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THE DEVIL RIDES AGAIN:

CORRELATION AS AN INDEX OF FIT1

MICHAEL H. BIRNBAUM -

University of California, Los Angeles

Correlations between theoretical predictions and data can be higher for in-
correct than for correct models, as illustrated by analyses of two sets of
hypothetical data. This fact raises questions about the conclusions of recent
studies that use correlation as an index of fit. Functional measurement pro-
vides a sounder basis for model evaluation by placing scaling in the context
of model fitting and by testing deviations from prediction rather than
concent rating an overall goodness of fit.

Although widely recognized as an "instru-
ment of the devil" when used to infer causa-
tion from confounded data, the correlation
coefficient is still employed as an index of the
fit of theoretical models. There are two seri-
ous criticisms of this usage. First, incorrect
models can correlate highly with data
(Anderson, 1971; Yntema & Torgerson,
1961).

Second, based upon the assumption that
the better model will correlate higher, in-
vestigators have recently used the correlation
coefficient to compare the fit of rival models.3

1 Computing assistance was received from Campus
Computing Network, University of California, Los
Angeles. The author is grateful to Allen Parducci,
Norman H. Anderson, Amos Tversky, Clairice T.
Veit, and Andrew L. Comrey for their helpful com-
ments on earlier versions of this paper.

2 Requests for reprints should be sent to Michael
H. Birnbaum, Department of Psychology, University
of California, San Diego, P.O. Box 109, La Jolla,
California 92037.

8 For example, Einhorn (1970, 1971) and Goldberg
(1971) have compared linear with "conjunctive"
(multiplicative) models of judgment by correlating
the data for each subject with the predictions from
each of the rival models; when one model correlated
higher for the great majority of the subjects, it was
assumed to be a better representation of the process
of human judgment. Einhorn (1971) obtained rank-
ings of the attractiveness of hypothetical jobs, based
on such cues as income and the opportunity to use
special interests. The multiplicative model yielded
higher correlations than the linear model for 32 of
the 37 subjects. Goldberg (1971) found that the
linear model yielded higher correlations than the
multiplicative for each of 29 clinicians, who at-
tempted to differentiate neurosis from psychosis on
the basis of the Minnesota Multiphasic Personality
Inventory profiles.

The point of the present paper is to warn
that the devil may also be at work when cor-
relation is used in this way: Predictions from
an incorrect model sometimes correlate better
with the data than predictions from the
correct model.

LINEAR MODEL CORRELATES WITH
MULTIPLICATIVE DATA

Table 1 illustrates one way this can
happen. The matrix of hypothetical, errorless
data might represent clinical ratings of the
degree of neuroticism, Y, based upon two test
scores, Xi and X^, with eight and three levels,
respectively.

The usual linear model can be written as
follows:

Y = a + bXl + cXZ) [1]

where Y is the predicted value for the data
in the table, Xi and Xz are the a priori values
of the two predictor variables (in this case,
test scores), and a, b, and c are the linear
coefficients.

The multiplicative model (Einhorn, 1970)
can be written4

Y = aX\X\ [2]

where Y, Xlt and X2 are denned as above,
and a, b, and c are constants. Taking loga-

4 Einhorn (1970) has defined Equation 2 as the
"conjunctive model." Equation 2 captures some of
the intuition behind the notion of a subjective
"conjunctive" strategy; however, the multiplicative
model (Equation 2) is compensatory and therefore
should not be confused with the traditional defini-
tion of the conjunctive model (see Coombs, 1964).
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TABLE 1

HYPOTHETICAL MULTIPLICATIVE DATA

TABLE 2

HYPOTHETICAL ADDITIVE DATA

A

value of
second

cue

1
2
3

A priori value of first cue

1

15
20
25

i

18
22
26

,i

21
24
27

4

24
26
28

5

27
28
29

6

30
30
30

7

33
32
31

8

36
34
32

rithms of both sides of Equation 2 gives:

log F = log a + blogXi +c\ogX2, [31

which, like Equation 1, can be fitted by mul-
tiple linear regression with three constants.

The fit of Equation 1 to the data in
Table 1 yielded a correlation of .930. Figure
1A plots these data against the best-fit pre-
dicted values in the usual way; the fit looks
reasonably good. However, Figure IB shows
the same data plotted as a function of X\,
with a separate curve for each level of X2.
The nonparallelism of these curves indicates
serious violation of the additive model of
Equation 1. It should be clear that the data
conform instead to a multiplicative model.

Einhorn's technique would fit his multipli-
cative model to the data by means of Equa-
tion 3, which yields a coefficient of only .899.
This example shows that even when the data

A priori
va ue of
second

cue

1
2
4
8

16

A priori value of first cue

1

14
15
16
17
18

2

15
16
17
18
19

4

16
17
18
19
20

8

17
18
19
20
21

16

18
19
20
21
22

are perfectly multiplicative, comparison of cor-
relation coefficients can lead to the erroneus
conclusion that the linear model provides the
better representation. The source of this dif-
ficulty lies in the assumption, implicit in the
use of Equation 3, that the a priori values
of X and Y are positive and known to a
ratio scale. As shown below, the data of
Table 1 fit Equation 2 perfectly when linear
transformations are applied to the a priori
scales.

MULTIPLICATIVE MODEL CORRELATES WITH
ADDITIVE DATA

A second example shows that predictions
from the multiplicative model can correlate
better than those from the linear model, even
when the linear model is more appropriate.
The hypothetical data in Table 2 might be

h-
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FIG. 1. A—Correlation of linear model with perfectly multiplicative data of
Table 1; B—Same data plotted as a function of Xi, with a separate curve for
each level of X*. (Although the intersecting linear functions in B indicate that
the data are perfectly multiplicative [with a functional zero point where the
curves cross!, Equation 3 provides an inferior fit because it requires the
curves to intersect at the zero point of the a priori X and Y scales.)
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FIG. 2. A—Correlation of multiplicative model with perfectly additive data
of Table 2. (Graph points represent varying numbers of data points.) B—Same
data plotted as a function of X\, with a separate curve for each level of X«.
(Although the parallelism of the curves in B indicates perfect additivity, the
linear model provides an inferior fit because it requires the curves to be
straight-line functions of the a priori values of Xi and X».)

ratings, Y, of the attractiveness of various
jobs based on two cues, X: and X2.

Fitting the linear model to these data
yields a correlation of only .933 compared
with .998 for the multiplicative model. It can
be inferred from Figure 2A, which plots the
fit of Equation 3 to the data, that the use
of rank-order correlation (Einhorn, 1970,
1971) would have "improved" on the already
excellent fit of the wrong model. The multi-
plicative model is the wrong model because
the data are perfectly additive, as shown by
the parallelism of the curves of Figure 2B.
The investigator using correlation as an index
of fit might erroneously conclude that the
data reveal a "conjunctive" judgmental
strategy unless the data were plotted as in
Figure 2B. It is only because the linear
regression model requires the data to plot as
linear functions of the a priori values of X\
and X2 that it yields a lower correlation.

FUNCTIONAL MEASUREMENT PROVIDES
BETTER TEST

Functional measurement (Anderson, 1970,
1971) correctly diagnoses the same hypotheti-
cal data. The linear model is additive and
therefore predicts a zero interaction between
the cues. Equation 2 is multiplicative and
therefore predicts an interaction which should
be located entirely in the bilinear component.

These interactions can be tested graphically,
as in Figure IB and 2B, and statistically,
using the analysis of variance.

The intersecting linear curves of Figure IB
are indicative of a multiplicative model with
a functional zero at the point where the
curves intersect. When Y is replaced by
Y - 30, Xt is replaced by X^ - 6, X-2 is
replaced by 4 — X->, and a — b = c — 1,
Equation 2 fits the data of Figure IB
perfectly.

The parallelism of the curves of Figure 2B
indicates that there is no interaction between
cues, in agreement with an additive model.
In the case of additive models, the marginal
means estimate the functional scale values for
the cues. Equation 1 fits these data perfectly
when the marginal means of Table 2 are
substituted for the a priori values of X.

COMMENTS AND CONCLUSIONS

These two examples demonstrate that even
with factorial designs and errorless, interval
data, the correlation coefficient can be an
inappropriate instrument for comparing the
fit of models with equal numbers of param-
eters. In real-life applications, correlations
may be even more misleading.

Correlations can be diabolical when fac-
torial designs are not employed. The reader
can easily select those cue combinations from
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Figure IB and 2B that would improve the
fit of either model. Furthermore, with certain
research designs, graphic tests like those
shown in Figures IB and 2B become impos-
sible. Hence, "representative" or improper
"contrived" designs can exaggerate the fit of
a seriously defective model and also can make
it impossible to evaluate.

The data need not be particularly unusual
for the correlations to be so misleading. In
Table 2, the functional scale values (marginal
means) are linearly related to the logarithms
of the a priori stimulus values. That is often
the case for category ratings of psycho-
physical stimuli or stimuli presented in
numerical form, such as incomes. Conse-
quently, there is a very real danger that the
multiplicative model would yield higher cor-
relations than the linear in many applications,
even though the data were additive.6

In contrast to correlational procedures,
functional measurement (Anderson, 1970,
1971) requires neither a priori values for the
stimuli, nor ratio scales for the responses.6

6 Goldberg (1971) has proposed that some of these
problems would be avoided if a greater number of
models were compared in any correlational contest
of fit. For example, Goldberg's logarithmic model,
which replaces X with log X in Equation 1, would
have correlated perfectly with the data of Table 2.
However, none of his five models would have cor-
rectly diagnosed the data of Table 1. The number
of possible correlation-regression models is unpracti-
cally large, since each arbitrary rescaling of either
the a priori stimulus values or the overt responses
is treated as a different model. It should be empha-
sized that the usual applications of multiple regres-
sion (as in the present examples) are not equivalent
to the analysis of variance. Equivalent techniques
(e.g., Cohen, 1968) are seldom employed in this type
of analysis because they would be cumbersome
to apply.

6 Functional measurement also provides for mono-
tonic rescaling of the data under certain circum-
stances although no nonlinear transformation was
called for in these examples. When the dependent

These procedures estimate best-fit values for
the stimuli directly from the data, using these
estimates as the basis for statistical tests of
the discrepancies. Functional measurement
typically employs factorial designs, analysis
of variance, and graphical inspection of the
crucial features of the data. These advantages
of functional measurement over the correla-
tional approach are illustrated by the sample
data in the present paper.

variable is considered to be only an ordinal mea-
sure of the psychological attribute, models can be
compared by examination of critical ordinal proper-
ties of the data (Krantz & Tversky, 1971). For
example, the crossover interaction in Figure IB is
ordinally inconsistent with an additive representation.
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