive ranges for ∆L : 0 <
∆L ≤ 2, 2 < ∆L ≤ 20, 20 < ∆L ≤ 55, and 55 < ∆L; there are four
ranges of ∆P : 0 < ∆P ≤ 0.8, 0.8 < ∆P ≤ 0.89, 0.89 < ∆P ≤
0.98, 0.98 < ∆P ≤ 1; there are five ranges for ∆H : 0 < ∆H ≤ 2,
2 < ∆H ≤ 10, 10 < ∆H ≤ 40, 40 < ∆H ≤ 78, and 78 < ∆H . Thus,
there are 4×4×5 = 80 combinations of parameters for each of six
priority orders, yielding 480 sets of predictions. There are a total of
33 different response patterns generated by this family of models
and parameters, of which 15 patterns had one or more undecided
choices. When undecided cases were all resolved as R or all as S,
there are a total of 22 distinct response patterns. None of the LS
models predicts the pattern, SRSRRSSR, predicted by prior TAX.

5. Method of study 1

Participants viewed the materials on computers in the lab
connected to the Internet. Theymade 20 choices between gambles,
by clicking a button beside the gamble in each pair that they
would rather play. Gambles were represented as urns containing
100 identical tickets with different prize values printed on them.
The prize of each gamble was the value printed on a ticket drawn
randomly from the chosen urn. Choices were displayed as in the
following example:

A: 50 tickets to win $100
50 tickets to win $0

OR

B: 50 tickets to win $35
50 tickets to win $25
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Table 3
Estimation of ‘‘true’’ and ‘‘error’’ probabilities from replications in tests of priority dominance. TAX shows predictions based on prior parameters. RR = risky gamble chosen
on both replicates; RS = risky gamble (R) preferred on the first replicate and safe (S) on the second, etc. Data Patterns show number of people (out of 238) who had each data
pattern. Model fit shows estimated true probability of choosing the ‘‘safe’’ gamble (p̂), error rate (ê), and test of fit (χ2(1)); last column shows theχ2(1) test of independence
of replicates.

No. Choice TAX Data pattern Model fit χ2(1)indep
Risky Gamble (R) Safe Gamble (S) RR RS SR SS p̂ ê χ2(1)

5, 13 10 to win $100 10 to win $98 S 16 11 16 195 0.93 0.06 0.92 54.93
90 to win $0 90 to win $20

9, 17 99 to win $100 10 to win $22 R 175 18 24 21 0.10 0.10 0.85 37.13
01 to win $0 90 to win $20

10, 18 10 to win $100 90 to win $90 S 30 24 18 166 0.86 0.10 0.85 54.33
90 to win $0 10 to win $0

6, 14 10 to win $100 90 to win $60 R 176 27 21 14 0.06 0.11 0.75 14.92
90 to win $55 10 to win $0

7, 19 90 to win $100 90 to win $60 R 195 15 17 11 0.05 0.07 0.12 26.23
10 to win $20 10 to win $22

11, 15 01 to win $100 99 to win $60 S 14 16 10 198 0.94 0.06 1.37 50.67
99 to win $0 01 to win $55

8, 20 01 to win $100 01 to win $22 S 29 18 22 169 0.86 0.09 0.40 56.42
99 to win $0 99 to win $20

12, 16 99 to win $100 99 to win $22 R 183 17 13 25 0.12 0.07 0.53 72.12
01 to win $0 01 to win $20

They were told that one person per 100 would be selected
randomly, one choice would be selected randomly, and winners
would receive the prize of their chosen gamble on that choice.
This study was included as one among several similar studies on
judgment and decision making. Instructions and the materials can
be viewed from the following URLs: http://psych.fullerton.edu/
mbirnbaum/decisions/prior_dom.htm.

Participants were 238 undergraduates enrolled in lower
division psychology courses, 62% were female and 82% were
between 18 and 20 years of age.

6. Results of study 1: Violations of priority dominance

The figures in the last three rows of Table 2 show the numbers
of people who conformed to each pattern of eight responses in
the first replication, second replication, and the number who had
the same pattern in both replicates, respectively. The 119 in the
first replicate for TAX, for example, indicates that 119 of the
238 participants (50%) had the exact pattern of eight responses
predicted by the prior TAX model (with prior parameters) in the
first replicate, SRSRRSSR. This was the most frequent pattern in the
data. The samenumber showed this pattern in the second replicate.
The number in the last row indicates that 96 people showed this
exact pattern on all sixteen choices in two replicates.

The last ten columnsof Table 2 showpredictions of 10 LSmodels
with plausible assumptions about the threshold parameters (∆P <
0.8, 2 < ∆L, 2 < ∆H ); these produce 10 sets of predictions,
shown in the next ten columns. The model labeled LPH-1 agrees
with the priority heuristic of Brandstätter et al. (2006), inwhich the
threshold parameter is ∆L = $10. Note that LPH-1 predicts choice
of the safe gamble (S) in the first two choices. In contrast, HLP-1, 4
predicts a switch from the safe gamble to the risky one (R) in the
first two choices. HLP-1, 4 model assumes that $10 < ∆H ≤ $40,
and that 2 < ∆L ≤ $20. The listing in Table 2 of models and
parameters that make each predicted pattern is not exhaustive
(there are 480 model-parameter combinations).

The priority heuristic (LPH-1 in Table 2) was the second most
accurate of the 22 prediction patterns of LSmodels; however, there
were only 6, 10, and 4 people whose data were consistent with
that model in the first, second, and both replicates, respectively.

The most accurate LS model was PHL in which 0.8 < ∆P and
∆H ≤ 10. This model predicts the pattern, SRRRRSRR,which differs
from predictions of prior TAX by just two choices, making it the
most similar LS model to TAX. This pattern was observed on either
the first or second replicate 17 times, including 4 people who
repeated it on both replicates. Because this PHL model assumes
that∆P > 0.8, it would not be regarded as a plausiblemodel (there
is ample evidence that people respond tomuch smaller differences
in P).

Therewere 119 people whose response patterns were the same
on both replicates; these displayed only 11 different response
patterns; of these, 96 (81%)matched the pattern predicted by prior
TAX, only 15 (13%)matched one of the 22 patterns predicted by the
480 LS models; the remaining 8 people had five other patterns. In
this case the TAX model with prior parameters outperformed not
only the PH with its prior parameters, but it was more accurate
than the sum of all of the LS models by a score of 96 to 15.

We can use preference reversals between replicates to estimate
‘‘error’’ rates in the eight choices (Eq. (14)). Table 3 shows
how many people made each combination of choices on the
two replications of each choice. The parameters, p and e, are
estimated by minimizing the χ2(1) between predicted and
obtained frequencies for the ‘‘true and error’’ model.

The estimated parameters and χ2(1) are displayed in three
columns of Table 3. The true and error model appears to give
a reasonable approximation to the replication data; none of the
χ2(1) tests are significant. (Critical values of χ2(1) are 3.84 and
6.63 for α = 0.05 and 0.01, respectively). In contrast, the tests of
independence of replications, testing whether the probability of a
repeated choice can be represented as the product of two choice
probabilities, are all significant, as shown in the last column of
Table 3. Both types of tests (true and error versus independence)
are based on the same four frequencies, and both estimate exactly
two parameters from the data, so these results indicate that the
‘‘true and error’’ model provides a much better description of the
data than any theory that implies independence. Expressions (13)
and (14) imply independence only when everyone has the same
true preferences (i.e., when p = 0 or p = 1).

If everyonewere perfectly consistent with the prior TAXmodel,
for example, the true probabilities of choosing the safe gamble in
the first two rows (Choices 5 and 9) should be 1 and 0. Instead,



Author's personal copy

372 M.H. Birnbaum / Journal of Mathematical Psychology 54 (2010) 363–386

Table 4
Test of Attribute Integration of L and P (Study 2, n = 242). Various Lexicographic Semiorder models make four different patterns of predictions. The TAX model with prior
parameters predicts the pattern, RRRS.

No. Choice % Safe Predictions of models
Risky (R) Safe (S) TAX LPH LHP PHL, PLH HLP, HPL LS Mixture

a b LPH1, c LHP1 (Prob choosing S)

7 90 to win $100 50 to win $51 11 R R R R R d
10 to win $50 50 to win $50

18 10 to win $100 50 to win $51 33 R S R S R a + c + d
90 to win $50 50 to win $50

11 90 to win $100 50 to win $51 22 R S S R R a + b + d
10 to win $0 50 to win $10

8 10 to win $100 50 to win $51 79 S S S S R a + b + c + d
90 to win $0 50 to win $10

Number of participants who showed the pattern 99 8 21 44 27

Notes: The priority heuristic agrees with the LPH lexicographic semiorder (LS) model in which 0 < ∆L ≤ $10, $0 < ∆H ≤ $49, and 0 < ∆P ≤ 0.4. LPH1 and LHP1 are the
same LS models as LPH and LHP, respectively, except with ∆L > $10. For the LS mixture model, a = the probability of RSSS, b = probability of RRSS, c = probability of RSRS,
d = probability of SSSS, where a + b + c + d = 1. Ten people showed the pattern SSSS; no other pattern had more than 8.

the estimated probabilities are 0.93 and 0.10, corrected for the
‘‘attenuation’’ of the error rates, estimated to be e = 0.06 and 0.10
for these two choices, respectively.3

These results indicate that the LS models cannot be retained as
plausible descriptions of individual data. Too many people show
a systematic pattern of violation that was predicted in advance of
the experiment by a model that violates priority dominance.

7. Study 2: Attribute integration

Brandstätter et al. (2006) criticized two assumptions common
to a family of utility models: first, that people summate over
values of consequences of mutually exclusive branches in a
gamble (integration); second, they doubt that people combine
probabilities and consequences by a multiplicative (interactive)
relation. Studies 2 and 3 present tests of attribute integration and
interaction that allow direct tests of these two assumptions of LS
models, respectively.

Table 4 illustrates a test of attribute integration in which the
two attributes manipulated are the lower consequences and their
probabilities. The highest consequences are fixed to $100 and
$51 in ‘‘risky’’ and ‘‘safe’’ gambles, respectively. The choices are
constructed from a 2 by 2 factorial design of contrast in the lowest
consequences ($50 versus $50 or $10 versus $0) by probability
to win in the risky gamble (0.9 versus 0.5 or 0.1 versus 0.5).
In the first row (Choice #7), the lowest consequences are the
same, but the ‘‘risky’’ gamble has the more favorable probability;
therefore the priority heuristic predicts that people should choose
R. In the second choice (#18), both gambles have the same lower
consequence ($50), but probability decides in favor of the ‘‘safe’’
gamble. Similarly, the priority heuristic implies that the majority
should choose the ‘‘safe’’ gamble in the last two choices (#8 and 11)
because the lowest consequence of that gamble is $10 higher than

3 Suppose everyone had ‘‘true’’ preferences matching those of the TAX model
with its prior parameters. Based on the error rates estimated from Table 3, these
assumptions imply that 238 · ∏8

i=1(1 − ei) = 118.4 people should match the
predictions of TAX on one replicate and 238 · ∏8

i=1(1 − ei)2 = 59.0 should
match these predictions on both replicates (to show the pattern perfectly on one
replicate, a person must make no errors on eight choices; in order to show the
pattern on both replicates, a person must make no errors on sixteen choices).
Empirically, Table 2 shows that 119 and 96 showed the exact pattern on one and
on both replicates, respectively. This model is clearly an oversimplification, given
the evidence of true individual differences (Table 3); however, it is interesting that
there are more violations of LS models than expected from this simple model of
unreliability, assuming everyone was consistent with prior TAX.

that in the ‘‘risky’’ gamble. This LPHmodel predicts the patternRSSS
for these four choices.

As in Study 1, a spreadsheet was used to calculate predictions
for six LS priority orders, combined with parameter assumptions,
given the attribute levels selected. In this case, there are 2×2×2 =
8parameter combinations to check [$100 versus $51 either reaches
threshold ∆H or not; $10 versus $0 either reaches threshold ∆L
or not; a 0.4 difference in probability either reaches threshold ∆P
or not]. These 48 (6 priority orders by 8 parameter combinations)
yield only 5 distinct patterns: RRRR, RRSS, RSRS, RSSS, and ??SS,
where the ‘‘?’’ denotes undecided. Predictions of all 48 LS models
are shown in Table 16 of Appendix A. The predicted patterns of LS
models are also displayed in Table 4 (the list of models in Table 4
that produce each predicted pattern is not exhaustive). None of the
predicted patterns match the predictions of the TAX model with
its prior parameters, RRRS. Even if we replace ?? with RR or SS, the
pattern, ??SS does not match this prediction of TAX.

To understand the logic of the design, it helps to start with
Choice 7 in the first row of Table 4. In this choice, there is no reason
to prefer the safe gamble. In Choice 18, the probability to win the
highest prize in the risky gamble has been reduced from 0.90 to
only 0.10, which should improve the tendency to choose S. But this
change is not enough by itself to switch most people to choosing
the safe gamble; the majority still chooses the risky gamble. Next,
compare Choice 11with Choice 7; here, the lowest consequences in
both gambles have been reduced (from $50 to $0 in risky and from
$50 to $10 in the safe gamble). Thismanipulation improves the safe
gamble, but is not enough by itself to cause the majority to choose
the safe gamble. Choice 8 combines both changes. If people do
not integrate information, we expect that the combination of two
manipulations that separately failed to produce a preference for
the ‘‘safe’’ gamble should not combine to produce this preference.
Instead, in Choice #8, there is a strong majority (79%) who choose
the safe gamble. Two small changes have tipped the scales in favor
of the safe gamble.

Note that the pattern RSSS, predicted by LPH and the priority
heuristic, is not evidence of integration since it represents a
decision to choose ‘‘safe’’ if either L or P favors that gamble;
however, the pattern RRRS indicates that only when both of
these factors favor S does the person choose it. In other words,
the pattern RSSS is consistent with integrative independence
(Expressions (11a)–(11d)) whereas RRRS violates it.

8. Method of study 2

There were 242 undergraduates from the same pool who
viewed the materials in the lab via computers, clicking a button
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Table 5
Test of Attribute Integration/Interaction, manipulating P and H. The contrast in lowest consequences is fixed. (Study 2, n = 242.)

No. Choice % Safe TAX Predictions of models
Risky (R) Safe (S) LPH, LHP, PLH HPL, HLP, PHL PHL1, LPH1, HPL1, HLP1 LS mixture model

a c

13 10 to win $26 10 to win $25 90 S S S R a + c
90 to win $0 90 to win $20

17 10 to win $100 10 to win $25 75 S S R R a
90 to win $0 90 to win $20

9 99 to win $26 99 to win $25 71 S S S R a + c
01 to win $0 01 to win $20

4 99 to win $100 99 to win $25 14 R S R R a
01 to win $0 01 to win $20

Number of participants who showed the
predicted patterns

115 16 25 6

Notes: LPH, LHP, and PLH assume that 0 < ∆L ≤ $20; HPL, HLP and PHL assume $1 < ∆H ≤ $75; PHL1, HLP1, HPL1 assume 0 < ∆H ≤ $1; LPH1 assumes 0 < ∆H ≤ $1
and ∆L > $20, LPH2 and LHP2 assume ∆L > $20 and $1 < ∆H ≤ $75; these last two are indecisive on the first and third choices. According to the mixture model, we can
estimate c in two ways: the difference between the first two or last two choice percentages. ĉ = 90 − 75 = 15, and ĉ = 71 − 14 = 57, which are quite different.

Table 6
Test of attribute integration, manipulating H and P (n = 242).

No. Choice % S Predictions of models LS mixture
Risky (R) Safe (S) TAX LPH LPH1 HLP HPL

LHP PHL LPH2
PLH PHL2

a b c d

5 10 to win $50 50 to win $50 91 S S S S S a+b+c+d
90 to win $0 50 to win $49

14 10 to win $100 50 to win $50 83 S S S R R a + b
90 to win $0 50 to win $49

3 90 to win $50 50 to win $50 81 S S R S R a + c
10 to win $0 50 to win $49

10 90 to win $100 50 to win $50 35 R S R R R a
10 to win $0 50 to win $49

Number of participants who showed each pattern 104 62 25 15 6

Notes: LPH and LHP assume 0 < ∆L ≤ $49; PHL, PLH assume 0 < ∆P ≤ 0.4; LPH1 assumes ∆L > $49 and 0 < ∆P ≤ 0.4; HPL assumes 0 < ∆H ≤ $50 and 0 < ∆P ≤ 0.4;
LPH2 assumes ∆L > $49 and ∆P > 0.4; PHL2 assumes ∆P > 0.4 and 0 < ∆H ≤ $50; HLP assumes 0 < ∆H ≤ $50 and 0 < ∆L ≤ $49.

Table 7
Test of Attribute Integration, manipulating L and H. Probability is fixed, as is the ‘‘safe’’ gamble (n = 242).

Choice % S TAX Predictions of models LS mixture model
Risky (R) Safe (S) LPH LPH1 HLP HLP1

LHP LHP1 HPL HPL1
PLH PLH1 PHL PHL1
a b c

15 50 to win $51 50 to win $50 94 S S S S R a + b + c
50 to win $0 50 to win $40

1 50 to win $100 50 to win $50 56 S S S R R a + b
50 to win $0 50 to win $40

6 50 to win $51 50 to win $50 91 S S R S R a + c
50 to win $25 50 to win $40

12 50 to win $100 50 to win $50 19 R S R R R a
50 to win $25 50 to win $40

Number of participants who showed each data pattern 92 25 11 80 2

LPH, LHP and PLH assume 0 < ∆L ≤ $15; LPH1, PLH1, & LHP1 assume $15 < ∆L ≤ $40 and 0 < ∆H ≤ $1; HLP assumes $1 < ∆H ≤ $50 and 0 < ∆L ≤ $15; PHL and HPL
assume $1 < ∆H ≤ $50; HLP1, HPL1, and PHL1 assume 0 < ∆H ≤ $1.

next to the gamble in each choice that they would rather play.
Sixteen choices were constructed to form three, 4-choice tests
of attribute integration (Tables 4, 6 and 7) and a 4-choice test
of interaction and integration (Table 5). There were also three
choices containing a test of transitivity (which is described
under Study 4). Experimental materials can be viewed at the
following URL: http://psych.fullerton.edu/mbirnbaum/decisions/
dim_integ_trans2.htm.

9. Results of study 2: Evidence of integration

9.1. Test of Integration of L and P

Examining the percentages in Table 4, the modal choices agree
with prior TAX, RRRS, since 79% is significantly greater than 50%
and 22%, 33% and 11% are all significantly less than 50%. The most
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frequent pattern of individual datawas that predicted by prior TAX,
which was exhibited by 99 of the 242 participants. Only 8 people
showed the pattern predicted by the priority heuristic, RSSS. This
comparison (99 to 8) estimates no parameters from either model.

A comparison of the TAX model with free parameters against
the family of LS models shows that the LS models cannot account
for the RRRS pattern whereas TAX with free parameters can
handle the other patterns that are compatible with the LS models.
Therefore, the predictions of LS are a proper subset of the
predictions of TAX.When the true and errormodel is fit to the data,
it can be shown that the TAXmodel fits the data significantly better
than the family of LS models (see Appendix D).

9.2. A mixture model

Suppose people use LS (LS) models, but they randomly switch
from one LS model to another (switching both priority order and
threshold parameters) from trial to trial. In contrast with the true
and error model (which assumes that each person has a single
true response pattern), this mixture model would not necessarily
show individuals who fit the predicted patterns of individual LS
models, because it allows the same person to change priority order
and threshold parameters from trial to trial. Because the person is
switching LS models from trial to trial, it is possible for a person
using this model to exhibit the RRRS data pattern. Therefore, this
model requires a different statistical test from that described in
Appendix D.

We can test whether such a LS mixture model is compatible
with the overall choice proportions. Let a = the probability of
using a model in which RSSS is the pattern, b = the probability of
using RRSS, c = probability of using a model in which RSRS is the
pattern, and d = probability of using the pattern SSSS. Predictions
of this mixture model are shown in the last column, labeled ‘‘LS
Mixture’’ in Table 4. Adding the second two choice percentages
(22 + 33 = 55), we have 2a + b + c + 2d = 55%, which should
have exceeded the fourth choice percentage (a+b+ c+d = 79%),
if a > 0 or d > 0. Even if we assume that no one ever used the
priority heuristic (a = 0), we still cannot reconcile the observed
choice proportions with the theory that people are using amixture
of LS models because 79% is substantially greater than 55%.

The data for four choices consist of eight choice frequencies
with four degrees of freedom (within each choice, frequencies
sum to the number of participants); the four parameters are
restricted to sum to 1, using three degrees of freedom; therefore,
one degree of freedom is left to test the LS mixture model.
When parameters are selected in the mixture model to minimize
the χ2(1) comparing the observed choice frequencies with
predictions, the minimum χ2(1) = 151.8, which is significant,
as one would expect from the large and systematic deviations
between this model’s predictions and the data. The TAX model (as
fit in Appendix D) yields the following predictions for the choice
percentages for Table 4: 12, 33, 22, and 80, respectively, close to
the observed values of 11, 33, 22, and 79, respectively.

9.3. Test of Integration/Interaction P and H

Table 5 tests a combination of integration and interaction by
manipulating P and H. To test the priority heuristic, the contrast
in the lowest consequences was fixed to a larger difference than
in Table 4 ($20 versus $0). According to the priority heuristic, the
majority should choose the safe gamble in all four rows because
the $20 difference in the lowest consequences always exceeds 10%
of the highest consequence in either gamble.

The probability to win the higher consequence (in both
gambles) and the value of the higher consequence in the risky
gamble were varied in a factorial design. In this test, the

probabilities are equal in both gambles of a choice, testing
interaction.

Instead, the majority choices agree with the prior TAX model’s
predictions,whichwas also themost frequent pattern of individual
responses (shown by 115 people). Only 16 exhibited the pattern
predicted by the priority heuristic with its prior parameters.

Appendix D presents an analysis of the family of LS models
allowing all priority orders and assumptions concerning the
threshold parameters. The resulting 36 models imply just three
response patterns: RRRR, SRSR, SSSS. The TAX model with free
parameters can handle these three patterns as well as SSRR and
SSSR. This analysis again refutes the family of LS in favor of TAX
with free parameters.

The data of Table 5 allow rejection of the LS mixture model. In
this case, themixturemodel implies that the choice probabilities in
the second and fourth choices in Table 5 (Choices 17 and 4) should
be equal. Instead, these are 75% (significantly greater than 50%)
and 14% (significantly less than 50%). With best-fit parameters,
χ2(2) = 208.0, so we can reject this mixture model. From the
fit of the TAX model, it is possible to calculate predicted choice
percentages for Table 5; these are 89, 74, 68, and 16, not far from
the obtained values of 90, 75, 71, and 14, respectively.

9.4. Test of Integration with H and P

In Table 6, the ‘‘safe’’ gamble was fixed, and the probability and
value of the higher consequence in the risky gamble were varied in
a factorial design. In Table 6, a very large difference in the lowest
consequence was used in all choices ($0 versus $49). According to
the priority heuristic, the majority should choose the safe gamble
in every choice because this difference exceeds 10% of the highest
consequence. Instead, 91%, 83%, and 81% (all significantly more
than half) chose the safe gamble in the first three choices and 65%
(significantly more than half) chose the risky gamble in the fourth
choice (Choice 10).

The family of 48 LS models with free threshold parameters can
handle four possible response patterns: SRRR, SRSR, SSRR, SSSS.
It can also handle the indecisive pattern, ?R?R. Resolving both
undecided choices in favor of either S or R results in a total of five
patterns, including RRRR. In this family it is assumed that either
$49 versus $0 reaches threshold or not, that $100 versus $50 either
reaches threshold or not, and that a 0.4 difference in probability
either reaches threshold or not.

In this test, 104 people showed the response pattern predicted
by the TAX model with its prior parameters (SSSR); 62 showed
the response pattern predicted by the priority heuristic (SSSS).
When we compare the TAX model with free parameters to the
family of LSmodels, the deviations are again statistically significant
(Appendix D).

The LS mixture model also fails to fit the data of Table 6.
According to the choice percentages, â = 35; ĉ = 81 − 35 = 46;
b̂ = 83 − 35 = 48; therefore, d̂ = 91 − 35 − 46 − 48 = −38,
which is negative, in contradiction to the LS mixture model. With
best-fit parameters, χ2(1) = 101.9, so the LS mixture model can
be rejected. In contrast, the TAXmodel as fit in Appendix D predicts
that the four choice percentages for Table 6 should be 92, 84, 81,
and 32, very close to the observed values of 91, 83, 81, and 35,
respectively.

9.5. Test of integration of L and H

In Table 7, the ‘‘safe’’ gamble was again fixed, all probabilities
were fixed to 0.5, and the lower and upper consequences of the
risky gamble were manipulated in a factorial design. In this case,
the priority heuristic implies that the majority should choose the
safe gamble in all four choices. As in other tests, a spreadsheet
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Table 8
Probability and prize in the risky gamble were varied in Study 4 (n = 266). The ‘‘safe’’ gamble is always the same.

Choice No. Choice Series A Series B (reflected) Predictions of models Mixture model
Risky (R) Safe (S) % S % S TAX LPH PLH HLP HPL HLP1

PHL2 LHP PHL HPL1
LPH1

a b c d

16 10 to win $45 60 to win $40 89 93 S S S S S R a + b + c + d
90 to win $0 40 to win $38

13 10 to win $100 60 to win $40 77 81 S S S R R R a + b
90 to win $0 40 to win $38

5 90 to win $45 60 to win $40 72 69 S S R S R R a + c
10 to win $0 40 to win $38

9 90 to win $100 60 to win $40 27 28 R S R R R R a
10 to win $0 40 to win $38

Number of participants showing predicted pattern in series A 93 47 48 26 7 7
Number of participants showing predicted pattern in series B 99 45 52 25 2 5
Number of participants showing predicted pattern in both A and B 52 26 18 14 0 1

Series B (Choices 17, 10, 7, and 11) was the same as Series A, except $100, $45, $40, $38, and $0 were replaced by $98, $43, $42, $40, and $0, respectively, and the positions
(first or second) of ‘‘risky’’ and ‘‘safe’’ gambles were reversed. LPH and LHP assume 0 < ∆L ≤ $38; PLH and PHL assume 0 < ∆P ≤ 0.3, LPH1 assumes ∆L > $38 and
0 < ∆P ≤ 0.3; HLP assumes $5 < ∆H ≤ $60 and 0 < ∆L ≤ $38, HPL assumes $5 < ∆H ≤ $60 and 0 < ∆P ≤ 0.3; HLP1 and HPL1 assume ∆H < $5. Priority heuristic
implies that all choice percentages should exceed 50%. PHL2 makes the same predictions as TAX when 0.3 < ∆P ≤ 0.5 and 5 < ∆H .

was constructed to calculate predictions for all six priority orders
combined with all parameter ranges that differentiate the choices.
In this test, the 36 LS models can produce the patterns, SSSS, SSRR,
SRSR, and RRRR. In addition, the following patterns with undecided
choices are possible: SS?R, SR?R, SS??, ?R?R, and ????. The TAX
model with prior parameters predicts the pattern SSSR. In this test,
the SSSR pattern might be produced by people with the LHP LS
whose ‘‘true’’ pattern is SS?R; this design can be consideredweaker
than the other tests.

The most frequent response pattern by individuals was SSSR,
which is the pattern predicted by the TAX model with prior
parameters.

According to the LS mixture model, â = 19; ĉ = 91− 19 = 72;
b̂ = 56 − 19 = 37, so â + b̂ + ĉ = 19 + 72 + 37 = 128, which far
exceeds the first choice percentage, 94%. With best-fit parameters,
χ2(2) = 338.8. Thus, these data do not fit the LS Mixture model.
According to the TAX model as fit in Appendix D, the choice
percentage in Table 7 should be 96, 56, 90, and 19, close to the
empirical values of 94, 56, 91, and 19, respectively. Appendix D
shows that the family of LS models with fits significantly worse
than the TAX model with free parameters.

Although the prior TAX model is the most accurate of the
models with fixed parameters, including Table 7, Table 7 is the
least convincing of the four tests. Birnbaum and LaCroix (2008)
used a replicated test with an improved choice of attribute levels
to check the integration of lower and upper consequences. They
found stronger evidence of integration of these two attributes.

9.6. A replicated test of P and H

A replicated, factorial test manipulating probability and highest
consequence was included in Study 4 (Table 8), which also tested
transitivity (discussed under Study 4). The consequences used
in Series A and B were so similar that they can be treated as
replications. In Table 8, the priority heuristic again predicts that the
majority should choose the safe gamble in every choice. Instead,
73% and 72% (significantly more than half) chose the risky gamble
in the two replications of Choice 9, consistent with the prior TAX
model [with (β, γ , δ) = (1, 0.7, 1)], which implies the pattern SSSR.
This pattern (SSSR) was shown by 93 and 99 participants in Series
A and B, and by 52 people in both series.

TAX (with free parameters) can predict the response patterns,
SSSS, SSSR, SSRR, SRSR, SRRR, and RRRR. Parameters that imply these

patterns are (β, γ , δ) = (0.5, 0.7, 1), (1, 0.7, 1), (1, 1.5, 0), (2, 0.2, 0),
(2, 0.5, −0.5), and (4, 0.2, −1), respectively. The test in Table 8 is
only a partial test of integration because one LS model can allow
SSSR (PHL2, with 0.3 < ∆P ≤ 0.5 and 5 < ∆H ). Appendix E
presents an analysis of this replicated test in greater detail.

The mixture model excluding SSSR did not fit either Series of
Table 8. For Series A, best-fit parameters yielded, χ2(1) = 106.3;
for Series B,χ2(1) = 87.7.We can therefore reject amixturemodel
of SSSS, SSRR, SRSR, SRRR and RRRR (which refutes all LS models
except for PHL2 with 0.3 < ∆P ≤ 0.5 and 5 < ∆H ).

The three tests (Tables 4, 6 and 7) showed that each pair of
attributes showed significant evidence of integration. In addition,
Table 5 (testing a combination of integration and interaction)
is not consistent with any of the LS models. The combination
of Tables 4–8 with the study of Birnbaum and LaCroix (2008)
allows us to reject the entire family of LS, including the LS mixture
model, in favor of the assumption that people integrate each pair
of attributes.

10. Study 3: Attribute interaction

The property of attribute interaction is implied by models such
as EU, CPT, and TAX. Tests of attribute interaction are shown in
Table 9. All four consequences in the choices are the same in all
five choices (rows in Table 9). The probabilities change from row
to row, but they are always the same within any choice. According
to any LS model, including the priority heuristic, there should be
no change in preference between any two rows in Table 9.

Any theory that assumes that people make choices by
looking strictly at contrasts between the prizes and between
probabilities implies no change in preference between the rows.
The stochastic difference model (González-Vallejo, 2002) and
other additive difference models also assume that people choose
by integrating comparisons between values of attributes as
well. Although these models are integrative, they assume no
interactions between probability and consequences; therefore
they also imply interactive independence.

The TAXmodel and other interactive utility models, in contrast,
imply that functions of probability and value multiply. Predictions
of the TAX model with prior parameters show that preference
should reverse between second and third rows in Table 9.
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Table 9
Tests of attribute interaction in Series B of Study 3 (n = 153). TAX shows predicted certainty equivalents of risky and safe gambles based on prior parameters; these imply
the pattern SSRRR.

Choice No. Choice % S TAX Predictions of models
Risky (R) Safe (S) R S LPH, LHP, LPH1, LHP1,

PLH, PHL, PLH1, PHL1,
HPL, HLP, HPL1, HLP1

11 01 to win $95 01 to win $55 83 7.3 20.9 S R
99 to win $5 99 to win $20

17 10 to win $95 10 to win $55 71 15.6 24.1 S R
90 to win $5 90 to win $20

21 50 to win $95 50 to win $55 49 35 31.7 S R
50 to win $5 50 to win $20

7 90 to win $95 90 to win $55 22 54.4 39.2 S R
10 to win $5 10 to win $20

3 99 to win $95 99 to win $55 17 62.7 42.4 S R
01 to win $5 01 to win $20

In LPH, LHP, PLH, 0 < ∆L ≤ $15; In LPH1, LHP1, PHL1, ∆L > $15. In PHL, HPL, HLP, ∆H > $40; in PHL1, HPL1, and HLP1, 0 < ∆H ≤ $40.

Table 10
Frequency of response patterns (Study 3, n = 153). Within each repetition, there
are 32 possible patterns. The six patterns listed are consistent with interactive
utility models; no one repeated any other pattern. Only SSSSS, RRRRR, and ????? are
consistent with the family of priority heuristic models; SSSSS is predicted by the
model of Brandstätter et al. (2006). Totals sum to 150 because 3 of 153 participants
skipped at least one of the 20 items analyzed here.

Choice Pattern Series A Series B
Rep 1 Rep 2 Both Rep 1 Rep 2 Both

SSSSS 10 10 3 14 12 4
SSSSR 3 6 0 7 14 2
SSSRR 11 12 2 39 38 21
SSRRR 50 50 31 35 30 17
SRRRR 18 16 5 14 16 5
RRRRR 22 27 15 15 13 9

Others 36 29 0 26 27 0
Total 150 150 56 150 150 58

11. Method of study 3

Gambles were described either as urns containing 100 tickets,
as in earlier studies, or as urns containing exactly 100 marbles
of different colors. Trials in the marble format appeared as in the
following example:

Which do you choose?

E: 99 red marbles to win $95
01 white marbles to win $5

OR

F: 99 blue marbles to win $55
01 green marbles to win $20.

11.1. Testing attribute interaction

In each variation of the study, there were 21 choices between
gambles, with two series of 5 choices testing attribute interaction.
Series A consisted of five choices of the form, ($95, p; $5, 1 − p)
vs. ($50, p; $15, 1−p), in which the five levels of pwere 0.01, 0.10,
0.50, 0.90, and 0.99. Series B consisted of five choices of the form,
($95, p; $5, 1−p) vs. ($55, p; $20, 1−p), with the same 5 levels of
p. The other 11 trials were warm-ups and fillers. Fillers were used
so that no two trials from the main design (Series A or B) would
appear on successive choices. The two conditions with different
formats and fillers gave virtually identical results, so results are
combined in the presentation that follows.

Each participant completed 21 choices twice, separated by 5
other tasks that required about 25 min. Materials can be found

at the following URL: http://psych.fullerton.edu/mbirnbaum/
decisions/dim_x_mhb2.htm

Participants were 153 undergraduates who served as one
option toward an assignment in lower division psychology. Of the
153, 78 (51%) were female and 86% were 18–20 years of age.

11.2. Follow-up study: Choice-based certainty equivalents

To further investigate the interaction between probability and
prize, and to examine the prominent number rounding assumption
in the priority heuristic, a follow-up studywas conducted in which
participants chose between binary gambles and sure cash. Each
choicewas of the form,G = (x, p; $0, 1−p) or certain cash, c. There
were 48 choices, constructed from a 4 X 3 X 4, Prize x by Probability
p by Certain Cash c factorial design in which Prize x = $75, $100,
$140, or $200; Probability, p = 0.1, 0.5, or 0.9; and Certain Cash,
c = $10, $20, $30, or $50.

Participants in this follow-up were 231 undergraduates from
the same pool. As in earlier studies, gambles were described as
containers with 100 equally likely tickets, from which a ticket
would be drawn at random to determine the prize. Participants
viewed thematerials on computers and clicked one of two buttons
to indicate preference for the gamble or the cash.

12. Results of study 3: Attribute interactions

The data in Table 9 show a systematic decrease from 83% and
71% choosing the ‘‘safe’’ gamble (both significantly greater than
50%) in the first two rows to only 22% and 17% who do so (both
significantly less than 50%) in the last two rows. This systematic
decrease violates all LS models, the priority heuristic (people
should have chosen S in all five choices), the stochastic difference
model (González-Vallejo, 2002), other additive difference models,
as well as any random mixture of those models. TAX, with
prior parameters, correctly predicted the pattern of majority
preferences.

Table 10 shows the frequencies of response patterns in both
series. There are 32 possible response patterns for each series of
five choices, but only the following six were repeated in both
replicates by at least one person in at least one series: SSSSS, SSSSR,
SSSRR, SSRRR, SRRRR, and RRRRR. Only 3 people agreed with the
priority heuristic, SSSSS, in both replicates of Series A; 4 did so in
Series B, and only 2 of these did so in both A and B. Instead, Table 10
shows that most individuals switched from S to R in both series
as the probability to win the higher consequence was increased,
consistent with interactive models.
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These same six patterns are all compatible with the family of
interactive, integrativemodels, including TAX, CPT, and EU, among
others. The family of LS models can handle only SSSSS, RRRRR,
and ?????. Of those who showed the same response pattern in
both replicates, 68% and 78% showed patterns compatible with
interactive models and not with LS models. Therefore, the family
of LS models is not consistent with vast majority of participants in
Study 3.

12.1. Follow-up study: Choice-based certainty equivalents

According to the priority heuristic, the cash certainty value in
choices between c (sure cash) and (x, p; 0, 1 − p), where 0.1 ≤
p ≤ 0.9, depends only on the highest prize in the gamble (x);
that is, the choice between gamble and cash depends entirely on
x and is independent of p (because all differences in probability
exceed threshold). Because 10% of $75, $100, and $140 all round to
$10 (the nearest prominent number), there should be no difference
between these values of x. People should prefer $10 or more to any
gamble with those highest prizes. When the highest prize is $200,
people should prefer any cash amount greater than or equal to $20
to the gamble, independent of probability.

Of the 48 choice percentages, the priority heuristic correctly
predicted the majority choice in only 20 cases (42% of the choices).
For example, 91%, 41%, and 11% preferred $30 over ($100, 0.1;
$0, 0.9), ($100, 0.5; $0, 0.5), and ($100, 0.9; $0, 0.1), respectively.
According to the priority heuristic, all three percentages should
have exceeded 50% since the decision should be based on the
difference in lowest prizes ($30), which exceeds 10% of the highest
prize. Similarly, 93%, 41%, and 15% preferred $50 to ($200, 0.1;
$0, 0.9), ($200, 0.5; $0, 0.5), and ($200, 0.9; $0, 0.1), respectively.
Such reversals of the majority preference related to probability
occurred for all sixteen combinations of highest prize and certain
cash, contrary to the priority heuristic.

In order to solve for the cash equivalent value of each gamble
(the value of c that would be judged higher than the gamble
50% of the time), choice proportions were fit to the following
interpolation equation:

Pijk = 1
1 + exp[aij(gij − ck)]

(15)

where Pijk is the predicted probability of choosing cash value ck
over gamble (xi, pj; $0, 1 − pj); the values of ck were set to their
cash values ($10, $20, $30, $50), and the logistic spread parameter
aij was estimated separately for each gamble. The values of gij are
the certainty equivalents of the gambles; that is, the interpolated
cash values that would be judged better than the gamble 50% of
the time. These were estimated from the data to minimize the
sum of squared differences between the predicted probabilities
and observed choice proportions.

The interpolated certainty equivalents of the gambles are
shown in Fig. 1 as a function of the largest prize value (x), with a
separate curve for each level of probability to win, p. According to
the priority heuristic, all three curves should coincide. That is, the
cash-equivalent value should dependonly on x in these choices and
should be equal to ∆L. Instead, the curves never coincide.

According to the priority heuristic, gambles with highest prizes
of $75, $100, and $140 should all show the same cash equivalent
values, since people should have rounded 10% of these values
to $10, the nearest prominent number. Therefore, the curves in
Fig. 1 should have been horizontal until $140 and only show a
positive slope between $140 and $200. Thismight be the casewhen
probability is 0.1 (lowest curve), but the curves showpositive slope
when the probability to win is either 0.5 or 0.9. Instead of showing
the patterns predicted by the priority heuristic, the curves diverge
to the right, consistent with a multiplicative interaction between
prize and probability, such as is assumed in utility models like EU,
CPT, TAX, and others.

Choice-Based Cash Equivalents
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Fig. 1. Cash equivalent values of binary gambles, win x with probability p,
otherwise $0, plotted as a function of x with a separate curve for each p. According
to the priority heuristic, all three curves should coincide, because probability should
have no effect. In addition, the (single) curve should be horizontal for the first three
cash values, since they all round to the same prominent number, $100. Instead,
the curves show a divergent, bilinear interaction, consistent with a multiplicative
combination of functions of probability and prize.

13. Study 4: Transitivity of preference

In Studies 1–3, tests of priority dominance, attribute integra-
tion, and attribute interaction all show that the family of LSmodels
can be rejected because data systematically violate predictions of
those models. In those tests, LS models had to defend the null hy-
pothesis against integrative and interactive models that predicted
violations.

It should be clear that tests of integration and interaction can
lead to only three outcomes; they can retain both families of
models, they could reject LS and retain the integrative, interactive
family, or they might reject both families. There is no way for
the LS models to ‘‘win’’ over the integrative, interactive models in
these tests because the LS models can handle only a subset of the
response patterns consistent with integrative, interactive models
in those studies. However, it is possible to refute the family of
transitive models (including TAX, CPT, EU) and retain the family
of LS models in tests of transitivity (which is tested in Study 4).
Testing transitivity, therefore, allows LSmodels such as the priority
heuristic to go on offense, putting transitive models like TAX in
danger of refutation.

The first three choices in Table 11 provide a new test of
transitivity in which the priority heuristic predicts violations.
Similarly, the second set of three choices (Series B) is a near
replicate in which the priority heuristic also implies violation of
transitivity, with the counterbalance that positions of the gambles
are reversed.

Methodsmatched those of the earlier studies. Participantswere
266 undergraduates from the same pool, tested in the lab, who
completed the experiment at the following URL: http://psych.
fullerton.edu/mbirnbaum/decisions/dim_int_trans4.htm.

There were 18 choices between gambles consisting of 4 warm-
ups, 8 trials forming a replicated test of factorial manipulation
of prize and probability in the risky gamble (Table 8), and 6
trials composing two tests of transitivity. Choices were presented
in restricted random order such that no two choices testing
transitivity would appear on successive trials.
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Table 11
Test of transitivity in Study 4 (n = 266). According to the priority heuristic,majority
choices should violate transitivity.

Choice No. Choices in series C % Second Models
First (F) Second (S) TAX LPH

6 70 to win $100 78 to win $50 16 F F
30 to win $0 22 to win $0

18 78 to win $50 85 to win $25 14 F F
22 to win $0 15 to win $0

14 85 to win $25 70 to win $100 84 S F
15 to win $0 30 to win $0

Priority heuristic assumes ∆P = 0.1. Series D, Choices 15, 12, and 8 were the
same as Series C (#6, 18, and 14, respectively), except $100, $50, and $25 were
replacedwith $98, $52, and $26, respectively, and the positions of the gambles (first
or second)were counterbalanced. The corresponding (reflected) choice percentages
are 20%, 19%, and 86%, respectively.

Table 12
Analysis of response patterns in test of transitivity in Study 4. The TAX model with
prior parameters implies the pattern, FFS.

Choice pattern Frequency of choice patterns
#6 #18 #14 Series C Series D Both
15 12 8 (reflected)

F F F 18 9 0
F F S 184 177 149
F S F 10 11 1
F S S 12 17 0
S F F 8 8 1
S F S 18 22 2
S S F 7 9 3
S S S 9 13 2

Column totals 266 266 158

14. Results of study 4: Transitivity

The priority heuristic predicts that the majority should choose
the second gamble in Choices 6 and 18; the lowest prizes are
both $0 and the difference in probability is .08 or less, so people
should choose by the highest consequence. In these two choices, it
makes the correct prediction. However, in Choice 14, PH predicts
that people should choose the first gamble, which has a lower
probability to receive $0 (0.15 rather than 0.30, a difference
exceeding 0.10). Instead, 84% chose the gamble with the higher
prize. Similar results were observed in the second series. So, the
majority data fail to show the predicted pattern of intransitivity
predicted by the priority heuristic.

Table 12 shows the number of people who showed each
response pattern in the two tests. The most frequent response
pattern (Choosing the first gamble (F) in the first two choices and
the second gamble (S) in the third, FFS) is displayed by 184 and
177 of 266 participants in Series C and D (reflected), respectively,
and by 149 people (56%) in both tests. This pattern matches the
predictions of the TAX model with prior parameters (it is also
consistent with other transitive utility models). The intransitive
pattern predicted by the priority heuristic, FFF, was shown by 18
and 9 people in Series C and D, respectively, but no one showed

that pattern on both series. The family of LS can handle FFF, FFS,
FSS, SFF, SSF, SSS, S?S, S?F, F?S, F?F, ??S, ??F, and ???; Note that it
can accommodate both intransitive patterns, FFF and SSS, either of
which would violate the transitive models like TAX.

When the data of Table 12 were fit to the true and error model
(Appendix F), the best-fit estimates of the model indicated that no
one was truly intransitive.

Study 2 (n = 242) also included a test of transitivity in
binary gambles in which the lowest consequence was $0. The
choices are shown in Table 13. The majority preferences were
transitive. The modal pattern was to prefer A over B, B over C
and A over C . However, 41 people (17%) showed the intransitive
pattern predicted by the priority heuristic (FFF ). Fitting the ‘‘true
and error’’ model to the response frequencies, an acceptable fit was
obtained for a solutionwith only three ‘‘true’’ response patterns (all
transitive): FFS, FSF, and SSF, with estimated ‘‘true’’ probabilities of
0.86, 0.05, and 0.09, respectively, with error terms of 0.10, 0.02,
and 0.24, respectively. Deviations from this purely transitivemodel
were not significant, χ2(1) = 1.75.

Had people been systematically intransitive in the manner
predicted by the priority heuristic, then all of the transitive utility
models such as TAX, RAM, CPT, GDU, EU, and others would
have been rejected. However, empirical tests found no systematic
evidence of intransitivitywhere predicted by the priority heuristic.

15. Discussion

All four studies yield clear results that either violate or fail to
confirm predictions of LS models and the priority heuristic. When
we compare models with prior parameters, very few participants
show the data patterns predicted by the priority heuristic, whereas
the TAX model with prior parameters did a good job of predicting
the most common data patterns in these studies. When we
compare classes of models by testing agreement with critical
properties, we find that evidence against the family of LS models
including the priority heuristic is very strong and evidence against
the family of transitive models is very weak or nonexistent.

Tests of priority dominance in Study 1 show that we can reject
the hypothesis that most people show priority dominance for one
attribute. Instead, the evidence indicates that if there are people
who show this property, their number must be very small.

Tests of attribute integration show that each pair of attributes
shows evidence of integration for a large and significant number
of participants. Small changes that do not reverse a decision by
themselves can combine to reverse the modal preference. The
theory that people use a mixture of LS models with different
priority orders and different threshold parameters, (switching
from trial to trial) does not account for the choice proportions in
any of the four tests in Study 2. The least impressive case against LS
models in Study 2 was the test of integration of lowest and highest
consequences (Table 7); however, Birnbaum and LaCroix (2008)
found strong evidence against the LSmodelswith an improved test
of this property.

Tests of attribute interaction in Study 3 show clear evidence of
interaction between probability to win and amount to win. Study

Table 13
Test of transitivity (n = 242) included in study 2.

Choice no. First (F ) Second (S) TAX Priority heuristic % S

2 A: 60 to win $60 B: 67 to win $40 F F 17
40 to win $0 33 to win $0

16 B: 67 to win $40 C: 73 to win $20 F F 16
33 to win $0 27 to win $0

19 C: 73 to win $20 A: 60 to win $60 S F 70
27 to win $0 40 to win $0
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3 shows that preferences can be reversed by changing the value
of probability that is the same in both gambles in a choice. LS
models and additive difference models require that any attribute
that is the same in both choices cannot affect the choice. Instead,
the data show very clear violations. Although Brandstätter et al.
(2006) argued that humans do not have addition or multiplication
in their ‘‘adaptive toolbox,’’ there is strong evidence against their
arguments in Studies 2 and 3. Further, the follow-up to Study 3
(Fig. 1) found that people behave as if the certainty equivalents
of gambles involvemultiplication between functions of probability
and of prize value.

When individual differences are analyzed in these new tests,
it is found that few participants produce response patterns
compatible with the LS models, including the priority heuristic.
The most common pattern of individual data is that predicted by
the TAX model with its prior parameters, not that of any of the LS
models.

Tests of transitivity show that few, if any, participants exhibit
systematic violations of transitivity of the type predicted by the
priority heuristic and other LS models. Failure to find intransitivity
does not prove there is none to be found, of course. Design of
a study of transitivity will be sensitive to assumed threshold
parameters and the priority order of the LS model used to devise
the test. These studies were designed using the priority heuristic
with its assumed threshold parameters.

Although some previous studies reported systematic violations
of transitivity based on the Tversky (1969) gambles (see reviews
in González-Vallejo, 2002, Iverson & Myung, 2010), others who
have reviewed this literature concluded that the evidence does not
warrant abandonment of transitive theories (Iverson & Falmagne,
1985; Luce, 2000; Regenwetter, Dana, & Davis-Stober, in press;
Rieskamp, Busemeyer, & Mellers, 2006; Stevenson, Busemeyer, &
Naylor, 1991). Interestingly, Tversky went on to publish transitive
theories (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).

Birnbaum and Gutierrez (2007) tested transitivity using the
same gambles as in Tversky (1969) and using gambles with prizes
100 times as large. The LS used by Tversky (1969) and the priority
heuristic of Brandstätter et al. (2006) predict that the majority
of participants should show intransitivity with these gambles.
For example, most should prefer A = ($500, 0.29; $0) over
C = ($450, 0.38; $0), C over E = ($400, 0.46; $0), and the
majority should violate transitivity by choosing E over A. The
highest estimated rates of intransitivity observed by Birnbaum
and Gutierrez occurred in a condition of their second experiment
in which they used pie charts to display probability and no
numerical information onprobabilitywas provided to participants.
In this condition, with either 160 undergraduates tested in the
lab or 201 Web recruits tested via the WWW, the estimated
percentage who were consistent with the intransitive strategy,
was 5.8% in the true and error model. Out of 361 participants,
only 14 (3.9%) displayed the intransitive pattern predicted by the
priority heuristic on two repetitions. Although greater than zero,
an empirical incidence of 3.9% and theoretical incidence of 5.8%
agreement with the predicted data pattern seems quite low for a
theory that is supposed to be descriptive.

Birnbaum and LaCroix (2008) also tested transitivity with
50–50 gambles: A = ($100, 0.5; $20), B = ($60, 0.5; $27), and
C = ($45, 0.5; $34). People should choose A ! B and B ! C , but
C ! A, according to the priority heuristic (which assumes ∆L =
$10. In this case, only one person out of 260 tested showed the
pattern of intransitive choices predicted by the priority heuristic
and one showed the opposite pattern.

In an extensive review of the literature and reanalysis using
a random utility model, Regenwetter et al. (in press) concluded
that a transitive, random utility model can be retained for the vast
majority of participants tested in the literature. A distinction can

be drawn between the random utility model and the true and
error model. In the true and error model, each subject is assumed
to have a single ‘‘true’’ pattern of preferences that may or may
not be transitive. The transitive random utility model is a mixture
model in which each subject is assumed to randomly choose one
of the many possible transitive orders on each trial and make
each decision based on that randomly chosen order. Unfortunately,
many of the data sets preserved from early publications (e.g., data
of Tversky, 1969) have not been saved in a form that allows
reanalysis via the true and error model.

15.1. Evaluation of the priority heuristic

Few people satisfied the critical properties of a LS model. Still
fewer appeared consistent with the priority heuristic. Using prior
parameters for both models, TAX was more accurate than PH. In
Study 1 (Table 2), there were 96 people whose response patterns
matched the prior TAX model on both replicates against just 4
whose data matched the predictions of PH on both replicates. In
Study 2 (Tables 4–7), the figures are 99, 115, 104, and 92 for prior
TAX against 8, 16, 62, and 25 for PH, respectively. In Table 8, there
were 52 people matching TAX on both replicates against 26 for PH.
In Study 3 (Table 10) there were 31 and 17 people who matched
prior TAX on both replicates against 3 and 4 who matched the PH.
Finally, in Study 4 (Table 12) therewere 184 and 177 peoplewhose
data matched TAX compared with 18 and 9 for PH.

Given how poorly the PH did in predicting these results,
how could that model have had such seemingly ‘‘good’’ accuracy
in fitting certain previously published data, as claimed by
Brandstätter et al. (2006)? Two points should be made. First,
they did not attempt to fit certain previously published data
(e.g. Birnbaum & Navarrete, 1998) in which their heuristic was
not accurate. Second, their analyses relied on a global index of
fit (percentage of correct predictions of the majority choice) and
they did not estimate parameters from the data. Comparisons of
fit can easily lead to wrong conclusions when parameters are not
properly estimated (Birnbaum, 1973, 1974b). When parameters
are estimated for all three models from the data, CPT, TAX, and the
PH all fit the Kahneman and Tversky (1979) perfectly. Therefore,
those data should be considered not diagnostic. When parameters
were estimated for other data sets analyzed by Brandstätter, et al.,
both CPT and TAX either matched or outperformed the priority
heuristicwith its parameters also estimated (Birnbaum, 2008a). So,
their conclusion that the PH is an accurate model was not justified
even for the data analyzed by Brandstätter et al. (2006).

15.2. Expected value exclusion

Brandstätter et al. (2006, p. 426) noticed that their priority
heuristic was not accurate in cases where expected value (EV)
differed by a ratio greater than 2. Suppose people first compute
the EV of each gamble; take their ratio, choose the gamble
with the higher EV if the ratio exceeds 2, and use the PH
otherwise. (It is doubtful that Brandstätter, et al. would endorse
this model, since they argue against the kinds of assumptions that
it seems to entail and it contradicts their ‘‘frugality’’ argument
that people do not use all the information). The EV model implies
attribute integration and interaction, violates priority dominance,
and satisfies transitivity as long as the threshold for using EV
is small enough. The manipulations in Studies 1, 2, and 4 fall
outside this EV exclusion zone inmany instances. This EV-modified
priority heuristic model could therefore handle some of the results
reported here, but EV does not account for all of the violations of
the priority heuristic either in this paper or in previous research.

For example, in Table 9, the priority heuristic predicts that
people should choose the ‘‘Safe’’ gamble in all choices, including
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Choices 17 and 7. In these choices, EV ratios are less than 2), as they
are in the last four choices of Table 9). But we see a clear effect of
the common probability in these choices, contrary to the PH.

Similarly, the PH predicts that people should prefer the ‘‘safe’’
gamble in Choice 18 of Table 4 (it has a lower probability of
the lowest consequence). Instead, 67% choose the ‘‘risky’’ gamble,
($100, 0.1; $50, 0.9) over the ‘‘safe’’ gamble, ($51, 0.5; $50, 0.5)
despite the fact that the EV ratio is only 1.09.

Violations of stochastic dominance reported by Birnbaum
(1999, 2004a,b, 2005a), Birnbaum (2006), Birnbaum (2008b)
represent violations of EV as well as violations of the PH.
Violations of restricted branch independence and cumulative
independence (Birnbaum & Navarrete, 1998) also include cases
where people violate both expected value and the PH. For example,
R = ($97, 0.1; $11, 0.1; $2, 0.8) has a higher EV (12.4) than
S = ($49, 0.1; $45, 0.1; $2, 0.8), whose EV is 11; however, most
people choose S, contrary to both EV and the priority heuristic.
Brandstätter, Gigerenzer, and Hertwig (2008) replicated a subset
of such choices used by Birnbaum and Navarrete (1998) and found
that PH predicted fewer than half of the modal choices in a new
sample of Austrians, despite the fact that EV ratios were close to 1.

Glöckner and Betsch (2008) devised tests that distinguish CPT
and PH, given their prior parameters, while controlling for EV.
The priority heuristic made systematic errors that were correctly
predicted by CPT.

Birnbaum (2008c) devised a new critical test that compares the
TAXmodel to both CPT and the priority heuristic, while controlling
EV. Choices were constructed from the following recipe:

R = (x, p − r; x−, r; z, 1 − p) or S = (y, q; z+, s; z, 1 − q − s)

and

R′ = (x, p; z ′, r ′; z, 1 − p − r ′)
or S ′ = (y, q − s′; y−, s′; z, 1 − q)

where x > x− > y > y− > z+, z ′ > z ≥ 0. According to
CPT with any parameters and functions, R ! S ⇒ R′ ! S ′.
(Note that R′ dominates R and S dominates S ′ by first order
stochastic dominance.) Because the lowest consequences are the
same in both gambles, the priority heuristic predicts that people
will choose S ! Rwhen the probability of the lowest consequence
(1 − q − s) is lower than the corresponding probability in the
risky gamble (1 − p) and this difference is greater than or equal
to the threshold (0.1). For example, people should choose S =
($66, 0.8; $8, 0.1; $7, 0.1) over R = ($92, 0.6; $90, 0.1; $7, 0.3);
and they should choose R′ = ($92, 0.7; $8, 0.2; $7, 0.1) over
S ′ = ($66, 0.7; $63, 0.1; $7, 0.2). Instead, the opposite pattern,
RS ′, was significantly more frequent than the pattern compatible
with either CPT or the PH. In sum, even the addition of EV as a
preliminary step in the priority heuristic would not rescue the PH
from failed predictions.

16. Summary and conclusions

Some investigators have argued that successes of algebraic
models in psychology are only ‘‘as if’’ approximations of what
people are ‘‘really’’ thinking when they make decisions. These
investigators might argue that people really reason by processes
akin to language rather than to perception. That is, decision
processes might follow discrete, binary logic, rather than analog
numerical functions. These studies show that it is possible to test
these notions when they are specified and they find no evidence
to support this view; instead, the data appear best represented by
models such as EU, CPT, and TAX that assume that people act as if
they form a weighted average of the utilities of the consequences
and choose the gamble with the higher weighted average, apart
from randomerror. [Perhaps ‘‘as if’’ should be applied to all theories

that have thus far been proposed or to none, since this term has
been poorly defined in a way that fails to differentiate theories in
the literature.]

This study illustrates testing critical properties to compare
theories. If one theory is true, the critical property follows;
therefore, if the property is violated, we can reject the theory. If a
rival theory is true,we canuse itwith its parameters to design a test
that will compare the parametric predictions of the rival theory
against the theorem of the other. In this case, the TAX model with
prior parameterswas used to design the tests implied by the family
of LS. Unless the rival model is used to design the experiment, it
would be easy to assemble an experiment such that both theories
could account for the results. Similarly, the PH was used to design
studies of transitivity.

A difference between testing critical properties and ‘‘fitting’’
models to data is illustrated in the analysis of Study 1. A reviewer
expressed surprise that the TAXmodelwith prior parameters could
be more accurate than the sum of all 480 LS models constructed
by allowing six different priority orders and 80 combinations of
parameters. Of the 256 possible response patterns, one is predicted
by prior TAX and 22 are consistent with various members of the LS
models. How could one beat the sum of 22?

The reason for the reviewer’s surprise, I think, is that in post-hoc
fitting exercises in which data collected for some other purpose
are fit to rival models, models with more parameters tend to
achieve better fits than models with fewer. They have more
degrees of freedom to capitalize on chance. However, in tests of
critical properties, this principle need not hold. Critical properties
are properties that hold for any specification of functions and
parameters, so the apparent ‘‘freedom’’ given to a model in such
tests is illusory, not real.

One reviewer of this paper argued that testing critical
properties is not equally ‘‘fair’’ to both models. This reviewer
blamed the perceived injustice on the statistical tests, but the
‘‘unfairness’’ is strictly due to the logic of science and not to
statistics. In the first three studies, the tests had the potential
to refute the family of LS models in favor of TAX, but no result
would have resulted in refutation of TAX in favor of LS because
the implications of the LS family are a subset of those of TAX.
However, TAX could predict outcomes that were inconsistent
with the family of LS models. The only result that might have
favored LS in those studies was if the violations in Studies 1–3
were nonsignificant, in which case both models could be retained
(though the prior parameterswould need revision). The TAXmodel
was in jeopardy only in Study 4, where violations of transitivity
could have unseated it, along with other transitive models.

But this ‘‘unfairness’’ of science does not mean that results test-
ing critical properties are a foregone conclusion. Had systematic
violations of transitivity predicted by PH been observed in Study
4 and had the properties of priority dominance, integrative inde-
pendence, and interactive independence been sustained in Studies
1–3, the conclusions of this paper would be the opposite of what
they are.

Reviewing the findings with respect to Table 1, we see that not
only the family of LS models but also one attribute heuristics can
be rejected by the strong evidence showing violation of priority
dominance, violation of integrative independence and violation of
interactive independence.

Additive difference models, including the stochastic difference
model violate priority dominance and are compatible with
attribute integration, so these models are compatible with the
results of Studies 1 and 2, but they assume no interaction, so they
are thus not consistent with the results of Study 3.

Regret theory and majority rule are interactive as well as
integrative and can therefore handle the first three studies.
Although this class of models violates transitivity, it can handle
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Table 14
A test of attribute integration. To devise a test, one selects levels intended tomakeG
preferred in the first choice, and to select levels of u(a′

F )−u(a′
G) > u(aF )−u(aG) and

v(b′
F )−v(b′

G) > v(bF )−v(bG) so that F ′′′ will be preferred in the fourth choice. The
choice pattern, GGGF, violates integrative independence, which refutes all possible
lexicographic semiorder models, as shown in Table 15.

Choice Gamble, G Gamble, F

1 G = (aG, bG, cG) F = (aF , bF , cF )
2 G′ = (a′

G, bG, cG) F ′ = (a′
F , bF , cF )

3 G′′ = (aG, b′
G, cG) F ′′ = (aF , b′

F , cF )
4 G′′′ = (a′

G, b
′
G, cG) F ′′′ = (a′

F , b
′
F , cF )

the results of Study 4. Birnbaum and Schmidt (2008) tested for
specific violations of transitivity predicted by regret theory and
majority rule; they found few exceptions to the conclusion that
everyone was transitive. Nevertheless, this class of intransitive
models remains compatible with the main findings in the present
paper (see Appendix B).

The integrative, transitive utility models (like EU, CPT, and TAX)
are compatible with these results because they are consistent with
the violations of critical properties (they were predicted by the
TAXmodel with prior parameters) and because the data do not yet
require us to reject transitivity of preference.

The weakest part of this argument is the conclusion that
transitivity is acceptable. Finding conformity to a principle does
not imply that there are no violations to be found. Therefore, the
focus for empirical investigations for proponents of models like
the regret model, majority rule, priority heuristic, or stochastic
difference model appears to be to demonstrate where consistent
and systematic violations of transitivity can be observed. Negative
findings in this paper and other recent studies shift the burden of
proof to supporters of intransitive models: show us where to find
evidence of systematic intransitivity.
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Appendix A. Attribute integrationand lexicographic semiorders

Suppose three attributes (A, B, and C) can vary in each
alternative. The ABC LS model assumes that people examine these
attributes in the order: First A, then B, then C, using the following
rule to decide between two alternatives, G = (aG, bG, cG) and
F = (aF , bF , cF ):

If u(aG) − u(aF ) ≥ ∆A choose G
Else if u(aF ) − u(aG) ≥ ∆A choose F
Else if v(bG) − v(bF ) ≥ ∆B choose G
Else if v(bF ) − v(bG) ≥ ∆B choose F
Else if t(cG) − t(cF ) > 0 choose G
Else if t(cF ) − t(cG) > 0 choose F
Else undecided

where ∆A, ∆B, and ∆C are difference threshold parameters for
comparison of attributes A, B, and C, respectively, and u(a),
v(b), and t(c) are strictly increasing, monotonic functions of the
attribute values. LSmodels generated by other priority orders, ACB,
BAC, BCA, CAB, and CBA are similarly defined.

A test of integration of attributes A and B (with levels of C fixed)
is illustrated in Table 14. It is assumed that levels can be selected
such that u(a′

F ) − u(a′
G) > u(aF ) − u(aG) and v(b′

F ) − v(b′
G) >

v(bF ) − v(bG). Note that the levels in this test are selected so that
G is favored in the first choice and both manipulations tend to
improve F relative to G.

Integrative independence of A and B is the property that

If G = (aG, bG, cG) ! F = (aF , bF , cF )
And G′ = (a′

G, bG, cG) ! F ′ = (a′
F , bF , cF )

And G′′ = (aG, b′
G, cG) ! F ′′ = (aF , b′

F , cF )
Then G′′′ = (a′

G, b
′
G, cG) ! F ′′′ = (a′

F , b
′
F , cF ).

If people integrate attributes A and B, then integrative
independence can be violated with the pattern G ! F , G′ ! F ′,
G′′ ! F ′′ and F ′′′ ! G′′′, which is denoted, GGGF. It can be shown
that with appropriate selection of the ten attribute levels, none of
the LS models imply this response pattern. Table 15 presents the
predicted response patterns of all possible combinations of priority
orders together with all possible assumptions concerning whether
the contrasts in each attribute reach threshold or not.

The columns of Table 15 represent the six possible priority
orders for attributes A, B, and C. The rows indicate 18 combinations
of assumptions concerning whether each contrast in attributes is
large enough to be decisive or not; i.e., u(a′

F ) − u(a′
G) ≥ ∆A,

v(b′
F )−v(b′

G) ≥ ∆B, and t(cG)− t(cF ) ≥ ∆C are either true (‘‘yes’’)
or not (‘‘no’’).

There are only five response patterns consistent with the 108
LS models generated by combining priority orders and threshold
assumptions in Table 15: FFFF, GFFF, GFGF, GGFF, or GGGG. The
pattern, GFFF, should not be confused as evidence of integration;
this pattern merely indicates that if either attribute A or B favors
F , the response is F . The pattern, GGGF, is not compatible with any
of the LS models analyzed in Table 15; this pattern indicates that
only when both A and B favor F , the response is F .

Because the labeling of the attributes (A, B, and C) is arbitrary,
it should be clear that the analysis in Table 15 also shows
that attributes B and C (with levels of A fixed) should show
independence, as should attributes A and C (with levels of B
fixed). That is, each pair of attributes should show integrative
independence according to the family of LSmodels. In addition, we
can exchange the roles of F and G in the test.

Not all of the factorial tests in Study 2match these assumptions
concerning the ten levels that define each test; therefore, in each
test, all possible LS models are worked out by the same method
as in Table 15, providing a proof for each of the tests employed.
For example, the predictions for the test in Table 4 are shown in
Table 16, which departs from the assumptions used in Table 15
(note that two attributes favor R in the first choice). Nevertheless,
Table 16 shows that the design in Table 4 is a proper test of
integration because none of the LS models predicts the pattern
RRRS. The same method is used to analyze Table 5, which is a
combined test of integration and interaction, and Tables 6 and 7,
which are proper tests of integration. The study in Table 8 is a
partial test.

Appendix B. Proofs of properties in Table 1

The TAX model violates priority dominance, integrative inde-
pendence, interactive independence, and satisfies transitivity.
Proof: To show that a model can violate a property, it suffices
to find one instance of violation. In this paper, predictions are
calculated for TAX using prior parameters and the predictions of
themodel are listed in Tables 2 and 3, showing violation of priority
dominance in all three tests; predictions in Tables 4, 6 and 7 show
that TAX implies integration for each pair of attributes. The TAX
model violates interactive independence (calculated utilities of the
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Table 15
Response patterns implied by lexicographic semiorder models; ‘‘no’’ in the first column means 0 < u(aF ) − u(aG) < ∆A; ‘‘yes’’ indicates u(aF ) − u(aG) ≥ ∆A . ‘‘Yes’’ in the
second and third columns means u(a′

F ) − u(a′
G) ≥ ∆A and v(bF ) − v(bG) ≥ ∆B respectively; ‘‘Yes’’ in the fifth columnmeans t(cG) − t(cF ) ≥ ∆C . Only five patterns appear:

FFFF, GFFF, GFGF, GGFF, and GGGG. The pattern GGGF is not compatible with any of these 108 lexicographic semiorders.

(aF , aG) (a′
F , a

′
G) (bF , bG) (b′

F , b
′
G) (cG, cF ) ABC ACB BAC BCA CAB CBA

No No No No No GGGG FFFF GGGG FFFF FFFF FFFF
No No No No Yes GGGG GGGG GGGG GGGG GGGG GGGG
No No No Yes No GFGF FFFF GFGF FFFF FFFF FFFF
No No No Yes Yes GFGF GGGG GFGF GFGF GGGG GGGG
No No Yes Yes No FFFF FFFF FFFF FFFF FFFF FFFF
No No Yes Yes Yes FFFF GGGG FFFF FFFF GGGG GGGG
No Yes No No No GGFF FFFF GGFF FFFF FFFF FFFF
No Yes No No Yes GGFF GGFF GGFF GGGG GGGG GGGG
No Yes No Yes No GFFF FFFF GFFF FFFF FFFF FFFF
No Yes No Yes Yes GFFF GGFF GFFF GFGF GGGG GGGG
No Yes Yes Yes No FFFF FFFF FFFF FFFF FFFF FFFF
No Yes Yes Yes Yes FFFF GGFF FFFF FFFF GGGG GGGG
Yes Yes No No No FFFF FFFF FFFF FFFF FFFF FFFF
Yes Yes No No Yes FFFF FFFF FFFF GGGG GGGG GGGG
Yes Yes No Yes No FFFF FFFF FFFF FFFF FFFF FFFF
Yes Yes No Yes Yes FFFF FFFF FFFF GFGF GGGG GGGG
Yes Yes Yes Yes No FFFF FFFF FFFF FFFF FFFF FFFF
Yes Yes Yes Yes Yes FFFF FFFF FFFF FFFF GGGG GGGG

Table 16
Lexicographic semiorder (LS) model analysis of test in Table 4. In this test, the four choices are R = ($100, 0.9; $50) versus S = ($51, 0.5; $50), R′ = ($100, 0.1; $50)
versus S ′ = ($51, 0.5; $50), R′′ = ($100, 0.9; $0) versus S ′′ = ($51, 0.5; $10), and R′′′ = ($100, 0.1; $0) versus S ′′′ = ($51, 0.5; $10). The preference pattern R ! S,
R′ ! S ′ , R′′ ≺ S ′′ , and R′′′ ≺ S ′′′ is denoted as RRSS. Question marks (?) denote choices where the LS model is undecided. Intervals indicate the range of values of the assumed
parameter values. For example, the interval (0, 0.4] indicates that 0 < ∆P ≤ 0.4, and (0.4, ∞) indicates that 0.4 < ∆P (i.e., is assumed that a difference of 0.4 in probability
is either decisive or not.) The pattern predicted by the TAX model with prior parameters is RRRS; none of these LS models makes the same prediction.

Intervals of threshold parameters Lexicographic priority order
∆L ∆P ∆H LPH LHP PLH PHL HPL HLP

(0, 10] (0, 0.4] (0, 49] RSSS RRSS RSRS RSRS RRRR RRRR
(0, 10] (0, 0.4] (49, ∞) RSSS RSSS RSRS RSRS RSRS RSSS
(0, 10] (0.4, 1) (0, 49] RRSS RRSS RRSS RRRR RRRR RRRR
(0, 10] (0.4, 1) (49, ∞) RRSS RSSS RRSS ??SS ??SS RSSS
(10, ∞) (0, 0.4] (0, 49] RSRS RRRR RSRS RSRS RRRR RRRR
(10, ∞) (0, 0.4] (49, ∞) RSRS RSRS RSRS RSRS RSRS RSRS
(10, ∞) (0.4, 1) (0, 49] RRRR RRRR RRRR RRRR RRRR RRRR
(10, ∞) (0.4, 1) (49, ∞) RRRR RSRS RRRR ??SS ??SS RSRS

gambles are shown in Table 9). Because the TAX model represents
the utility of a gamble with a single number, as in Eq. (1), it implies
transitivity, apart from random error, by the same proof given after
Eq. (1).

EU model is a special case of TAX and it is also a special case
of CPT (Birnbaum, 2008b). With u(x) = xβ , where β = 0.2, EU
makes the same predictions as prior TAX for Tables 2, 4–8 and
11. It predicts the pattern SSSRR for Table 9, violating interactive
independence. Because EU is a special case of CPT, it shows that CPT
is also compatible with these results. However, Birnbaum (2008b)
has summarized strong evidence against EU and CPT.

The one attribute model satisfies priority dominance.
Proof : According to this model, people examine only one attribute
and make their decisions based entirely on that attribute alone;
therefore, the one attribute used is dominant. For example, if
people choose by the lowest consequence alone, then that attribute
has priority, and no change in the probability or the highest
consequence can overcome it because the person does not use
those attributes at all.

The one attribute model satisfies integrative independence.
Proof : Because a person chooses by one attribute, changes in other
attributes have no effect. If variables have no effect, they cannot
combine to change a decision. In a test of integration (Expressions
(11a)–(11d)), one attribute has fixed levels and contrasts on two
other attributes are varied. If the attribute that is fixed is the
one attribute attended to, then manipulations of the other two
attributes will have no effect, so the person would show the
patterns, BBBB, AAAA or ????. If the attribute used is one of the
two manipulated in a factorial design, then the person can show

the patterns BBBB, BABA, BBAA, AAAA or ????, but will not show the
pattern BBBA.

The one attribute model shows no interaction.
Proof : In this test, probability is held constant in the two
gambles and there are differences on both the lower and higher
consequences. If probability is the one attribute used, the person
will show no preference in all of the choices in the test. If higher
consequence is the one examined, then the person will choose the
risky gamble in all cases in Table 9. If the lower consequence is the
one examined, then the person will choose the ‘‘safe’’ gamble in all
choices. Therefore, this model implies only the response patterns,
?????, RRRRR, or SSSSS, but it cannot predict patterns such as SSRRR.

The one attribute model satisfies transitivity.
Proof : Because this model uses only one attribute, its utility can
be represented as a function of that that attribute’s value. By the
same argument given in association with Eq. (1), the transitivity of
numerical utility implies the transitivity of preference.

The additive contrasts model (Eq. (4)) can violate priority
dominance.
Proof: It suffices to find a violation. Suppose φ1(p1G, p1F ) =
122(p1G −p1F ), where F = (x1F , p1F ; x2F ) and G = (x1G, p1G; x2G),
and suppose θ1(x1G, x1F ) = x1G − x1F , for the higher consequences
and θ2(x2G, x2F ) = 2(x2G − x2F ) for the lower consequences,
where all other terms are set to zero. This model makes the same
predictions as TAX for the three tests of priority dominance in
Table 2; that is, it predicts SRSRRS for the first six choices in Table 2,
violating priority dominance.

The additive contrast model violates integrative independence
(it shows integration).
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Proof:With the assumptions in the previous paragraph, this model
predicts RRRS, SSSR, SSSR, and SSSR for the tests of integration in
Tables 4 and 6–8, the same as the prior TAX model.

The additive contrast model satisfies interactive independence
(Expression (12)).
Proof: Because the probabilities are equal, the probability contrast
terms are zero. It follows that:

D(A, B) =
2∑

i=1

φi(pi, pi) +
2∑

i=1

θi(xiA, xiB) =
2∑

i=1

θi(xiA, xiB)

=
2∑

i=1

φi(p′
i, p

′
i) +

2∑

i=1

θi(xiA, xiB) = D(A′, B′).

Therefore, A ! B ⇔ A′ ! B′. For this reason, this model cannot
account for the results in Table 5, which tests a combination of
integration and interaction, nor can it account for the results in
Tables 9 and 10.

The additive contrast model violates transitivity, as shown by
the example given in association with Eq. (5).

The family of models that includes regret theory and majority
rule (Expression (6)) violates priority dominance, integrative
independence, interactive independence and transitivity. To prove
violations, it suffices to find a violation of each. To apply thismodel,
we need to specify the set of mutually exclusive and exhaustive
events onwhich the contrasts are defined. Let the events be defined
as follows: E1 = both gambles G and F win their higher prizes,
E2 = Gwins its higher prize and F wins its lower prize, E3 = Gwins
its lower prize and F wins its higher prize, and E4 = both gambles
win their lower prizes. Let φi(Ei) = pGpF , pG(1 − pF ), (1 − pG)pF ,
and (1 − pG)(1 − pF ), for these four events, respectively. Let

θi(xiG, xiF ) = (xβ
iG − xβ

iF )
γ

where β = 0.5 and γ = 1.2. With these assumptions, Eq. (6)
makes the same predictions as TAX for Table 2, violating priority
dominance; it makes the same predictions as TAX for Tables 4, 6
and 7, which shows that it violates integrative independence. It
makes the same predictions as TAX for Tables 5 and 9, showing
that it violates interactive independence. Although the model can
predict violations of transitivity, this special case makes the same
predictions as TAX for Tables 11 and 13, satisfying transitivity in
these studies. This model also makes the same predictions as TAX
for Table 8. Thus, Eq. (6) (which includes Regret Theory) can be
retained as a description of the present results.

To show that Eq. (6) can violate transitivity, consider the
example of three branch gambles given after Eq. (5). For gambles
with three equally likely consequences, let φ(E1) = φ(E2) =
φ(E3) = 1/3. Let θi be defined as in Eq. (5). Eq. (6) then implies
intransitive choices for A = ($80; $40; $30), B = ($70; $60; $20),
and C = ($90; $50; $10). See Birnbaum and Schmidt (2008) for
failed predictions of Regret Theory.

Appendix C. True and error model

As shown in Eq. (14), reversals between repeated presentations
of the same choice provide an estimate of the error rate, P(RS) +
P(SR) = 2e(1 − e). For example, if there are 32% reversals on
repeated presentations of a choice, the error rate is estimated to
be 0.2.

The fact that P(SS) = p(1 − e)2 + (1 − p)e2 provides a method
for estimating p. Note that if we know the error rate, which can be
estimated from preference reversals across replications (Eq. (14)),
we can use the rate of repeated choices (as in Eq. (13)) to find p.

In practice, p and e are estimated simultaneously to reproduce
the four frequencies for each replicated choice. There are three
degrees of freedom in these four frequencies (they sum to the

number of participants), so there remains one degree of freedom
to test the model. Using this method, the error terms for Choices
16, 13, 5, and 9 of Table 8 are estimated to be 0.05, 0.09, 0.21, and
0.15 respectively.

We can assess if p = 0 from the special case of P(SS) =
p(1 − e)2 + (1 − p)e2, when p = 0. Note that when e = 0.2 and
p = 0, we expect to see P(SS) = 0.04. This relatively small value
shows that when the error rates are 0.2 or below, repeated choices
are likely to be ‘‘real’’ rather than due to error.

Appendix D. Supplementary analyses of integration

D.1. Supplementary analysis of Table 4

To compare the family of LSmodels against the TAXmodel with
free parameters, we can examine the predictions of these models.
For the LS models, the patterns predicted are RRRR, RRSS, RSRS,
and RSSS. The TAX model with free parameters can accommodate
these 4 patterns, and it can also predict the pattern RRRS, when
(β, γ , δ) = (1, 0.7, 1), which are the ‘‘prior’’ parameters. TAX
predicts the patterns RSSS, RSRS, RRSS and RRRR when (β, γ , δ) =
(0.2; 2.5, 1), (1.4, 2.2, 1), (0.5, 0.1, 1) and (1.8, 0.7, 1), respectively.
[Each response pattern is compatible with many combinations of
parameters; these combinations are presentedmerely to show that
the model can accommodate these patterns].

Therefore, in the test of Table 4, the family of LS is restricted to
only four of the five patterns that are compatible with integrative
models like TAX, CPT, and EU. With four choices, there are sixteen
possible response patterns, RRRR, RRRS , RRSR, RRSS , RSRR, RSRS ,
RSSR, RSSS , SRRR, SRRS, SRSR, SRSS, SSRR, SSRS, SSSR, SSSS. The
number of people who showed each of these 16 patterns is 27, 99,
5, 21, 8, 44, 4, 8, 0, 5, 3, 1, 3, 2, 2, and 10, respectively. (Patterns and
frequencies set in bold font show cases consistent with TAX).

The ‘‘true and error’’ model of this four-choice property has
16 equations, each with 16 terms that describe the probability
of showing each observed pattern and having each true pattern
(combination of errors). For example, the probability of showing
the observed pattern, RRRS and having the true pattern of RRRR is
as follows:

P(RRRS ∩ RRRR) = p(RRRR)(1 − e1)(1 − e2)(1 − e3)e4.

That is, a person whose true pattern is RRRR can show the
RRRS pattern by correctly reporting the first three preferences and
making an error on the fourth choice. There are fifteen other ways
to show this response pattern, corresponding to the other fifteen
possible true patterns of preference. The sum of these sixteen
terms is the predicted probability of showing the pattern RRRS. The
TAX model is a special case of this true and error model in which
only five terms have non-zero probabilities (RRRS, RSSS, RSRS, RRSS
and RRRR) and the LS family allows a still smaller subset in which
the probability of RRRS is fixed to zero.

Because the 16 observed frequencies sum to the number of
participants, the data have 15 degrees of freedom. For the TAX
model with free parameters, there are five possible response
patterns, so there are five ‘‘true’’ probabilities of the predicted
patterns to estimate (which sum to 1, so four degrees of freedom
are used) and four error rates to estimate (one for each choice).
That leaves 15 − 4 − 4 = 7 degrees of freedom. The family of LS
models is a special case of this model in which p(RRRS) is fixed to
zero. The difference in χ2 provides a test if the observed frequency
of RRRS is significant, which would refute the LS family.

When this model was fit to minimize the χ2(7), it yielded
estimates of (ê1, ê2, ê3, ê4) = (0.09, 0.10, 0.11, and 0.19);
p̂(RSSS) = 0.00, p̂(RSRS) = 0.44, p̂(RRSS) = 0.00, p̂(RRRS) =
0.53, p̂(RRRR) = 0.03. When p(RRRS) was fixed to zero (testing
the family of LS models), χ2 increased by χ2(1) = 11.81, which
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Table 17
True and error analysis of replicated design (n = 266) in Table 8. Entries shown in bold are consistent with integrative models such as TAX; SSSR is predicted by prior TAX.
Estimated error terms are (ê1, ê2, ê3, ê4) = (0.05, 0.09, 0.21, 0.15), respectively.

Response pattern Number who show each pattern Estimated probability
Replicate 1 Replicate 2 Both replicates

RRRR 7 5 1 0.05
RRRS 1 1 0 0
RRSR 5 4 0 0
RRSS 4 1 0 0
RSRR 3 1 0 0
RSRS 1 2 0 0
RSSR 5 3 0 0
RSSS 2 1 0 0
SRRR 7 2 0 0.00
SRRS 2 7 0 0
SRSR 26 25 14 0.12
SRSS 9 5 1 0
SSRR 48 52 18 0.14
SSRS 6 13 1 0
SSSR 93 99 52 0.48
SSSS 47 45 26 0.21

is significant. In sum, the observation that 99 people showed the
RRRS pattern, which is not compatible with any of the LS models,
cannot be reconciled with the true and error model.

Because many of the cells in this example had low predicted
frequencies, the statistical tests were also repeated, pooling cells
whose predicted frequencies were less than 4. Although values of
χ2 observed and degrees of freedom are altered in these analyses,
the conclusions were not changed here or in other tests of this
type. In this analysis (ê1, ê2, ê3, ê4) = (0.04, 0.24, 0.11, 0.20),
p̂(RRRS) = 0.77, p̂(RRSS) = 0.06, p̂(RSRS) = 0.09, and p̂(SSSS) =
0.08. All other parameters were set to zero. There were 7 cells that
had predicted frequencies less than 4, which were pooled, leaving
10 cells with 9 df; the χ2(2) = 0.87, showing that this integrative
model combined with the true and error model can be retained.
The predicted frequencies from this model are 24.9, 100.8, 5.1,
20.7, 10.4, 41.9, 2.0, 8.2, 1.3, 5.1, 1.0, 4.0, 0.8, 3.2, 2.5, and 10.1,
respectively (the four cells with nonzero probabilities in themodel
are shown in bold font). These predicted frequencies can be used
to calculate four predicted choice percentages for Table 4.

When p̂(RRRS) was fixed to zero in this pooled analysis, the
fit was significantly worse, χ2(1) = 43.2. In sum, the data are
not compatible with the family of LS models even when cells with
small predicted frequencies are pooled, but they can be reconciled
by models that allow integration, such as the TAX model.

D.2. Supplementary analysis of Table 5

In this case, probability contrasts are always zero. There are two
possibilities for the contrast in the lowest consequences ($0 versus
$20 either reaches threshold or not); there are three possibilities
for the threshold parameters in the highest consequences: either
both $26 versus $25 and $100 versus $25 exceed threshold, or
$26 versus $25 does not reach threshold but $100 versus $25
does, or both contrasts fall short of threshold. There are thus 2 ×
3 = 6 assumptions concerning thresholds and six priority orders,
yielding 36 LSmodels. These 36 LSmodels can predict the patterns,
RRRR, SRSR, SSSS, ?R?R, and ????. Resolving the undecided cases in
favor of either S or R results in just three response patterns. TAX
model with its prior parameters predicts SSSR, a pattern that is not
compatible with any of the LS models, but which was exhibited
by 115 people. When its parameters are free, the TAX model
can also accommodate the patterns SSSS, SSRR, SRSR, and RRRR,
when (β, γ , δ) = (0.5; 0.1, 1), (2; 2.5, 0), (2; 0.1, 0), and (14;
1.2, 0), respectively. The family of LS models again allows only a
subset of three of the five patterns consistent with TAX, in this
case, including only three: SSSS, SRSR, and RRRR. The observed

frequencies of the 16 possible patterns from RRRR, RRRS, RRSR,
RRSS, RSRR, RSRS, RSSR, RSSS, SRRR, SRRS, SRSR, SRSS, SSRR, SSRS,
SSSR, SSSS , are 6, 3, 5, 3, 2, 0, 3, 2, 12, 4, 25, 2, 39, 5, 115, and 16,
respectively. Fitting the true and error model to these frequencies
yielded the following solution: p̂(RRRR) = 0.07, p̂(SRSR) = 0.19,
p̂(SSRR) = 0.0, p̂(SSSR) = 0.74, and p̂(SSSS) = 0.0, with all others
set to zero. When p̂(SSSR) was fixed to 0, the fit was significantly
worse, as one might expect from the fact that 115 people showed
this pattern, χ2(1) = 39.55. Pooling small frequencies, a simpler
TAX model was also compatible with the data, p̂(RRRR) = 0.06,
p̂(SRSR) = 0.14, and p̂(SSSR) = 0.80, χ2(3) = 5.87. The predicted
frequencies for this model are 10.6, 2.0, 5.3, 1.0, 2.1, 0.4, 5.2, 1.0,
10.8, 2.1, 26.1, 5.0, 40.6, 7.8, 102.2, 19.7. From these predicted
frequencies, one can calculate predicted frequencies of the four
choices in Table 5.

D.3. Supplementary analysis of Table 6

The TAX model with free parameters can also predict the
patterns SSSS, SSRR, and SRSR [when (β, γ , δ) = (0.6; 0.7, 1),
(2; 2.5, 0), and (2.5; 0.5, 0.5), respectively]. Observed frequencies
of the 16 response patterns from RRRR, RRRS, to SSSS are 2, 7, 1, 3, 1,
2, 3, 2,6, 2,15, 5,25, 2,104, and62, respectively. Fitting the true and
error model, the estimated true probabilities are p̂(SRRR) = 0.06,
p̂(SRSR) = 0.04, p̂(SSRR) = 0.12, p̂(SSSR) = 0.69, and p̂(SSSS) =
0.09, with all others fixed to zero. This model predicts frequencies
of 0.9, 0.3, 1.3, 0.6, 1.7, 0.7, 9.3, 4.6, 10.5, 4.0, 14.5, 6.5, 20.0, 7.7,
107.2, and 52.2. The assumption that p(SSSR) = 0 can be rejected,
χ2(1) = 28.51, which shows that the family of LS cannot handle
these data.

D.4. Supplementary analysis of Table 7

The TAX model with free parameters can also handle the
patterns SSSR, SSSS, and SRSR [with (β, γ , δ) = (1, 0.7, 1),
(0.3, 0.7, 1), and (1.5, 0.7, 1), respectively]. The observed frequen-
cies of individual response patterns from RRRR to SSSS were 2, 1, 4,
4, 1, 0, 2, 1, 4, 0, 80, 12, 11, 3, 92, and 25. The true and error model
yielded the following estimates: p̂(RRRR) = 0.02, p̂(SRSR) = 0.37,
p̂(SSRR) = 0.06, p̂(SSSR) = 0.45, and p̂(SSSS) = 0.10, with all
others set to zero. Setting p̂(SSSR) = 0, the deviations were sig-
nificant, χ2(1) = 8.39. A simpler model with p̂(SRSR) = 0.42,
p̂(SSSR) = 0.49, p̂(SSSS) = 0.09 and all others set to zero also pro-
vided an acceptable fit; χ2(3) = 3.84. In this simpler model, the
predicted frequencies are 0.4, 0.1, 3.5, 0.6, 0.5, 0.1, 4.0, 1.2, 9.1, 1.6,
77.7, 13.4, 10.5, 3.1, 89.6, 26.7.
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Appendix E. True and error model analysis of Table 8

The true and error model can be used for the analysis of
an experiment testing a property involving four choices with
replications, as in Table 8. The observed frequencies of showing
each response pattern on first replicate, second replicate and on
both replicates are shown in Table 17. According to the true
and error model, each person may have one of sixteen ‘‘true’’
preference patterns, as in Appendix D. The probability of a person
showing a given pattern of data is then the sum of sixteen terms,
each representing the probability of showing a given response
pattern and having the pattern of errors and correct responses
required to produce that response pattern. There are sixteen
equations, each of which has sixteen terms, one for each of the
sixteen possible observed patterns. To calculate the probability of
showing this pattern on both replicates, the terms representing
correct choices and errors are squared; that yields another 16
equations for the probabilities of showing each pattern on two
replications.

The true and error model was fit to the 16 frequencies of
repeating a response pattern on two replications and the 16
average frequencies of showing these response patterns on either
the first or second replication but not both. These 32 frequencies
are mutually exclusive and sum to the number of participants,
which means there are 31 degrees of freedom in the data. The
substantive models to be compared are both special cases of this
‘‘true and error’’ model, in which many of the possible response
patterns are assumed to have true probabilities of zero.

The TAX model with free parameters can handle 6 response
patterns: SSSS, SSSR, SSRR, SRSR, SRRR, and RRRR. The probabilities
of the other 10 patterns are set to zero. From the data, 4 error
terms are estimated, and6 ‘‘true’’ probabilities of response patterns
are estimated. These 6 true probabilities sum to 1, so they use 5
degrees of freedom, leaving 31−4−5 = 22 degrees of freedom to
test the model. Fitting Table 17, χ2(22) = 25.0, an acceptable fit.
The estimated ‘‘true’’ probabilities are shown in the last column of
Table 17. One of the patterns compatible with TAX, p̂(SRRR) was
estimated to be 0, but the pattern, SSSR, had a large estimated
probability, p̂(SSSR) = 0.48. This latter probability indicates that
almost half of the sample has the response pattern that is predicted
by TAX with its prior parameters and which is incompatible with
the LS models except for PHL with 0.3 < ∆P ≤ 0.5.

When the probability of this pattern, SSSR, is set to zero, the
best-fit solution yields χ2(21) = 533.1, an increase of χ2(1) =
508.1. In sum, whereas these data are compatible with the family
of integrative models, they rule out all of the LS models except
PHL2. However, because PHL2 is refuted by other tests in Studies
1–3, that model cannot be retained as descriptive, despite its
compatibility with the data of Table 8.

Appendix F. True and error analysis of transitivity

The ‘‘true and error’’ model allows a person who is truly
intransitive to show a transitive pattern and vice versa. For
example, a person might correctly report preference for the first
gamble (F) on Choices 6 and 18 and make an ‘‘error’’ on trial 14
by choosing the second gamble, S. The probability that this FFS
response pattern would be observed, given that the person’s true
pattern is FFF is given as follows:

P(observed = FFS|true = FFF) = (1 − e1)(1 − e2)e3 (16)

where e1, e2, and e3 are the error rates for Choices 6, 18, and
14, respectively. Assuming Choices 15, 12, and 8 are replicates
of 6, 18, and 14, respectively, we can estimate error terms. The
theoretical probability of each response pattern is the sum of eight

terms, representing the eight mutually exclusive and exhaustive
conjunctions of observed and ‘‘true’’ patterns.

The data are partitioned into the frequencies of showing each of
8 patterns on both replicates and the average frequency of showing
each of these response patterns on one replicate or the other but
not both. The model is fit to these 16 frequencies to minimize the
χ2 between predicted and obtained frequencies. The true and error
model is neutral with respect to the issue of transitivity, since it
allows each subject to have a different true pattern, which need
not be transitive.

When thismodelwas fit to the data, the best-fit solution yielded
the following estimates for the ‘‘true’’ probabilities of the 8 possible
response patterns: 0, 0.87, 0.03, 0, 0.03, 0, 0.07, 0 for FFF, FFS, FSF,
FSS, SFF, SFS, SSF, and SSS, respectively, where F = choice of the
First gamble and S = choice of the Second gamble in Table 11.
Thus, this model estimates that 87% of the participants had FFS
as their ‘‘true’’ preference pattern, and that no one had either the
intransitive pattern predicted by the priority heuristic (FFF ) or the
opposite intransitive pattern (SSS) as his or her ‘‘true’’ pattern. The
estimated error rateswere 0.11, 0.09, and 0.08, for the first, second,
and third choices in the table, respectively.
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