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On rescaling data to fit the model
and concluding that the model fits: A note
on monotone transformation

MICHAEL H. BIRNBAUM
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Carterette and Anderson (1979) advocate a pro-
cedure for monotone transformation of data ob-
tained with factorial experiments to determine
whether deviations from theoretical predictions can
be removed by weak monotonic transformation of
the data. To minimize theory-data discrepancies,
their procedure employs a separate transforma-
tion for each replicate. They propose to perform
ANOVAs on the transformed scores as though no
parameters were estimated in the transformation pro-
cedure, and to draw inferences concerning the psy-
chological process from the value of the calculated F
for interactions.

This note questions their approach and discusses
alternative procedures for transformation and for
testing theories on the basis of ordinal data. It argues
that error theory and statistical theory are separate
issues, and should be treated as such.

A Model of Transformation

Carterette and Anderson (1979) do not state their
theory explicitly, and therefore certain aspects of
their paper are unclear. However, they appear to
entertain the following model:

Tk(Rijk) =a;+ b_] + €ijk )

where Rjji is the response in the ith row and jth
column of the factorial design for the replicate k, Ty
is a set of weak monotone functions, estimated sep-
arately for each replicate, a; and b; are estimated
parameters that are assumed to be independent of the
replicate, and ejjx is an error term. Unfortunately,
Carterette and Anderson make few statements about
the error term, but they use standard analysis of
variance on the transformed scores, so it appears that
they accept the usual assumptions of normality and
of homogeneity of variance and covariance among
the errors.' They present no information concerning
tests of any of these assumptions for their data.

The theories considered by Carterette and Anderson
(1979) imply no interaction between factors. The
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transformations, Ty, were designed to reduce the
proportion of variance in the interactions relative to
main effects. After transforming the data to reduce
an index of stress, they calculated the f ratio for the
interaction in the transformed scores. In one case,
the F ratio after transformation was greater than that
before transformation. Had the f itself been used as
the criterion to minimize, it would have grown
smaller after transformation.

Carterette and Anderson (1979) present no evidence
that the procedure they advocate leads to a calculated

(after transformation) that obeys the F distribution
with the stated degrees of freedom. Before conclud-
ing that the procedure of Carterette and Anderson is
“‘valid,”’ as they claim, it should be demonstrated by
derivation or Monte Carlo methods that the calcu-
lated £ under the null hypothesis does, indeed, have
the appropriate F distribution.

Without evidence that the procedure leads to a test
statistic that has the assumed distribution or that the
transformed scores obey the ANOVA assumptions, a
skeptic should reserve judgment concerning infer-
ences drawn from the procedure of Carterette and
Anderson (1979).

Deeper Issues

A deeper issue is the extent to which the replication
factor provides constraint to prevent possibly inap-
propriate transformation. In other words, is there
any information in the response variability above and
beyond the means or medians that can prevent in-
appropriate transformation? Four responses to this
question follow:

First, any function that is ordinally additive will
still be rescalable to additivity. For example, if the
“‘true’’ model were

Wijk = aibjey,

where R, =T*(wjx) and T* is a monotonic func-
tion, it should be clear that the transformation of
Equation 1 would rescale to additivity. The values of
aj and bj would depend on the model assumed.
Second, the procedure advocated by Carterette
and Anderson (1979) would succeed in removing the
interaction in Table 1, which shows a clear violation
of independence. The right half of Table 1 shows that
the transformed scores are perfectly additive. With
each replicate resembling Table 1, it should be clear
that averaging transformed data over replications is
no prophylactic for degenerate and therefore inap-
propriate transformation. Fortunately, Carterette
and Anderson advocate plotting the original data as
well as the transformed data, and the deviation in
Table 1 would be noticed in plots of the original
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Table 1
Example of Degenerate Transformation
Hypothetical Data Rescaled Data
bl bZ bl b2
a, 2 4 a, 2 4
a, 5 8 a, 6 8
a, 6 7 a, 6 8
a, 9 10 a, 10 12

Note—The rescaled data are a weak monotone function of the
hypothetical data. If this pattern occurs in each replicate, the
fit to the additive model will be perfect, despite ordinal viola-
tions of additivity in every replicate.

data. However, the use of replications would not
prevent such degeneracy. Indeed, use of a separate
transformation for each replicate could, in fact,
encourage degenerate solutions, in which two scale
values close in value would be squashed into the same
value to improve the overall fit. Busemeyer (1980)
has noted this problem and illustrated it with another
example.

Third, there exists a simple argument to show that
transformation of the raw data and of averaged data
should lead to the same conclusions, if, at least, the
median is accepted as the average. This seems a mild
requirement, since means and medians are usually
monotonically related for judgment tasks. If T is a
monotonic transformation, and M refers to the me-
dian, then T[M(x)] = M[T(x)}; that is, the median of
the transformed scores will be the same as the trans-
formation of the median. Therefore, whether the
scores are transformed separately and then averaged
or averaged and then transformed should make no
difference. However, when different monotonic
transformations are permitted for each replicate,
then the transformed scores are not necessarily a
monotonic function of the original data. Under these
conditions, the mean transformed scores have a
theoretical status different, relative to the original
data, from that when a single transformation is ap-
plied. Therefore, if a transformation, T, exists that
renders the medians parallel, then a single trans-
formation of the raw data that renders the medians
of the transformed data equally parallel also exists.
Therefore, if a single transformation successfully re-
moves the interaction in the medians, it does not
seem sound reasoning to argue that Carterette and
Anderson’s (1979) procedure, which uses different
transformations for different replicates, gains addi-
tional constraint that could have prevented inappro-
priate transformation.

Fourth, additional constraint can be gained from
response variability by explicitly transforming data
to fit a distributional theory, as outlined in the next
section.

A DISTRIBUTIONAL THEORY
AND TRANSFORMATION TECHNIQUE

The following procedure, which was briefly out-
lined by Birnbaum (1979), does gain additional con-
straint from the data, by assuming that the errors
have the same distribution for all cells in the design.
This assumption is forced into the analysis as an ad-
ditional constraint upon the transformation. Of
course, the theory may not be correct, but that is a
risk with any theory.

The idea is that the law of categorical judgment
(Torgerson, 1958), related to Thurstone’s laws and
signal detection theory, can be extended to judg-
ments obtained in factorial designs as follows: Let
Pijm =Prob(Rj; 2 Xp), where Xm is a response
value. Then a reasonable model can be written

Py = Fl(a; + b — ty)/ 03], )

where F is a strictly monotonic distribution function
(in Thurstone’s law, it would be the cumulative
normal), a; and bj are as before, ty, is the subjective
value of a response = Xp, and ojj is the psychological
dispersion for this cell in the design. If it is assumed
that o;; is a constant for all cells, then Equation 2 be-
comes additive in three factors: rows, columns, and
response value. Monotone scaling programs can be
used to solve for aj, bj, tm, and F*. The relationship
between subjective value and response can be repre-
sented as the function Xy = J(tm).
A more general model can be written as

Piim = Flw;j — tm/035]s (3)

where yjj, which represents the subjective impres-
sion, is not constrained to be additive. A special
case of Equation 3 would assume oj;=1, as fol-
lows:

Pjjm = Flwij — tml. 4

This model assumes that the distributions on the sub-
jective continuum are identical for all of the stimulus
combinations. One could derive the values of y from
this model and plot them to check if the assumption
of homogeneity leads to parallelism. If it did not, one
could question either additivity or homogeneity.
Equations 2, 3, and 4 are models that incorporate
the distribution of errors into the judgment theory.
Each of the equations leads to a monotone rescaling
procedure. However, these models are best regarded
as theories, rather than methods for statistically pro-
cessing the data.? It should be clear that there will be
an indeterminacy of error model and judgment model.
Thus, if the assumption of homogeneous error



variance is consistent with additivity, then the as-
sumption that error variance is proportional to
would lead to a multiplying model. This indetermi-
nacy is analogous to the case V vs. case VI dispute in
Thurstone scaling (Bock & Jones, 1968).

Example

Tables 2 and 3 illustrate the application of Equa-
tion 4 with hypothetical data. The medians of the raw
data show a bilinear interaction between row and
column (Table 3) that would be consistent with a
multiplying model but not an additive model. How-
ever, when the data are rescaled to homogeneity
(Table 2 is rescaled to parallelism), then the values of
y derived from Equation 4 are additive (the right-
hand portion of Table 3). This example used the
cumulative normal function for F, but the procedure
assumes only that F is a monotone function, and it
allows estimation of the function. This example il-
lustrates the indeterminacy between choice of model
and the error theory.

SCALE-FREE TESTS

A far better procedure for assessing models, such
as the parallel-averaging model for impression for-
mation or the size-weight illusion, is by means of
scale-free tests, as in Birnbaum (1974, 1982) and
Birnbaum and Veit (1974b). These studies provide
data that would yield the same conclusion regarding
the additive model, irrespective of monotone trans-
formation of the data. Birnbaum (1974) showed that
the parallel-averaging model of impression forma-
tion can be rejected. Similarly, Birnbaum and Veit
(1974b) found that the size-weight illusion shows
systematic violations of the parallelism-averaging
model.

The scale convergence criterion (Birnbaum, 1974,
1982) also constrains monotone transformation

Table 2
Hypothetical Resuits of Factorial Experiment
Response
SC 12 25 50 100 200 400 800

a,b

a,b, 03 03 16 .50 84 97 97
a,b, 03 03 03 .16 50 84 97
a,b, 03 03 16 .50 84 97 97
a,b, 03 03 03 .16 50 84 97
a,b, 03 03 03 .03 16 50 84

Note-SC = stimulus combination. Each entry is the proportion
of responses to the row stimulus combination less than the
column response (proportions more extreme than .03 and .97
have been tied to these values). Equation 4 is revised: Py, =
Flty, — V).
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Table 3
Raw and Transformed Medians for Hypothetical Data
Column

Raw Data Transformed
Row b, b, b, b, b, b,
a, 25 50 100 -2 -1 0
a, 50 100 200 ~1 0 1
a, 100 200 400 0 1 2

Note-For Equation 4, values of ty, are -3, ~2, —1,0, 1, 2, and
3 for 12, 25, 50, 100, 200, 400, and 800, respectively. Thus,
this hypothetical example assumes that J is an exponential func-
tion and that errors are homogeneously distributed.

(Birnbaum & Veit, 1974a). Scale convergence also
provides evidence against interpretations derived
from scale-dependent research reviewed by Anderson
(1979) (see Birnbaum, 1982). Anderson’s (1977,
1979) suggestion that impression formation and the
size-weight illusion can be approximated by parallel-
averaging models is probably restricted to scale-
dependent studies using small designs that cover a
narrow range of values.

The studies reviewed by Anderson (1979) are
termed ‘‘scale-dependent’’ because the conclusions
regarding impression formation and the size-weight
illusion are not invariant under monotone transfor-
mation of the data. In Birnbaum’s (1974, 1982) scale-
free approach, violations of the additive or parallel-
averaging model cannot be attributed to nonlinearity
in the response function.

CONCLUDING COMMENTS

The transformation procedure of Carterette and
Anderson (1979) is an attempt to develop a statistical
test for nonmetric scaling. However, the procedure
seems dubious because its statistical properties have
not been demonstrated. Furthermore, the procedure
does not truly use the distribution of responses as a
constraint for transformation. Moreover, the focus
on statistical tests of fit may be misguided. Given any
true departure from a model, no matter how small, it
should be possible to collect enough data to reject the
model. Scientific decisions about the success or
failure of a transformation are (and should be) based
on examination of the critical properties of the data,
for example, examination of the graphical properties
of the theory and data, rather than any overall index
of fit or deviations.

The models and transformation procedure de-
scribed under Equations 2, 3, and 4 are theories that
attempt to specify the distribution of errors on the
subjective continuum. In testing these models, it
should be possible by means of graphical tests to
discover whether homogeneity of error variance, for
example, is empirically compatible with additivity of
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effects. As a by-product of the rescaling, the dis-
tribution function F can be estimated, and it should
be possible to assess the fit of particular functions
such as the cumulative normal distribution. How-
ever, few judgment theories offer implications for
the error distribution; therefore, there is an inherent
indeterminacy of algebraic model and error theory.

To resolve indeterminacies of testing models when
monotone transformation is permitted, it therefore
proves necessary to provide additional leverage, such
as the constraint of scale convergence or the scale-
free tests.
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NOTES
1. Some procedures for transformation are based on the model
Tk[Rijk] =aik+bjk+eijk, (13)

where the terms are defined as in Equation 1, except that differ-
ent row and column scale values are now estimated for each repli-
cate. This procedure is even more liberal in terms of permitting
more parameters to be estimated from the data. Although the
error terms are unlikely to be homogeneous in distribution, they
seem more likely to be uncorrelated across replicates with this pro-
cedure,

2. Two practical problems in the use of Equations 2, 3, and 4
will arise: (1) How many levels of X, should be chosen? (2) How
should one deal with estimated proportions? To some extent,
answers to these questions will depend on the richness of the data
set. For most cases of hypothetical data studied, about 7-14 values
of X, seem to work well (fewer for smaller data sets). Extreme
proportions (perhaps €.03 and >.97 could be tied (set equal to
.03 and .97), with the monotone program permitted the option of
breaking ties. The proportions should be based on enough data so
that, given the standard errors of the estimates, the rank order
of Pjj, in the sample would be unlikely to differ from thar in the
population.
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