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Abstract

Choices between gambles show systematic violations of stochastic dominance. For example, most people choose
($6, .05; $91, .03; $99, .92) over ($6, .02; $8, .03; $99, .95), violating dominance. Choices also violate two
cumulative independence conditions: (1) If S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y', q) then S9 5 (x8, r; y, p
1 q) s R9 5 (x8, r 1 p; y8, q). (2) If S8 5 (x, p; y, q; z8, r) a R8 5 (x8, p; y8, q; z8, r) then S- 5 (x, p 1 q;
y8, r) a R- 5 (x8, p; y8, q 1 r), where 0 , z , x8 , x , y , y , y8 , z8.

Violations contradict any utility theory satisfying transivity, outcome monotonicity, coalescing, and comono-
tonic independence. Because rank-and sign-dependent utility theories, including cumulative prospect theory
(CPT), satisfy these properties, they cannot explain these results.

However, the configural weight model of Birnbaum and McIntosh (1996) predicted the observed violations of
stochastic dominance, cumulative independence, and branch independence. This model assumes the utility of a
gamble is a weighted average of outcomes’ utilities, where each configural weight is a function of the rank order
of the outcome’s value among distinct values and that outcome’s probability. The configural weight, TAX model
with the same number of parameters as CPT fit the data of most individuals better than the model of CPT.

Key words: choice, gambles, expected utility, prospect theory, rank dependent utility, rank- and sign-dependent
utility, stochastic dominance violations
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Introduction

This study investigates a recipe that produces systematic violations of stochastic domi-
nance in choices between gambles. The theoretical section shows that violations of sto-
chastic dominance in this recipe refute any utility theory that implies outcome monoto-
nicity, transitivity, and coalescing. These properties are assumed or implied by rank
dependent or rank- and sign-dependent utility (RDU and RSDU) thoeries (Luce & Fish-
burn, 1991; 1995; Lopes, 1990; Quiggin, 1982; Wakker, Erev, & Weber, 1994), including
cumulative prospect theory (CPT) (Tversky & Kahneman, 1992; Wakker & Tversky,
1993). The theoretical section also derives two cumulative independence conditions from
the above three assumptions plus comonotonic independence, a property required by CPT
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and RSDU models (Wakker, 1996; Wakker & Tversky, 1993). Again, RDU and RSDU
theories satisfy these conditions and therefore imply cumulative independence.

The recipes used to create these violations were developed from configural weight
theory (CWT) by Birnbaum (1997). Configural weight models were introduced in psy-
chology in the 1970s (e.g., Birnbaum, 1973; 1974; Birnbaum & Stegner, 1979) and have
much in common with RDU models that were introduced to the economics literature in
the 1980s (Quiggin, 1982). Birnbaum (1974) noted, “the configural weight averaging
model assumes that the weight of a stimulus depends upon its rank within the set to be
judged.” However, despite similarities, the two classes of models are distinct because the
nature of the rank-dependence is different. This study is designed to test the class of
RDU/RSDU/CPT models against the configural weight models.

The empirical sections of the paper show that choices systematically violate stochastic
dominance and cumulative independence in the manner predicted in advance of the
experiment by the configural weight model and parameters of Birnbaum and McIntosh
(1996). We also compare the fit of the configural weight, TAX model against that of CPT.
Results show that the TAX model gives a better fit to the data of individuals, fit separately
to the models, despite the fact that both models use the same number of parameters. The
discussion shows how this study fits as a piece in the much broader puzzle of research
testing descriptive models of decision making under risk and uncertainty.

1. Definitions and a Recipe for Violations

Let s represent the empirical preference relation between gambles; A s B means that
gamble A is preferred to B, and let z represent indifference between gambles. Assume
preferences among gambles satisfy a weak order. Let G 5 (x, p; y, q; z, r) denote the
three-outcome gambling yielding monetary outcome x with probability p, y with prob-
ability q, and z with probability r 5 1 2 p 2 q.

1.1 Definitions

1. Transitivity. The preference relation, s, is defined to be transitive if and only if,

A s B and B s C ⇒ A s C. (1)

2. Outcome monotonicity. Increasing the value of one outcome, holding everything else
constant in the gamble should improve the gamble. Therefore, for three-outcome gambles
with outcomes selected such that, x1 . x, y1 . y, and z1 . z, outcome monotonicity
requires:

~x1, p; y, q; z, r! s G 5 ~x, p; y, q; z, r! (2a)

~x, p; y1, q; z, r! s G (2b)
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~x, p; y, q; z1, r! s G (2c)

Outcome monotonicity has been violated in judgment but not in direct choice, nor when
all outcomes are positive (Birnbaum & Sutton, 1992; Birnbaum, 1992; 1997).

3. Coalescing Equivalence. Coalescing implies that if two or more outcomes have the
same value within a gamble, they can be combined by adding their probabilities. For
three-outcome gambles, coalescing requires,

~x, p; x, q; z, r! ; ~x, p 1 q; z, r! (3a)

~x, p; y, q; y, r! ; ~x, p; y, q 1 r! (3b)

Coalescing is implied by rank- and sign-dependent utility theories, as will be shown in
Section 2.3. Coalescing was also proposed as an editing rule in original prospect theory
(Kahneman & Tversky, 1979). “Event splitting effects” (Humphrey, 1995; Starmer &
Sugden, 1993) are violations of coalescing combined with transitivity.

4. Branch Independence. Branch independence is the assumption that if two gambles
have a common outcome for a given state of the world with known probability, then the
value of the outcome on that common branch should have no effect on the preference
order induced by other components of the gambles. Branch independence is weaker than
Savage’s (1954) axiom because it requires that the outcomes be distinct and their prob-
abilities known; it does not presume coalescing. For three outcome gambles, restricted
branch independence implies,

~x, p; y, q; z, r! s ~x8, p; y8, q; z, r!

if and only if

~x, p; y, q; z8, r! s ~x8, p; y8, q; z8, r! (4)

where the outcomes are distinct, and the probabilities are nonzero and sum to 1. Branch
independence is termed unrestricted when the probability distributions or number of
outcomes in the gambles are permitted to differ (cf. Birnbaum, Coffey, Mellers, & Weiss,
1992). The term comonotonic branch independence is used to refer to the special case in
which x and x8, y and y8, and z and z8 have the same ranks in all four gambles (Wakker,
1996; Wakker, et al., 1994). The complementary case of Expression 4 is termed non-
comonotonic branch independence. Systematic violations of comonotonic branch inde-
pendence with six distinct values (x, y, z, x8, y8, z8 ) have not yet been reported, but
systematic violations of noncomonotonic branch independence have been (Birnbaum &
Chavez, 1997; Birnbaum & McIntosh, 1996; Weber & Kirsner, 1997).
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1.2 Stochastic Dominance

Stochastic dominance is the relation between nonidentical gambles, A Þ B, such that

A stochastically dominates B iff P~x . t ? A! $ P~x . t ? B! for all t. (5)

where P(x . t ? A) is the probability that an outcome of Gamble A exceeds t. Stochastic
dominance can be viewed as a combination of outcome monotoxicity and event monoto-
nicity (Luce, 1988; Luce & von Winterfeldt, 1994). Violations of outcome monotonicity
imply violations of stochastic dominance, but stochastic dominance violations do not
necessarily imply violations of outcome monotonicity when this distinction is maintained
(Birnbaum, 1997; Luce & von Winterfeldt, 1994). In traditional representations of
gambles as probability distributions, where coalescing is presupposed, these concepts are
equivalent. The term, “transparent dominance” refers to dominance between gambles that
are otherwise identical, except one gamble has at least one higher outcome for the same
event and probability (outcome monotonicity), or for choices in which the outcomes are
the same and one gamble has a higher probability of a better outcome (probability
monotonicity).

The statement that preferences satisfy stochastic dominance means,

If A stochastically dominates B, then A s B. (6)

A violation of stochastic dominance occurs when A dominates B but B is chosen over A.
To test for systematic violations with fallible data, we will test the hypothesis that if A
stochastically dominates B, then the probability of choosing A over B should exceed 1/2.
This is a very conservative test.

Tversky and Kahneman (1986) reported a violation of stochastic dominance in which
dominance was “masked” by the problem “frame.” The framing was accomplished by
making it seem that the “same” events (same color of marble selected from an urn) gave
equal or higher outcomes in the dominated gamble (because the number of marbles of
each color varied, the events were not really the same). Tversky and Kahneman (1986)
found that 58% of 124 judges chose the dominated gamble over the dominant gamble.
Although 58% is not significantly greater than 50% (a 5 .05), results were quite different
from another framing of the choice in which the same color of marble always gave the
same or a higher outcome in the dominant gamble. Despite such possible violations,
Tversky and Kahneman (1992) advanced CPT, which satisfies stochastic dominance.

1.3 Paradigm for Stochastic Dominance Violations

In this section we present a recipe for pairs of gambles that possess a dominance relation
and yet most judges choose the dominated gamble. Birnbaum (1997) proposed this recipe
as a test between the class of models that satisfy dominance against configural weight
models. Define G0 5 (x, 1 2 p; y, p), where y . x . 0. Create a worse gamble, G2, by

52 MICHAEL BIRNBAUM/JUAN NAVARRETE

Kluwer Journal
@ats-ss10/data11/kluwer/journals/risk/v17n1art3 COMPOSED: 10/12/98 10:36 am. PG.POS. 4 SESSION: 58



splitting the upper branch into two pieces, with probabilities p 2 r and r, one of which has
a slightly lower outcome of y2 insteady of y (x , y2 , y). Let G2 5 (x, 1 2 p; y2, r;
y, p 2 r). G0 stochastically dominates G2. Now create a better gamble, G1, by splitting
the lower branch of G0 into two parts, one with a slightly higher value than x (x1 . x);
let G1 5 (x, 1 2 p 2 q; x1, q; y, p). G1 dominates G0, which dominates G2, and G1
stochastically dominates G2. For example, G0 5 ($12, .1; $96, .9), with q 5 r 5 .05, let
G1 5 ($12, .05; $14, .05; $96, .9), which dominates G2 5 ($12, .1; $90, .05; $96, .85).

Any theory in which preferences satisfy transitivity, outcome monotonicity and coa-
lescing must satisfy stochastic dominance in this recipe. Proof: By outcome monotonicity,
G1 5 (x, 1 2 p 2 q; x1, q; y, p) s (x, 1 2 p 2 q; x, q; y, p) ~ G0, by coalescing. By
coalescing, G0 ~ (x, 1 2 p; y, r; y, p 2 r) s (x, 1 2 p; y2, r; y, p 2 r) 5 G2, by outcome
monotonicity. By transitivity, G1 s G2.

Birnbaum (1997) noted that the model of Birnbaum and McIntosh (1996), by violating
coalescing, predicts violations of stochastic dominance in this recipe. As shown below,
most judges chose G2 over G1, as predicted by this model and its previously published
parameters.

1.4 Cumulative Independence

Birnbaum (1997) derived the following cumulative independence conditions for gambles
selected such that 0 , z , x8 , x , y , y8 , z8 and p 1 q 1 r 5 1.

Lower Cumulative Independence:

If S 5 ~z, r; x, p; y, q! s R 5 ~z, r; x8, p; y8, q!

Then S9 5 ~x8, r; y, p 1 q! s R9 5 ~x8, r 1 p; y8, q! (7a)

Upper Cumulative Independence:

If S8 5 ~x, p; y, q; z8, r! a R8 5 ~x8, p; y8, q; z8, r!

Then S- 5 ~x, p 1 q; y8, r! a R- 5 ~x8, p; y8, q 1 r! (7b)

Any theory that staisfies comonotonic independence, monotonicity, transitivity, and coa-
lescing must satisfy both lower and upper cumulative independence conditions.

Proof: S s R implies (x8, r; x, p; y, q) s (x8, r; x8, p; y8, q), by comonotonic indepen-
dence (changing z to x8 in both gambles). By monotonicity (increasing x to y in the gamble
on the left), (x8, r; y, p; y, q) s (x8, r; x, p; y, q) s (x8, r; x8, p; y8, q); by transitivity, (x8,
r; y, p; y, q) s (x8, r; x8, p; y8, q); finally (x 8, r; y, p 1 q) s (x8, r 1 p; y8, q), by coalescing,
which is the same as S9 s R9, proving lower cumulative independence.

If S8 a R8 then (x, p; y, q; y8, r) a (x8, p; y8, q; y8, r), by comonotonic independence
(reducing z8 to y8 in both gambles). By monotonicity (decreasing y to x in the gamble on
the left), (x, p; x, q; y8, r) a (x, p; y, q; y8, r) a (x8, p; y8, q; y8, r); therefore, (x, p; x, q;

VIOLATIONS OF STOCHASTIC DOMINANCE 53

Kluwer Journal
@ats-ss10/data11/kluwer/journals/risk/v17n1art3 COMPOSED: 10/14/98 9:10 am. PG.POS. 5 SESSION: 68



y8, r) a (x8, p; y8, q; y8, r), by transitivity; finally, (x, p 1 q; y8, r) a (x8, p; y8, q 1 r), by
coalescing, which is the same as S89 a R89, thus proving upper cumulative independence.

1.5 Violations of Noncomonotonic Branch Independence

The same choices used in tests of upper and lower cumulative independence can also be
used to test branch independence. In the notation of Section 1.4, there are two patterns of
violation of noncomonotonic branch independence:

SR8: S s R and S8 a R8 (8a)

RS8: S a R and S8 s R8. (8b)

As noted by Birnbaum and McIntosh (1996), EU and Subjectively Weighted Utility
(SWU) theories imply branch independence. Both CPT and CWT allow violations of
noncomonotonic branch independence. However, the theory of editing and elimination of
common branches sometimes used in CPT (Wu, 1994) implies no systematic violations of
branch independence.

2. Theories of Choice between Gambles

2.1 RSDU & Cumulative Prospect Theory

Cumulative prospect theory (Tversky & Kahneman, 1992) is a rank- and sign-dependent
theory whose representation is the same as that of Luce and Fishburn (1991; 1995).
Whereas cumulative prospect theory was derived from the assumption of comonotonic
independence (Wakker & Tversky, 1993), Luce and Fishburn (1991; 1995) derived
comonotonic independence from a theory of joint receipts (see also Luce, 1996). When
the outcomes of the gamble are nonnegative, the RSDU representation simplifies to RDU.
The RDU of a gamble, G 5 (x1, p1; x2, p2; …; xi, pi; … xn, pn), where x1 . x2 . x3 .
… xn . 0; ( pi 5 1, is given by the following:

RDU~G! 5 (
i51

n

u~xi!@W~Pi! 2 W~Pi21!# (9)

where Pi is the (decumulative) probability of receiving xi or more, and Pi 2 1 is the
probability of receiving more than xi. The function, u(x), is the utility function of the
monetary outcome, x. W(P) is a strictly increasing, monotonic, cumulative weighting
function, which assigns W(0) 5 0 and W(1) 5 1. If W(P) 5 P, Equation 9 reduces to EU
theory. In a choice between gambles, A s B if and only if RDU(A) . RDU(B).
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The model of Tversky and Kahneman (1992) further specified W(P) to be an inverse-S
function of P, with steeper slopes near zero and one than near 1/2, with the following
equation:

W~P! 5
Pg

@Pg 1 ~1 2 Pg!#
1

g

(10a)

where g 5 .61; they also estimated u(x) 5 x.88 for x $ 0. Equation 10a with g , 1
produces an inverse-S curve; when g . 1, the function is S-shaped. [Tversky and Wakker
(1995) used the term “S-shaped” for what we term “inverse-S”]. Certainty equivalents of
gambles are calculated from the following equation: CE(G) 5 u21[RDU(G)], where
CE(G) is the certainty (cash) equivalent of gamble G, and u21 is the inverse of u(x). In this
paper, when values of gambles are calculated from the cumulative prospect model (as
opposed to the more general theory of Equation 9, which allows any W(P) function), they
will be calculated using this model and parameters.

Other forms for W(P) have been discussed by Tversky and Wakker (1995) and Luce
(1996). A two-parameter equation for W(P) is as follows:

W~P! 5
cPg

cPg 1 ~1 2 P!g
(10b)

This formula can approximate Equation 10a, but it is more flexible (Tversky & Wakker,
1995). Equation 10b will be used in fitting the CPT model to the data of this study.

2.2 Configural Weight RAM and TAX Models

Birnbaum (1997) reviewed configural weight models investigated by Birnbaum and his
colleagues (Birnbaum, 1973; 1974; Birnbaum & Chavez, 1997; Birnbaum et al., 1992;
Birnbaum & McIntosh, 1996; Birnbaum & Beeghley, 1997; Birnbaum & Stegner, 1979;
Birnbaum & Sutton, 1992; Birnbaum & Veira, 1998; Birnbaum & Zimmermann, 1998),
and described tests for distinguishing various configural models. Configural weight mod-
els are similar to rank-dependent models, in that both use rank-affected weights to account
for violations of independence, but they make different predictions for this study.

The Rank Affected Multiplicative (RAM) model of Birnbaum, et al. (1992), as ex-
tended by Birnbaum and McIntosh (1996), assumes that the utility of a three-outcome
gamble can be represented as a configurally-weighted average of the utilities of the
outcomes:

CWU~x, p; y, q; z, r! 5
Au~x! 1 Bu~y! 1 Cu~z!

A 1 B 1 C
(11)
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where u(x), u(y), and u(z) are the utilities of the monetary outcomes, x, y, and z (0 , x ,
y , z); A, B, and C are the weights of the outcomes, which depend on the ranks of the
outcomes, the probabilities of the outcomes (p 1 q 1 r 5 1), and the point of view of the
judge, as follows:

A 5 wLS~p! (12a)

B 5 wMS~q! (12b)

C 5 wHS~r! (12c)

where wL, wM, and wH are the configural weights of the lowest, medium, and highest
outcomes in the gamble, and S(p) is a function of probability. Configural weights are
assumed to depend on the judge’s point of view, which is different for buying prices,
selling prices, and choices. However, u(x) and S(p) are assumed to be independent of
viewpoint. Birnbaum et al. (1992) assumed that wL . wM 5 wH, but Birnbaum and
McIntosh (1996) concluded that wL/wM , wM/wH. When wL 5 wM 5 wH, Expressions
11–12 reduce to subjectively weighted average utility, of which the models of Karmarkar
(1978), Lattimore, Baker, and Witte (1992), and Viscusi (1989) are relatives with different
S(p) functions. When wL 5 wM 5 wH and S(p) 5 p, the model reduces to EU.

Birnbaum and McIntosh (1996), in a choice task, estimated wL, wM, and wH to be .51,
.33, and .16, respectively, and u(x) 5 x for 0 , x , $150. Birnbaum and Beeghley (1997)
found different weights for judgments of buying and selling prices. However, studies of
choice, buyer’s price, and seller’s price all found configural weights satisfying wL/wM ,
wM/wH. This relation among weights predicts violations of branch independence in the
opposite direction from those predicted by the inverse-S weighting function used in CPT.

Birnbaum (1997) showed that if S(p) 5 pg, where g 5 .6, then Equations 11–12 can fit
the certainty equivalents in Tversky and Kahneman (1992) with a linear utility function,
for 0 , x , $150. When there are only two outcomes, the weight of the (absent) middle
outcome in Equation 11 (B) is set to zero, and different configural weights are allowed for
the lower and higher outcomes. To fit the Tversky and Kahneman (1992) data, the weights
(n 5 2) are wL 5 .63 and wH 5 .37. These weights agree with the results of Birnbaum, et
al. (1992) in the “neutral” viewpoint and of Birnbaum, Thompson, and Bean (1997) who
obtained judgments of strengths of preference to test interval independence. In the present
paper, calculations based on the Birnbaum and McIntosh (1996) model will be illustrated
using the parameters in that paper and the assumptions that S(p) 5 p.6, and u(x) 5 x.
These parameters fit certainty equivalents of binary gambles (Tversky & Kahneman,
1992), violations of common consequence independence (Wu & Gonzalez, 1996), and
violations of branch independence (Birnbaum & McIntosh, 1996).

Birnbaum (1997) showed that the RAM model predicts violations of stochastic domi-
nance and cumulative independence, and the present study was designed based on the
predictions of that model and its previously published parameters. We use choices be-
tween gambles that are predicted by that model to violate stochastic dominance and
cumulative independence.
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Subsequent to the completion of our study, Birnbaum and Chavez (1997) reported
violations of distribution independence, which constitute evidence against the RAM
model. These violations are consistent with the configural weight model of Birnbaum and
Stegner (1979, Equation 10). It is called the TAX model, because weights are taken from
outcomes as a function of their probabilities and redistributed to other outcomes, ana-
logues to taxation and redistribution of wealth.

Consider gamble, G 5 (x1, p1; x2, p2; …; xj, pj; …; xi, pi; …; xn, pn), where the
outcomes are ordered such that 0 , x1 , x2 , … , xj , xi , … xn and ( pi 5 1. The
CW model can be written as follows:

U~G! 5
(
i51

n

S~pi!u~xi! 1 (
i52

n

(
j51

i21

@u~xi! 2 u~xj!#v~i, j, G!

(
i51

n

S~pi!

(13)

where U(G) is the utility of the gamble; S(p) is a function of probability; u(x) is the utility
function of money, and v(i, j, G) is the configural transfer of weight between outcomes xi

and xj. Note that xi . xj, so if the configural term is negative, then the higher-valued
outcome loses weight and the lower valued outcome gains this same weight. Following the
simplifications of Birnbaum and Chavez (1997), S(p) 5 pg, u(x) 5 xb, and the configural
terms are restricted as follows:

v~i, j, G! 5 S~pi!d⁄~n 1 1!, if d # 0 (14a)

v~i, j, G! 5 S~pj!d⁄~n 1 1!, if d . 0 (14b)

where d is the single configural parameter, n is the number of distinct outcomes in the
gamble, d/(n 1 1) is the proportion of weight taken from one outcome and transferred to
another. Birnbaum (in press) showed that this model can account for a variety of choice
phenomena in the literature with u(x) 5 x, S(p) 5 p.7, and d 5 21. With these parameters,
the TAX model predicts Allais paradoxes, event-splitting effects, violations of distribution
independence, stochastic dominance, and cumulative independence. It makes essentially
the same predictions for the present experiment as the RAM model, and it is equivalent
to that model for experiments with a fixed number of outcomes of fixed probability, as in
Birnbaum and McIntosh (1996).1

2.3 Coalescing

RDU (Equation 9) implies coalescing, for any W(P) function. Suppose x . y . z . 0 and
p 1 q 1 r 5 1. Proof: If x . y . z . 0 and p 1 q 1 r 5 1, then RDU(x, p; y, q; z, r)
5 u(x)W(p) 1 u(y)[W(p 1 q) 2 W(p)] 1 u(z)[W(1) 2 W(p 1 q)], by Equation 9. If x 5
y, RDU(x, p; x, q; z, r) 5 u(x)W(p) 1 u(x)[W(p 1 q) 2 W(p)] 1 u(z)[1 2 W(p 1 q)] 5
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u(x)W(p 1 q) 1 u(z)[1 2 W(p 1 q)]5 RDU(x, p 1 q; z, r), since r 5 1 2 p 2 q. If
y 5 z, then RDU(x, p; y, q; y, r) 5 u(x)W(p) 1 u(y)[W(p 1 q) 2 W(p)] 1 u(y)[1 2 W(p
1 q)] 5 u(x)W(p) 1 u(y)[1 2 W(1 2 p)] 5 RDU(x, p; y, 1 2 p) 5 RDU(x, p; y, q 1 r),
since 1 2 p 5 q 1 r. In original prospect theory (Kahneman & Tversky, 1979), coalescing
was proposed as a separate editing rule. In CPT, the representation (Equation 9) guaran-
tees satisfaction of coalescing, even without the editing rule.

The RAM and TAX configural weight models (without an editing rule) do not in
general satisfy coalescing. For example, if S(p 1 q) , S(p) 1 S(q), an outcome with
probability p 1 q can gain weight by splitting its probability into two smaller probabili-
ties, with the result that the sum of the weights can exceed the weight of the sum. This
aspect of configural weight theory implies violations of stochastic dominance and cumu-
lative independence (Birnbaum, 1997; in press). Luce (in press) has developed the im-
plications of the property of coalescing to demonstrate its theoretical power.

2.4 Predictions Concerning Stochastic Dominance

Because RSDU, RDU, and CPT satisfy outcome monotonicity, transitivity, and coalescing,
this class of theories must satisfy stochastic dominance in the paradigm of Section 1.3.
Suppose that if A s B, then P(A, B) $ 1/2; RDU models imply that RDU(G1) .
RDU(G2); therefore, these models imply that stochastic dominance must be satisfied at
least 50% of the time.

The configural weight model of Birnbaum and McIntosh (1996) satisfies outcome
monotonicity and transitivity, but violates coalescing and therefore it can violate stochas-
tic dominance. For example, G1 5 ($12, .05; $14, .05; $96, .90) dominates G2 5 ($12,
.10; $90, .05; $96, .85), but certainty equivalents calculated using the parameters of
Birnbaum and McIntosh (1996), are $56.99 and $63.23, for G1 and G2 respectively, a
predicted violation of more than $6! If the same model and parameters hold in this study,
the model predicts that violations of stochastic dominance will exceed 50%. The TAX
model, with parameters of Birnbaum (in press), also violates stochastic dominance in this
choice. (See Footnote 1).

In contrast, the CPT of Tversky and Kahneman (1992) implies certainty equivalents
that satisfy dominance, $70.27 and $69.73, for G1 and G2, respectively. Cumulative
prospect theory, or any RSDU or RDU model (with any W(P)), implies that scholastic
dominance must be satisfied.

2.5 Predicted Violations of Cumulative Independence and Branch Independence

Whereas RDU and RSDU theories satisfy cumulative independence, the configural weight
model of Birnbaum and McIntosh (1996) predicts violations of both lower and upper
cumulative independence. This study was designed to investigate cases where the model
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and its previously published parameters would predict violations. For example, let S 5
($2, .8; $40, .1; $44, .1); R 5 ($2, .8; $10, .1; $98, .1); S9 5 ($10, .8; $44, .2); and R9 5
($10, .9; $98, .1). According to the Birnbaum and McIntosh (1996) model,

CWU(S) 5 $10.50 . CWU(R) 5 $9.94 and CWU(S9) 5 $17.01 , CWU(R9) 5
$22.12, so S s R and S9 a R9, contrary to Equation 7a. This preference pattern will be
denoted SR9.

Similarly, let S8 5 ($40, .1; $44, .1; $110, .8); R8 5 ($10, .1; $98, .1; $110, .8); S- 5
($40, .2; $98, .8); R- 5 ($10, .1; $98, .9). The model predicts,

CWU(S8) 5 $68.86 , CWU(R8) 5 $70.66 and CWU(S-) 5 $73.54 . CWU(R-) 5
$70.76, so S8 a R8 and S- s R-, in violation of Equation 7b, a pattern denoted, R8S-.

Note also that S s R and S8 a R8, showing the SR8 pattern of violation of branch
independence. The TAX model makes similar predictions (Birnbaum, in press). (See
footnote 1).

In contrast, CPT, with parameters of Tversky and Kahneman (1992), gives predicted
certainty equivalents for the gambles as follows: CE(S) 5 $11.35 , CE(R) 5 $17.57 and
CE(S9) 5 $18.27 , CE(R9) 5 $24.52, satisfying lower cumulative independence; CE(S8)
5 $82.01 . CE(R8) 5 $77.72 and CE(S-) 5 $74.52 . $70.72 5 CE(R-), satisfying
upper cumulative independence. For branch independence, the CPT model predicts S a R
and S8 s R8, giving the opposite pattern (RS8) of violations from that predicted by the
model of Birnbaum and McIntosh (1996). Equation 10a of CPT can predict the SR8
pattern if g . 1 and it can predict RS8 when g , 1. However, for any W(P) function, CPT
must satisfy cumulative independence and stochastic dominance.

3. Method

The judge’s task was to choose between gambles. Judges circled the gamble they pre-
ferred, and judged how much they would pay to receive their preferred gamble rather that
the other one.2

3.1 Designs

There were 4 choices that tested stochastic dominance. These choices were of the form,

G1 5 ~x, p 2 q; x1, q; y, 1 2 p! versus G2 5 ~x, p; y2, r; y, 1 2 p 2 r!,

where 0 , x , x1 , y2 , y. The values of (x, x1, y2, y) in the four pairs were ($12, $14,
$90, $96), ($3, $5, $92, $97), ($6, $8, $91, $99) and ($4, $7, $89, $95); the values of (p,
q, r) were (.10, .05, .05), (.12, .06, .04), (.05, .03, .03), and (.02, .01, .02), respectively.
Note that G1 stochastically dominates G2. These four trials testing stochastic dominance
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were embedded among many other choices. They were counterbalanced, so consistent
choice of the gamble on the right (or left) would produce two violations and two satis-
factions of dominance.

The design testing cumulative independence and branch independence was composed
of 27 variations of each of the following four choices, making 108 trials:

S 5 ~z, r; x, p; y, q! versus R 5 ~z, r; x8, p; y8, q!;

S9 5 ~x8, r; y, p 1 q! versus R9 5 ~x8, r 1 p; y8, q!;

S8 5 ~x, p; y, q; z8, r! versus R8 5 ~x8, p; y8, q; z8, r!; and

S89 5 (x, p 1 q; y8, r) versus R89 5 (x8, p; y8, q 1 r).

There were 4 subdesigns with different (r, p, q): (.5, .25, .25), (.8, .1, .1), (.6, .3, .1), and
(.6, .1, .3). Within each subdesign, there were 6, 7, or 8 levels of (z, x8, x, y, y8, z8), which
were factorially combined with the four types of comparisons. All subdesigns used the
following 6 levels of (z, x8, x, y, y8, z8) 5 ($2, $11, $52, $56, $97, $108), ($3, $10, $48,
$52, $98, $107), ($2, $11, $45, $49, $97, $107), ($2, $10, $40, $44, $98, $110), ($4, $11,
$35, $39, $97, $111) and ($5, $12, $30, $34, $96, $110). For (r, p, q) 5 (.6, .3, .1), an
additional level was added: ($3, $10, $25, $29, $98, $109); when (r, p, q) 5 (.6, .1, .3),
two extra levels were added: ($4, $10, $61, $65, $98, $108) and ($3, $12, $56, $60, $96,
$107).

The “check” design consisted of 12 choices with transparent dominance, six in which
all probabilities and outcomes were the same except one outcome was better in one
gamble, and six in which outcomes were the same but the probability of a better outcome
was higher in one gamble. These were the same as in Birnbaum and Chavez (1997). Half
of each type of check trial required selecting the gamble on the right and half on the left.

3.2 Procedure and Judges

Each booklet contained 3 pages of instructions, examples, and 10 practice trials, followed
by 134 experimental choices. There were 108 choices testing cumulative independence, 12
“check” trials, 4 trials testing stochastic dominance, and 5 unlabeled warm-up trials at the
beginning and end of the booklet. Choices were printed in random order, with restrictions
that no two successive trials repeat the same design, subdesign, or outcomes. Half of the
judges made choices in reverse order.

Judges were 100 undergraduates who completed the experiment in one hour, working
at their own paces. Of these, 68 had no violations of transparent dominance in the 12
check trials (overall rate of violation was 4%). The data of 12 additional judges were not
used, including 4 who did not finish and 4 with more than 2 violations in the check trials
(2 had 3 violations and 2 had 4).
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4. Results

4.1 Violations of Stochastic Dominance

Table 1 shows the number of judges who violated stochastic dominance in each of the four
tests. For example, 73* of 100 chose G2 5 ($12, .10; $90, .05; $96, .85) over G1 5
($12, .05; $14, .05; $96, .90), even though G1 dominates G2. (Asterisks designate
statistical significance throughout the results. The critical value is 60 for a two-tailed,
binomial sign test, with p 5 .5, n 5 100 and a 5 .05). We can separately reject the null
hypothesis that stochastic dominance is satisfied 50% or more of the time in all four tests.

Predicted values in Table 1 are the difference in certainty equivalents, calculated from
the previously published model and parameters of Birnbaum and McIntosh (1996). For the
model and parameters of Tversky and Kahneman (1992), predicted values have the op-
posite sign from the data, varying from 2$.45 to 2$.62.

If RDU(G1) $ RDU(G2) implies that P(G1, G2) $ 1/2, where P(G1, G2) is the
probability of choosing G1 over G2, then RDU models imply that stochastic dominance
should be violated less than half the time. Instead, the percentage of violations of sto-
chastic dominance is significantly greater than 50% in all four tests. Suppose judges
“really” satisfy stochastic dominance, except they choose randomly on some trials be-
cause of inability to discriminate the gambles, boredom, lack of motivation, or mistakes.
Such excuses imply that the probability of violating stochastic dominance, p, should still
be less than or equal to 1/2. Because errors by different individuals are independent, these
theories imply that each judge has a probability, p # .5, of violating stochastic dominance
on any variation of the test. The theory that every judge has p 5 .5 is therefore a
conservative limit. For 100 judges, this theory implies that the observed number of
violations in one test will have a binomial distribution with expected value of 100p 5 50,
and standard deviation of 5. This null hypothesis can be rejected in favor of the theory that
more than half of the choices in these problems violate stochastic dominance, because the
observed percentage of violations is significantly greater than 50% in all four tests.
Averaged over 4 tests in this recipe, 70% of the 400 tests violated stochastic dominance.
Assuming the binomial, the observed proportion of violations of .70 has a 95% confidence
interval from .654 to .746.

Table 1. Violations of stochastic dominance.

G1 G2 % Viol Mean Pred

($12, .05; $14, .05; $96, .9) ($12, .1; $90, .05; $96, .85) 73* $ 9.40 $6.21
($3, .06; $5, .06; $97, .88)a ($3, .12; $92, .04; $97, .84) 61* $ 2.70 $6.87
($6, .02; $8, .03; $99, .95) ($6, .05; $91, .03; $99, .92) 73* $11.44 $4.04
($4, .01; $7, .01; $95, .98)a ($4, .02; $89, .02; $95, .96) 73* $ 8.39 $2.98

Notes: G1 dominates G2 in all cases. In cases marked a, the dominant gamble was on the right; otherwise, it
was on the left. %Viol indicates percentage of choices violating stochastic dominance. Mean judgments indicate
the average amount offered to purchase the dominated gamble, with negative numbers averaged in for choices
of the dominant gamble. Positive means indicate that more money was offered on the average for the dominated
(G2) rather than the dominant gamble. EV favors the dominant gambles by 2$.15 to 2$.40.
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When data are examined for individuals, there are 65* judges with 3 or 4 violations of
stochastic dominance (75% or 100% violations), compared to only 17 judges who had
25% or 0% violations, and 18 split equally. By a binomial test, significantly more judges
show 75% or more violations than show 25% or fewer violations, z 5 5.30. There were
41* judges who violated stochastic dominance on all four choices (100% violations),
compared to only 9 who satisfied stochastic dominance on all four choices (z 5 4.53). The
binomial theory that all judges have p 5 .5 predicts that only 6 judges would have 4 out
of 4 violations, far below the observed 41.

The binomial theory that all judges have a p 5 .7 rate of violations (the average in this
study) would imply that only 1 judge would be expected to satisfy stochastic dominance
on all 4 tests (observed 5 9) and only 24 should have 4 violations out of 4 (observed 5
41). The variance of the observed distribution indicates that there are individual differ-
ences in the rates of violation.

Mean judgments indicate that more money on the average was offered to get the
dominated gamble rather than the dominant gamble. The largest violation occurred for
($6, .05; $91, .03; $99, .92) over ($6, .02, $8, .03, $99, .95), where the average offer was
$11.44 to get the dominated gamble instead of the dominant gamble! The smallest vio-
lations occurred in the cases where r Þ q.

We summed the four responses by each judge and found that 80* judges offered more
money for the four dominated gambles than for the dominant gambles, compared to only
18 who offered more for the dominant gambles, and two split evenly. The mean judgment
of the amount offered to get the dominated gamble, averaged over judges and choices,
with positive numbers reflecting violations of dominance and negative numbers repre-
senting satisfaction of dominance, was $7.98!* This empirical difference exceeds the
average difference predicted by the prior model of Birnbaum and McIntosh (1996), which
was $5.02.

In summary, the data show that the recipe proposed by Birnbaum (1997) to test the
RAM model against the CPT/RSDU/RDU models produces 70% violations of stochastic
dominance. Stochastic dominance is rarely violated in the “check trials” of transparent
dominance, which are tests of outcome monotonicity or probability monotonicity (viola-
tions are only 4% in the sample of 100, and 4.7% overall). Thus, our results do not imply
that people always violate stochastic dominance. Instead, they show that people system-
atically violate stochastic dominance in the special recipe, and rarely violate dominance in
transparent tests of outcome or probability monotonicity.

4.2 Violations of Cumulative Independence

Table 2 shows the number of judges with each preference pattern in tests of lower
cumulative independence: If S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y8, q) then S9 5 (x8,
r; y, p 1 q) s R9 5 (x8, r 1 p; y8, q). The pattern SR9 violates lower cumulative
independence, yet SR9 is more frequent than RS9 (which is consistent with the property)
in 19 of the 27 tests (shown in bold type), including all 8 choices with r 5 .6, p 5 .1, and
q 5 .3, and 5 of 6 tests with r 5 .8, p 5 q 5 .1. Violations are least frequent when r 5
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.6, p 5 .3, and q 5 .1. Asterisks in the tables indicate the 13 cases of significant deviation
from the two-tailed binomial null hypothesis (with a 5 .05). Overall, there are 662*
choices in the SR9 pattern compared to 426 showing the RS9 pattern.

Each judge’s choices were also summed over the 27 choices, and it was found that 64*
judges had more than SR9 than RS9 choices, violating lower cumulative idependence, 7
showed an equal split, and only 29 showed more RS9 choices (z 5 3.63).

Table 3 shows the number of judges with each preference pattern in the tests of upper
cumulative independence: If S8 5 (x, p; y, q; z8, r) a R8 5 (x8, p; y8, q; z8, r) then S89 5
(x, p 1 q; y8, r) a R89 5 (x8, p; y8, q 1 r). In this case, the R8S89 pattern is a violation
and the S8R89 pattern is consistent with the principle. In 25* of the 27 tests, the violation

Table 2. Tests of Lower Cumulative Independence: If S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y8, q) then S9 5
(x8, r; y, p 1 q) s R9 5 (x8, r 1 p; y8, q).

r p q

(x, y) (x8, y8) SS9 SR9 RS9 RR9

.50 .25 .25
($52, $56) ($11, $97) 38 29* 14 19
($48, $52) ($10, $98) 42 28* 11 19
($45, $49) ($11, $97) 39 25 16 20
($40, $44) ($10, $98) 28 19 24 29
($35, $39) ($11, $97) 25 22 21 32
($30, $34) ($12, $96) 16 11 22 51

.80 .10 .10
($52, $56) ($11, $97) 34 35* 11 20
($48, $52) ($10, $98) 30 38* 9 23
($45, $49) ($11, $97) 27 29* 14 30
($40, $44) ($10, $98) 18 31* 12 39
($35, $39) ($11, $97) 19 35* 16 30
($30, $34) ($12, $96) 17 18 19 46

.60 .30 .10
($52, $56) ($11, $97) 57 16 15 12
($48, $52) ($10, $98) 55 17 18 10
($45, $49) ($11, $97) 49 11 23* 17
($40, $44) ($10, $98) 40 26 15 19
($35, $39) ($11, $97) 41 21 24 14
($30, $34) ($12, $96) 44 11 26* 19
($25, $29) ($10, $98) 31 16 20 33

.60 .10 .30
($61, $65) ($10, $98) 26 32* 14 28
($56, $60) ($12, $96) 22 32* 13 33
($52, $56) ($11, $97) 16 36* 10 38
($48, $52) ($10, $98) 23 29* 15 33
($45, $49) ($11, $97) 11 31* 14 44
($40, $44) ($10, $98) 12 21 11 56
($35, $39) ($11, $97) 10 22* 7 61
($30, $34) ($12, $96) 8 21 12 59

Totals 778 662* 426 834
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pattern is more frequent than the consistent pattern (bold type), including 16 that are
individually significant (asterisks). Overall, 678* choices were of the R8S89 pattern against
only 293 of the S8R89 type.

Of the 100 individual judges, 67* had more R8S89 choices than S8R89, in violation of
upper cumulative independence, 11 showed an equal split, and only 22 had more S8R89
choices.

In separate analyses, there were 17, 29, and 22 judges whose data showed more choices
compatible with than in violation of stochastic dominance, lower cumulative indepen-
dence, and upper cumulative independence, respectively. Based on these individual counts
alone, there might be a minority of as many as 17 judges whose data are more consistent
(than in violation) with all three properties. However, there were only 7 judges whose

Table 3. Tests of Upper Cumulative Independence: If S8 5 (x, p; y, q; z8, r) a R8 5 (x8, p; y8, q; z8, r) then S-
5 (x, p 1 q; y8, r) a R89 5 (x8, p; y8, q 1 r).

r p q

(x, y) (x8, y8) S8S89 S8R89 R8S89 R8R89

.50 .25 .25
($52, $56) ($11, $97) 48 13 22 17
($48, $52) ($10, $98) 40 9 23* 28
($45, $49) ($11, $97) 42 10 29* 19
($40, $44) ($10, $98) 36 7 25* 32
($35, $39) ($11, $97) 20 12 30* 38
($30, $34) ($12, $96) 27 7 31* 35

.80 .10 .10
($52, $56) ($11, $97) 41 9 30* 20
($48, $52) ($10, $98) 36 10 29* 25
($45, $49) ($11, $97) 28 13 30* 29
($40, $44) ($10, $98) 25 8 34* 33
($35, $39) ($11, $97) 28 8 32* 32
($30, $34) ($12, $96) 22 9 33* 36

.60 .30 .10
($52, $56) ($11, $97) 55 13 20 12
($48, $52) ($10, $98) 49 12 23 16
($45, $49) ($11, $97) 47 14 22 17
($40, $44) ($10, $98) 46 14 24 16
($35, $39) ($11, $97) 38 8 33* 21
($30, $34) ($12, $96) 43 8 28* 21
($25, $29) ($10, $98) 22 8 34* 36

.60 .10 .30
($61, $65) ($10, $98) 33 18 14 35
($56, $60) ($12, $96) 27 14 21 38
($52, $56) ($11, $97) 28 18 16 38
($48, $52) ($10, $98) 24 9 17 50
($45, $49) ($11, $97) 24 13 18 45
($40, $44) ($10, $98) 19 10 22* 49
($35, $39) ($11, $97) 20 11 23* 46
($30, $34) ($12, $96) 15 8 15 62

Totals 883 293 678* 846
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preference shifts were in better agreement with both cumulative independence properties
than in violation. Of these 7, only 2 had fewer than 2 violations of stochastic dominance.
Thus, only 2 judges have data more consistent with all three of these implications of RDU
than in violation.

4.3 Violations of Branch Independence

Table 4 summarizes tests of noncomonotonic branch independence. Whereas EU and
SWU theories imply no violations of branch independence, both RDU and CWT allow
violations. If judges were to cancel common components prior to choice, then common

Table 4. Tests of Noncomonotonic Branch Independence: S 5 (z, r; x, p; y, q) s R 5 (z, r; x8, p; y8, q) if and
only if S8 5 (x, p; y, q; z8, r) s R8 5 (x8, p; y8, q; z8, r).

r p q

(x, y) (x8, y8) SS8 SR8 RS8 RR8

.50 .25 .25
($52, $56) ($11, $97) 48 19 13 20
($48, $52) ($10, $98) 39 31* 10 20
($45, $49) ($11, $97) 44 20* 8 28
($40, $44) ($10, $98) 31 16 12 41
($35, $39) ($11, $97) 22 25* 10 43
($30, $34) ($12, $96) 15 12 19 54

.80 .10 .10
($52, $56) ($11, $97) 41 28* 9 22
($48, $52) ($10, $98) 38 30* 8 24
($45, $49) ($11, $97) 27 29* 14 30
($40, $44) ($10, $98) 23 26* 10 41
($35, $39) ($11, $97) 28 26* 8 38
($30, $34) ($12, $96) 15 20 16 49

.60 .30 .10
($52, $56) ($11, $97) 55 18 13 14
($48, $52) ($10, $98) 55 17 6 22
($45, $49) ($11, $97) 47 13 14 26
($40, $44) ($10, $98) 47 19 13 21
($35, $39) ($11, $97) 40 22* 6 32
($30, $34) ($12, $96) 37 18 14 31
($25, $29) ($10, $98) 21 26* 9 44

.60 .10 .30
($61, $65) ($10, $98) 39 19 12 30
($56, $60) ($12, $96) 31 23* 10 36
($52, $56) ($11, $97) 32 20 14 34
($48, $52) ($10, $98) 21 31* 12 36
($45, $49) ($11, $97) 20 22 17 41
($40, $44) ($10, $98) 16 17 13 54
($35, $39) ($11, $97) 18 14 13 55
($30, $34) ($12, $96) 11 18 12 59

Totals 861 579* 315 945
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branches should have no effect, and there should be no systematic violations of branch
independence. Apart from such editing, the inverse-S weighting function fit by Tversky
and Kahneman (1992) implies that there should be more RS8 than SR8 violations. The
model of Birnbaum and McIntosh (1996) predicts the opposite pattern; namely, more SR8
violations. In 25* of the 27 tests, SR8 is more frequent than RS8 (bold type in Table 4),
including 12 that are individually significant (asterisks); overall, there were 579* choices
of the SR8 violation and only 315 of the RS8 type. Of 100 judges, 65* had more SR8
violations than RS8 violations, 11 showed an equal split, and only 24 showed the opposite
pattern. These data replicate and extend previous findings.

4.4 Fit of CPT and TAX Models

In preceding analyses, we compared a specific model and its parameters (the RAM model
fit by Birnbaum and McIntosh, 1996) against a general class of models, the RSDU and
RDU models with any parameters. Analyses showed that significantly more individuals
showed the violations predicted by the CW RAM model than had choices consistent with
any RDU model. Those analyses required no estimation of parameters from the present
data.

We now change tacks and fit data to specific models, to address the following questions:
How well do previously published models (and parameters) predict (1) the average data
and (2) individual data in the present study? When CPT and CWT models are allowed to
fit parameters to the same data, how well do they fit (3) average data and (4) individual
data? (5) Can CPT be saved by allowing its parameters to depend on the number of
outcomes in each gamble?

The configural weight, TAX model has the same number of parameters as CPT; it
makes predictions for this study that are nearly identical to the RAM model, and it can
account for violations of distribution independence (Birnbaum & Chavez, 1997), which
violate the RAM model. Therefore, our contest of fit is between the TAX and CPT models.

Both CPT and TAX models were fit with the following equations:

D~R, L! 5 a@U~R! 2 U~L!# (15)

P~R, L! 5 F@b~U~R! 2 U~L!!# (16)

u~x! 5 xb (17)

where D(R, L) is the predicted judgment of the strength of preference (amount offered to
receive) gamble R instead of gamble L (including the sign that indicates the direction of
choice); P(R, L) is the predicted probability of choosing R over L; a and b are scaling
constants; F is the logistic function, F[x] 5 1/(1 1 exp[2x]); u(x) is the utility of
outcome, x; b is the exponent.
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For CPT, U(R) and U(L) are the utilities of the gambles as given in Equations 9 and 10b.
In Equation 10b, W(P) is characterized by two constants, c and g. This CPT model has
five parameters: a, b, c, g, and b.

For the configural weight TAX model, U(R) and U(L) were computed by Equations 13
and 14a–b instead of 9 and 10b. This model also have five parameters to estimate, a, b, d,
g, and b. The parameter d in the TAX model is analogous to c in CPT model.

Models were fit to the 112 choices and judgments (excluding the check trials) using
computer programs of Birnbaum and Chavez (1997) to minimize the following compro-
mise:

@ 5 h (
j51

m

~Dj 2 D̂j!
2 2 ~1 2 h!log@)

j51

m

P~Cj!# (18)

where Dj and D̂j the observed and predicted judgment for each choice, which can be either
positive or negative, depending on the direction of choice; Cj is the observed choice
(gamble on the right or left), P(Cj) is the probability of that choice given the model [i.e.,

P(R, L) or 1 2 P(R, L) from Equation 16]. The term, SUM 5 (
j51

m

(Dj 2 D̂j)
2, is the

familiar sum of squared deviations between observed and predicted judgments for the m

5 112 judgments, and the term, + 5 2log @)
j51

m

P~Cj!#, is the (negative log) likelihood of

the 112 observed choices given the model; h and 1 2 h are relative weights of the two
sub-indices of fit. This compromise loss function requires the model to account for both
strength of preference judgments and choices using the same parameters. FORTRAN
programs, CPTFIT and TAXFIT, used Chandler’s (1969) subroutine, STEPIT, to minimize
@ (See footnote 1 for further details).

A series of analyses addressed the five questions stated above. The first assumed
previously published parameters for CPT and TAX models, and estimated only the scaling
parameters, a and b from these data (a only affects the sum of squared deviations, SUM,
and b only affects the negative log likelihood of choices, +). For the prior model of CPT,
the values of g 5 .61, b 5 .88, and c 5 .72 were taken from the fit to Tversky and
Kahneman (1992). For the prior TAX model, the values of g 5 .70, b 5 1, and d 5 21
were taken from Birnbaum (in press). Fitting means, the TAX model has SUM 5 1715.1
compared to 3362.2 for CPT, and the TAX model has a negative log likelihood, + 5 49.94
compared to 66.81 for CPT. Fitting the data of individuals, the mean value of + was
significantly lower for the TAX model than for CPT, t(99) 5 4.28; the prior TAX model
fit the choices of 63* judges better than the prior CPT model, and 37 were better fit by
CPT.

When all 5 parameters were estimated from the data, the TAX model again fit the mean
judgments better. With h 5 .01, the TAX model had SUM 5 1189 and + 5 41.1
compared to SUM 5 2300 and + 5 53.7 for CPT. See the upper portion of Table 5.

Similar results were obtained when the models were fit to individuals. Median param-
eter estimates for individuals are given in the lower portion of Table 5. The TAX model fit
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better on both subindices of fit for 52* judges, compared to only 16 whose data were
better fit by CPT on both subindices (z 5 4.37). The average SUM was significantly lower
for the TAX model, t(99) 5 2.06. The TAX model predicted choices better than CPT (+
was smaller) for 81* of judges against only 19 whose choices were better predicted by
CPT. The mean + is also significantly lower for TAX than CPT, t(99) 5 5.21. For the
5-parameter TAX model, 89* judges had d , 0; 60 had g , 1, and 71* had b , 1. When
b is fixed to 1, the TAX(4) model fits only slightly worse than TAX(5), and this simpler
TAX model still fits better than the CPT(5) model.

Both TAX models gave good fits to violations of cumulative independence and sto-
chastic dominance, which the CPT model can not do with any parameters. For example,
the TAX model with b fixed to 1 gives mean predictions (averaged over judges) for the 4
violations of stochastic dominance of $10.79, $11.83, $12.00, and $11.53 for the gambles
in Table 1, respectively. Predictions for any CPT model for these four choices are all
negative.

One interpretation of violations of cumulative independence within RDU is to theorize
that the weighting function depends on the number of outcomes in the gamble. Tversky
and Kahneman (1992, p. 317) gave a “pessimistic assessment” that their model (estimated
from two-outcome gambles) might not generalize to other values of n. Derivations show
that the SR8 pattern of violations of branch independence (with n 5 3) implies opposite
relations among ratios of weights (Birnbaum & McIntosh, 1996; Birnbaum & Chavez,
1997) from those estimated by Tversky and Kahneman (for n 5 2). It can be shown that
the preference order we observe for n 5 2, R9 s S9 and S- s R89, would be consistent
with the Tversky and Kahneman weighting function, with g , 1. CPT might therefore
improve its fit by allowing its parameters to depend on n.

Table 5. Parameter Estimates and Indices of Fit of CPT and TAX models.

Fit to Mean Judgments

Parameters Index of Fit

Model g b d or c a b 2log(PP)

TAX (5) 0.891 0.728 20.536 3.617 1.744 41.10
TAX (4) 0.973 (1.0) 20.837 0.867 0.405 44.07
CPT (5) 0.922 0.599 0.543 5.852 2.346 53.74

Fit to Individuals (Medians of Individual Parameters and Index)
Parameters Index of Fit

Model g b d or c a b 2log(PP)

TAX (5) 0.790 .414 2.954 9.549 1.010 58.96
TAX (4) 0.739 (1.0) 21.09 0.102 0.714 61.416
CPT (5) 0.956 0.956 0.273 1.287 0.249 64.76

Note: Each entry is the median parameter estimate or median subindex of fit (+ 5 2log(PP) refers to negative
log likelihood. For the null model will all probabilities 5 0.5, this index would be 77.63. In TAX(4), b is fixed
to 1.
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When data were fit to this more general CPT(10) model, with 10 parameters for each
judge, W(P) functions were systematically different for n 5 2 and n 5 3. Median esti-
mated parameters, were as follows: g 5 .831 and 1.179, c 5 .372 and .119; b 5 .819 and
1.525, a 5 1.54 and .058, b 5 .539 and .078; SUM 5 9420 and 7302; + 5 27.6 and
28.93, for n 5 2 and n 5 3 (excluding the 4 choices testing stochastic dominance),
respectively. (These are significant. For example, 69* judges had higher values of g when
n 5 3 than when n 5 2; mean g was also significantly higher, t(99) 5 2.10. Note that the
median g , 1 for n 5 2, consistent with previous estimates (Tversky & Kahneman, 1992;
Wu & Gonzalez, 1996), and median g . 1 for n 5 3, consistent with Birnbaum and
McIntosh (1996) and Birnbaum and Chavez (1997).

Even when CPT is allowed 10 parameters, CPT still must satisfy stochastic dominance.
Median parameters predict the following proportions for violations of stochastic domi-
nance (CPT(10) for n 5 3): 0.23, 0.32, 0.22, and 0.33. These predictions are significantly
(and substantially) less than corresponding observed proportions (Table 1): .73, .61, .73,
and .73. In contrast, median parameters from TAX(5) yield predictions of .68, .72, .72,
and .73, which are much more accurate predictions of the observed data. Thus, even when
CPT is allowed twice as many parameters, it gives a markedly worse fit to the data than
the TAX model.

5. Discussion

5.1 Violations of Stochastic Dominance and Cumulative Independence

Violations of stochastic dominance and cumulative independence are to the class of RDU,
RSDU, and CPT theories as the Allais paradoxes are to EU: There is no W(P) function and
u(x) function that can explain these phenomena with Equation 9.

As predicted by the equations and parameters of Birnbaum and McIntosh (1996),
Birnbaum’s (1997) recipe creates systematic violations of stochastic dominance. The
recipe produces an amazingly high rate of 70% violations. Apparently, a gamble with two
high outcomes and one low one can seem bettr than a gamble with two low outcomes and
one high one, even when the gamble with two low outcomes stochastically dominates the
gamble with two high outcomes.

Violations of stochastic dominance and cumulative independence violate basic tenants
of RDU and RSDU. These violations go beyond testing implications of a particular
weighting function from one study to the next. Cumulative independence creates a con-
tradiction in the RDU weighting function within the same experiment. This contraindi-
cation is illuminated in our fits of the general CPT model with different parameters for the
cases of n 5 2 and n 5 3, which yielded median estimates of g , 1 and g . 1,
respectively.

Thus, this study finds empirical confirmation of three striking predictions of the model
of Birnbaum and McIntosh (1996) that refute the class of RSDU/CPT models—violations
of stochastic dominance, upper cumulative independence, and lower cumulative indepen-
dence. Such violations are inconsistent with any RDU or RSDU theory. The configural
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weight models also successfully predict a fourth aspect of the data, the SR8 pattern of
violation of branch independence, which contradicts the inverse-S weighting function
estimated by Tversky and Kahneman (1992).

5.2 Possible Sources of Violations

If violations of stochastic dominance were observed only in choice, then one might
attempt to explain them using some theory of the comparison process, such as editing and
cancellation of similar branches between gambles (cf. Kahneman & Tversky, 1979; Wu,
1994; Leland, 1994). However, Birnbaum and Yeary (1997) presented the 8 gambles in
Table 1 for judgment and found that mean judgments of the dominated gamble in each
case were higher than the mean judgments of the corresponding dominant gamble. These
violations were observed on all four tests in both the buyer’s and seller’s points of view.
Thus, the present findings for choice are corroborated using two judgment procedures.
Therefore, the origin of violations of stochastic dominance appears to be due to processes
of combination, rather than of choice.

Because stochastic dominance in this paradigm (Section 1.3) can be viewed as a
combination of outcome monotonicity, transitivity, and coalescing, violations might be
due to violations of one or more of these simpler principles. Similarly, cumulative inde-
pendence can be deduced from the above three assumptions plus comonotonic indepen-
dence. According to the configural weight theory, these violations are due to violations of
coalescing.

Monotonicity Violations? Although violations of monotonicity have been observed in
judgments comparing gambles with and without a zero ($0) outcome (Birnbaum, 1992;
1997; Mellers, Weiss, & Birnbaum, 1992), they have not been reported in direct choices
(Birnbaum & Sutton, 1992) nor in cases with all positive outcomes. Furthermore, it seems
unlikely that monotonicity is the problem because those 4 who violated outcome mono-
tonicity or probability monotonicity more than twice in 12 check trials were excluded.
Because violations of these properties are so infrequent (68 judges had no violations), it
seems unlikely that violations of stochastic dominance or cumulative independence can be
attributed to violations of outcome or probability monotonicity. The rarity of these vio-
lations also suggests that our judges were not lacking in attention.

“Check” trials have been used in previous research to ensure that judges have at least
superficial understanding of the task, and to identify those who might be confused, care-
less, or inattentive. If a judge were choosing randomly, then the probability of making 2
or fewer violations of transparent dominance in 12 check trials is .02. A person who
always chose the gamble on the right would have 6 violations. To study if the check
procedure itself affects our results, we tested 38 additional undergraduates with a shorter
booklet without check trials (and no one was excluded). Results replicated the main study.
For example, 13 of these 38 judges had 4 violations of stochastic dominance out of 4 tests,
9 had 3, 10 had 2, 3 had 1 violation, and 3 had no violations. The overall rate of violation
is therefore 67.1% in this group, significantly greater than 50% and not significantly
different from 70%, the rate found in our main experiment.
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Transitivity. Birnbaum, Patton, and Lott (in press) tested the possibility that the present
violation of stochastic dominance might induce systematic violations of transitivity, if
judges detect and conform to stochastic dominance in simpler choices. For example,
suppose judges recognize that G1 5 ($12, .05; $14, .05; $96, .9) dominates G0 5 ($12,
.1; $96, .9), that G0 dominates G2 5 ($12, .10; $90, .05; $96, .85), but they still choose
G2 over G1. If so, there would be a violation of transitivity. With a new sample of 110
judges and five new variations of the choice recipe, Birnbaum, et al. (in press) found that
stochastic dominance was violated in 73.6% of choices between G2 and G1. In about
one third of the choice triads where stochastic dominance was violated in the choice of
G2 over G1, stochastic dominance was satisfied in both choices of G1 and G2 against
G0, producing a violation of transitivity. However, in the other two thirds of the cases,
there was at least one other violation of stochastic dominance, preserving transitivity. The
conditional probability of violating stochastic dominance, given satisfaction of transitiv-
ity, was .67, suggesting that transitivity is not the culprit producing violations of stochastic
dominance. Nevertheless, the data suggested that violations of weak stochastic transitivity
could be attributed to an editing mechanism that detects dominance in choices against G0

and does not detect dominance in the comparison of G2 and G1.
Coalescing. The RAM and TAX models obey outcome monotonicity (for positive

outcomes), restricted comonotonic independence, and transitivity; however, both of these
models violate coalescing. When the TAX model is fit to the present data, it fits better than
the CPT models, although both models use the same number of parameters. The success
of these configural weight models in predicting the violations of stochastic dominance,
lower cumulative independence, and upper cumulative independence is therefore consis-
tent with the hypothesis that violation of coalescing is the key to explaining violations of
these properties.

The term “event-splitting” effects (Humphrey, 1995; Starmer & Sugden, 1993) refers to
violation of a combination of coalescing and transitivity. Assuming transitivity, event-
splitting effects are violations of coalescing. Starmer and Sugden (1993) and Humphrey
(1995) explain event-splitting effects by means of a SWU model, sometimes termed
“stripped” prospect theory (in which editing rules that imply coalescing have been re-
moved). These SWU models can be tested against CWT models by the following property
of event-splitting independence.

Event-splitting Independence: Event-splitting independence asserts that if splitting an
event has an effect, it should have the same effect whenever the same event (and prob-
ability) is split, independent of the rank and value of the outcome split, as long as the sign
of the split outcome is the same. For example, suppose all outcomes are positive and p 1
q 1 r 5 1; event-splitting independence implies,

~x, p; x, q; z, r! s ~x, p 1 q; z, r! iff ~x8, r; y, p; y, q! s ~x8, r; y, p 1 q!. (19)

SWU models that are represented by SWU(G) 5 ( w(p)u(x) satisfy event-splitting inde-
pendence. Proof: According to SWU, (x, p; x, q; z, r) s (x, p 1 q; z, r) iff w(p)u(x) 1
w(q)u(x) 1 w(r)u(z) . w(p 1 q)u(x)1 w(r)u(z), iff w(p) 1 w(q) . w(p 1 q). Since we
can multiply both sides by u(y) and add w(r)u(x8) to both sides, it follows that w(r)u(x8)
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1 w(p)u(y) 1 w(q)u(y) . w(r)u(x8) 1 w(p 1 q)u(y), which holds iff (x8, r; y, p; y, q) s
(x8, r; y, p 1 q).

The configural weight models [and models of the form, SWAU(G) 5 ( w(p)u(x)/(
w(p)] violate event-splitting independence. Because the configural weight RAM and TAX
models are averaging models, splitting the probability of a positive outcome can either
increase or decrease the value of the gamble, depending on whether the branch split was
associated with the highest or lowest outcome in the gamble. For example, the model and
parameters of Birnbaum and McIntosh (1996) yield the following predicted certainty
equivalents:

CWU($12, .9; $96, .05; $96, .05) 5 $24.18 . CWU($12, .9; $96, .1) 5 $23.60;
however,

CWU($12, .05; $12, .05; $96, .9) 5 $55.6 , CWU($12, .1; $96, .9) 5 $70.0,

in violation of event-splitting independence.
Changes in procedure. Some have suggested that other procedures might alter our

results: (1) Perhaps with financial incentives, people might be more motivated to conform
to stochastic dominance. (2) Perhaps with fewer choices, judges wouldn’t get bored or
careless. (3) Perhaps with a different display format, results would be different. (4) If
choices were all on the same page, perhaps judges would make their choices consistent.
(5) Perhaps the procedure of asking judges to evaluate the differences between gambles
affects their choices.

Birnbaum (1998) applied these suggestions and replicated our results. There were 14
choices, all printed on a single sheet, with gambles displayed in the format used by
Kahneman and Tversky (1979) and others. Thirty-one undergraduates were given a
chance to play their chosen gamble on one randomly selected trial for face value, half of
face value, or double face value. Prizes could be a high as $220, and people seemed
excited. Results were quite compatible with those reported here. For example, the new
study found 76%* violations of stochastic dominance with two variations of the recipe
used here, significantly greater than 50% but not significantly different from the rate of
70% found here.

Birnbaum (1998) also tested for reversals of preference due to event-splitting, predicted
by configural weight models. For example, G1 5 ($12, .05; $14, .05; $96, .90) versus
G2 5 ($12, .10; $90, .05; $96, .85), and GS1 5 ($12, .05; $14, .05; $96, .05; $96, .85)
versus GS2 5 ($12, .05; $12, .05; $90, .05; $96, .85). Note that GS1 versus GS2 is the
same choice as G1 versus G2, except for coalescing. However, the split versions reduce
stochastic dominance to outcome monotonicity. Birnbaum (1998) found that 29* of 31
judges (90%) satisfied monotonicity by preferring GS1 over GS2, and that 23* of these
violated stochastic dominance by preferring G2 over G1; 21* of 31 (67%) reversed
preferences from G2 over G1 to GS1 over GS2, and none switched in the other
direction. Violations of cumulative independence were also replicated. Apparently, our
findings are not sensitive to financial incentives or the other changes in procedure.

Comonotonic Independence. Violations of cumulative independence may be due to
violation of transitivity, monotonicity, coalescing, or comonotonic branch independence,
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which has been sustained in tests of judgment and choice, but which deserves more
strenuous tests than it has yet received (Birnbaum & McIntosh, 1996; Birnbaum &
Beeghley, 1997; Wakker, et al., 1994).

Wu (1994) reported violations of tail independence, with a test that is similar to but
distinct from our test of upper cumulative independence. Tail independence can be derived
from comonotonic branch independence, coalescing, and transitivity. Wu (1994) noted
that violations are inconsistent with CPT. Wu’s explanation also assumes that the key to
the violations is coalescing, though his theory is different. Wu theorized that subjects edit
and cancel common components between gambles, when the common components are
transparent (not coalesced). Wu’s (1994) editing theory implies that choices should satisfy
branch independence.

5.3 Violations of Branch Independence

The present results replicate the pattern of violations of noncomonotonic branch inde-
pendence observed in previous research; namely, the SR8 pattern is more frequent than the
RS8 pattern. The present data also show that this pattern is found in choices between
three-outcome gambles in which all three outcomes have different probabilities. The
violations of branch independence observed here [and by Birnbaum and McIntosh (1996),
Birnbaum and Beeghley (1997), Birnbaum and Veira (1998), Birnbaum and Chavez
(1997), and Weber and Kirsner (1997)] are opposite those predicted by the inverse-S
weighting function used in the cumulative prospect model.

5.4 Allais Common Consequence Paradox

The common consequence paradox of Allais (1953/1979), which violates EU theory, can
be interpreted as a violation of Allais independence, which can be deduced from branch
independence, coalescing, and transitivity (Birnbaum, in press). Because the paradox
combines these properties, it can be explained by theories that satisfy branch indepen-
dence but violate coalescing (and stochastic dominance), such as SWU and original
prospect theory (Edwards, 1954; Karmarker, 1978; Kahneman & Tversky, 1979). How-
ever, the Allais paradox can also be explained by theories that satisfy coalescing (and
stochastic dominance) but violate branch independence, such as RDU, RSDU, and CPT
(Luce, 1992; Quiggin, 1985; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996). Vio-
lations of branch and distribution independence (Birnbaum & McIntosh, 1996; Birnbaum
& Chavez, 1997; the present data) show that SWU models and original prospect theory
can be rejected. The present results and event-splitting effects (Starmer & Sugden, 1993;
Humphrey, 1995) suggest that coalescing is violated, allowing rejection of the RDU,
RSDU and CPT models. We are left with configural weight theories, which violate branch
independence and coalescing.
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5.5 Testing Among Rival Configural Weight Models

As noted by Birnbaum and McIntosh (1996), the configural weight RAM model can fit the
results of Tversky and Kahneman (1992), Wu and Gonzalez (1996), and Birnbaum and
McIntosh (1996) without changing parameters. It can also explain the Allais paradoxes
(Birnbaum, in press). Although the RAM model with its previously published parameters
has spectacular success in predicting the present results, the RAM model cannot account
for violations of distribution independence (Birnbaum & Chavez, 1997). The preference
order SR8 is more frequent than RS8, when the distribution of common outcomes was
changed as follows:

~z, .55; x, .2; y, .2; v, .05! 5 S s R 5 ~z, .55; x8, .2; y8, .2; v, .05! and

~z, .05; x, .2; y, .2; v, .55! 5 S8 a R8 5 ~z, .05; x8, .2; y8, .2; v, .55!.

This pattern of violations was observed in twelve variations of the above test (Birnbaum
& Chavez, 1997). It is also opposite that predicted by the inverse-S weighting function.

The TAX model can explain this pattern of violations of distribution independence with
the same parameters as needed to explain violations of Allais independence, common
ratio independence, branch independence, stochastic dominance, and cumulative indepen-
dence (Birnbaum, in press). The simple version of the TAX model (the restrictions of
Equations 14a-b) imply that configural weights of equally likely outcomes will be a
monotonic function of the rank, unlike RDU and unlike the RAM model. Studies of
judgment have concluded that judges in the seller’s point of view apply the most config-
ural weight to the middle outcome (Birnbaum & Beeghley, 1997; Birnbaum & Veira,
1998).

Another configural model that can account for these phenomena is minimum asym-
metric loss theory (see Birnbaum, et al., 1992; Birnbaum & McIntosh, 1996, Appendix
A). This theory attributes configural weighting to asymmetric costs of over- or under-
estimating the value of an uncertain or risky good (Birnbaum et al., 1992). This idea was
proposed by Birnbaum and Stegner (1979) to explain the different configural weighting
patterns between buyer’s and seller’s prices. A rival to the configural weighting theory of
viewpoint effects was the notion of loss aversion suggested to explain the “endowment
effect,” in the economics literature of the 1980s. Unfortunately, studies in the economics
literature, reviewed in Kahneman, Knetsch, and Thaler (1991), did not compare loss
aversion to configural weighting.

Birnbaum and Zimmermann (1998) compare implications of configural weighting
theory, loss aversion, and anchoring and adjustment theories of buying and selling prices
(WTP and WTA). The theory that configural weights depend on viewpoint (buyer vs.
seller) explains the phenomena reported by Birnbaum and Stegner (1979), Birnbaum and
Beeghley (1997), Birnbaum and Sutton (1992), Birnbaum and Veira (1998) and Birnbaum
and Zimmermann (1998); however, two interpretations of the notion of loss aversion
coupled with CPT fail to explain the major features of judgment data. Anchoring and
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adjustment theory (that sellers anchor on the highest outcome and buyers anchor on the
lowest outcome and adjust to other outcomes) also fails to account for the data.

The TAX and RAM models imply comonotonic independence, whereas minimum loss
theory can violate comonotonic independence (see Appendix A of Birnbaum and McIn-
tosh, 1996). Minimum loss theory does satisfy regional comonotonic independence. As
noted by Birnbaum (1997), the TAX model also implies a systematic pattern of violation
of asymptotic independence, unlike the RAM model. These three properties, comonotonic
independence, monotonicity of configural weights as a function of rank, and violation of
asymptotic independence are testable implications of the TAX model that deserve careful
testing in future research.

Because CWT models were successful in predicting where to find violations of sto-
chastic dominance, it is reasonable to ask if there are cases in which these models predict
violations and yet judges satisfy dominance. SWU models, such as original prospect
theory without the editing principles, imply violations of transparent dominance (Birn-
baum, in press). Although SWU predicts violations in such cases, neither RAM nor TAX
models violate transparent dominance. There may be other cases in which the model
predicts violations and judges do not violate dominance. One place to begin a search is in
“translucent” comparisons of G1 and G2 aginast G0, where Birnbaum et al. (in press)
found fewer violations than predicted by any transitive model.

5.6 Editing Principles Need Revision

Both versions of prospect theory (Kahneman & Tversky, 1979; Leland, 1994; Tversky &
Kahneman, 1986; 1992; Wu, 1994) proposed editing principles, including two (cancella-
tion and combination) that are addressed by the present study. Combination assumes that
judges simplify gambles by combining equal outcomes within gambles. This principle
implies coalescing and rules out “event-splitting” effects (Humphrey, 1995; Starmer &
Sugden, 1993).

The cancellation principle assumes that judges eliminate components common to both
gambles before choice. If judges obeyed this editing principle, they should not violate
branch independence or distribution independence in any systematic fashion. Systematic
violations of branch independence, distribution independence, and coalescing (including
its consequences of stochastic dominance and cumulative independence) contradict the
principles of cancellation and combination.

Stevenson, Busemeyer, and Naylor (1991) noted that the same editing principles can
make drastically different predictions depending on the order in which they are applied.
For example, if judges coalesce nearly equal outcomes before comparing gambles, they
should obey stochastic dominance in choice. However, if judges cancel equal outcomes
with nearly equal probabilities (before coalescing within gambles), then they might vio-
late stochastic dominance.

Although editing principles have some flexibility, it is difficult to see how they would
explain violations of stochastic dominance in judgment, where gambles are presented on
separate trials, and presumably cancellation of branches between gambles is not possible.
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The fact that similar violations of branch independence and stochastic dominance are
observed in both judgment and choice suggests that editing will have a difficult time
explaining these phenomena.

6. Conclusions

In summary, the present study shows systematic violations of stochastic dominance, lower
cumulative independence, and upper cumulative independence. These violations are in-
consistent with RSDU theories (Luce & Fishburn, 1991; 1995) including CPT (Tversky &
Kahneman, 1992) and rank-dependent utility (Quiggin, 1982). The present data also
replicate the pattern of violations of branch independence that is inconsistent with the
inverse-S weighting function. The majority pattern of violations of all four properties
agree with predictions made in advance of the experiment by the configural weight, RAM
model of Birnbaum and McIntosh (1996). The configural weight TAX model fits the data
of most individuals better than CPT even though it has the same number of parameters,
and it even outperforms the CPT model when CPT is allowed more parameters.
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Notes

1. Programs to compute the predictions of CPT, RAM, and TAX models can be accessed from URL http://
psych.fullerton.edu/mbirnbaum/programs.htm.

2. A detailed description of the procedure (including a copy of the materials with instructions) can be obtained
from URL http://psych.fullerton.edu/mbirnbaum/BN.htm.
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