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lais, 1979) and the Ellsberg Paradox (Ellsberg, 1961)
Branch Independence is weaker than Savage’s inde- have been interpreted as evidence that humans do not

pendence axiom; it holds that if two gambles have a always follow Savage’s axiom (e.g., Slovic & Tversky,
common outcome for an event of known probability, 1974). However, these paradoxes do not really provide
the value of that common outcome should have no ef- pure tests of the axiom, being cluttered with other as-
fect on the preference order induced by other proba-

sumptions (Luce, 1992; Schoemaker, 1982; Stevenson,bility-outcome branches. Systematic violations of
Busemeyer, & Naylor, 1991). Edwards’ (1954) psycho-branch independence were obtained in two experi-
logical generalization of SEU, using a weighting func-ments with choices between gambles composed of
tion of probability, implies a weaker form of Savage’sthree equally likely, positive outcomes. Most people
Axiom, called branch independence.prefer ($2, $40, $44) over ($2, $10, $98); however, most

people prefer ($10, $98, $136) over ($40, $44, $136). Branch independence corresponds to the ‘‘weak’’ in-
These results refute Expected Utility theories. They dependence axiom that Cohen and Jaffray (1988) find
also refute the theory that people edit and cancel com- more tenable than Savage’s ‘‘sure thing’’ principle. Ac-
mon components in choice. The pattern is opposite cording to branch independence, if two gambles have
that predicted by the weighting function of cumulative a common branch (the same outcome at the same prob-
prospect theory. Results are consistent with rank de- ability produced by the same event), then the value of
pendent, configural weight theory, with wLúwMúwH,

that outcome should have no effect on the orderingwhere wL, wM, and wH are the weights of the lowest,
(Birnbaum, Coffey, Mellers, & Weiss, 1992).medium, and highest outcomes, respectively. In this

Branch independence means that given a choice be-theory, violations of branch independence depend on
tween alternatives, common branches (probability-out-relations among weights: results indicate that wL/wM

comes) of the alternatives will have no effect on theõ wM/wH. q 1996 Academic Press, Inc.

decision. Consider gambles A and B which share a com-
mon branch (z, p(z)):

Subjective Expected Utility (SEU) theory (Savage,
A Å (z, p(z); a2 , p(a2); . . . ; ai , p(ai); . . . ; an , p(an))1954) rests on and requires an axiom called the ‘‘sure

thing’’ principle. According to this principle, if two al- B Å (z, p(z); b2 , p(b2); . . . ; bj , p(bj); . . . ; bm , p(bm))
ternatives give the same outcome under one state of
the world, then the value of that common outcome

where p(ai) and p(bj) are the probabilities to receive
should not affect the preference order produced by

outcomes ai and bj given choice A and B, respectively;
other aspects of the gambles. The Allais Paradox (Al-

and (n
iÅ2 p(ai) Å (m

jÅ2 p(bj) Å 1 0 p(z). Branch Indepen-
dence requires that subjects prefer gamble A to B if
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fullerton.edu. In other words, if two gambles share a common branch
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92 BIRNBAUM AND MCINTOSH

(z, p(z)) then changing the outcome of that branch (z*, 1992; Luce & Fishburn, 1991; 1995; Miyamoto, 1989;
Wakker, 1993, 1994; Weber, 1994; Schmeidler, 1989;p(z)) should not affect the preference order induced by
Tversky & Kahneman, 1992; Yaari, 1987).the other probability-outcome combinations.

The present experiment uses gambles with threeBirnbaum et al. (1992, pp. 338–339) found that ($8,
equally likely outcomes, denoted (x, y, z). These three.5; z, .5) received higher judgments than ($16, .1; $5,
amounts are written on slips that will be mixed and.4; z, .5) for values of z ú $20; however, the order of
drawn at random from a container. If slip 1 is drawn,the mean judgments was reversed for values of z £
the prize is x; if slip 2 is drawn, the prize is y; if slip 3$20, thus violating branch independence. This result
is drawn, the prize is z. In this case, branch indepen-could be explained by the rank-dependent, configural-
dence can be written:weight model of Birnbaum et al. (1992). Weber, Ander-

son, and Birnbaum (1992) found similar results for rat-
ings of the attractiveness of gambles. However, Wak-
ker, Erev, and Weber (1994) found little evidence of

(x, y, z) preferred to (x*, y*, z)

if and only if

(x, y, z*) preferred to (x*, y*, z*).

(1)violations of branch independence with direct choices
between gambles; they found no evidence to favor rank-
dependent utility theories over EU theory.

Theories in which the weights of stimulus compo- In other words, replacing the common outcome z with
nents depend on their ranks have become more popular z* should not affect the direction of preference between
in recent years to explain violations of independence. (x, y) and (x*, y*). For this situation (with fixed probabil-
Birnbaum, Parducci, and Gifford (1971) and Birnbaum ities), branch independence is equivalent to joint inde-
(1974) proposed configural-weight averaging models to pendence (Krantz, Luce, Suppes, & Tversky, 1971, p.
account for deviations from constant-weight averaging 339).
models in psychophysical and social information inte-
gration tasks. Birnbaum (1974, p. 559) noted, ‘‘The con- THEORETICAL ANALYSIS
figural-weight averaging model assumes that the
weight of a stimulus depends on its rank within the It is useful to analyze the present experiment with
set to be judged.’’ In the case of judgments of likeable- respect to generic, rank-dependent configural weight
ness of a person based on their personality traits or of theory, and to discuss related theories with respect to
the morality of a person based on their deeds, judg- that theory. According to this theory, the weights of
ments were theorized to depend mostly on the person’s equally likely outcomes depend entirely on their ranks.
worst trait or deed, respectively (Birnbaum, 1972, Since there are three ranks in our three-outcome gam-
1973; Riskey & Birnbaum, 1974; Birnbaum, Wong, & bles, there are three weights, for Lowest, Medium, and
Wong, 1976). Highest ranking outcomes (wL, wM, and wH, respec-

Birnbaum and Stegner (1979) proposed revisions to tively). In this case, weights can be normalized to sum
configural weight theory and showed that it could ex- to one by dividing by their total. Consider the prefer-
plain judgments of buying and selling prices of uncer- ence relation, ¥, between two such gambles, with a

common value of z that is the lowest outcome in eithertain prospects (used cars), based on information from
gamble. Outcomes are chosen such that 0 õ z õ x* õsources of varied credibility and bias (see also Birn-
x õ y õ y* õ z*. Supposebaum & Stegner, 1981; Birnbaum & Mellers, 1983).

Kahneman and Tversky (1979) proposed a model of
choice between risky prospects that used rank and (z, x, y) ¥ (z, x*, y*).
sign-dependent weights. Quiggin (1982) introduced a
rank-dependent theory in economics. Luce and Narens According to the rank-dependent model, this prefer-
(1985) showed for binary gambles that a rank-depen- ence relation will hold if and only if
dent utility theory is the most general type of a config-
ural weight theory that yields interval scales of utility, wLu(z) / wMu(x) / wHu(y)
and that rank-dependent theory can explain many of

ú wLu(z) / wMu(x*) / wHu(y*), (2)the paradoxes that had been considered evidence
against Expected Utility theory. Rank dependent
weighting has been adocated or investigated in a num- where wL, wM, and wH are the weights of the lowest,
ber of other recent papers (Birnbaum et al., 1992; Birn- medium, and highest outcomes, respectively, and u(x)
baum & Sutton, 1992; Birnbaum & Sotoodeh, 1991; is the utility function of money. Subtracting wLu(z)

from both sides leaves:Champagne & Stevenson, 1994; Lopes, 1990; Luce,
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93VIOLATIONS OF BRANCH INDEPENDENCE

wMu(x) / wHu(y) ú wMu(x*) / wHu(y*) Table 1 presents an analysis of the stimuli that were
employed in Design 1 of the present experiment. Note
that a wide range pair (x*, y*) is compared to a seriesTherefore
of smaller range pairs (x, y) that vary in their totals (x
/ y). Each entry in the table shows the ratio of differ-wM[u(x) 0 u(x*)] ú wH[u(y*) 0 u(y)]
ences in utility as in Expressions 6 and 7. If the ratio
of weights exceeds the ratio of utility differences in thehence,
table, then the gamble containing the smaller range
pair (x, y) will be preferred to the one containing thewM

wH
ú u(y*) 0 u(y)

u(x) 0 u(x*)
. (3) larger range pair (x*, y*) when the common outcome is

z; if the ratio of weights is less than the given ratio,
then the gamble containing the wider range pair will

Now suppose that there is a violation of branch inde- be preferred. Four examples of utility functions are
pendence when the common outcome is changed from listed in Table 1, to illustrate how violations of branch
the lowest to the highest outcome in both gambles (0 independence depend on both the pattern of weights
õ x* õ x õ y õ y* õ z*). In this case, the preference and the utility function, as in Expressions 6 and 7.
relation would be as follows: If the weights of Lowest, Medium, and Highest ranks

are equal or stand in any fixed ratio (e.g., 4:2:1, 9:3:1,
(x, y, z*) ≥ (x*, y*, z*). 1:1:1, 1:2:4), there will be no violations of branch inde-

pendence between cases of the common outcome being
This relation will hold if and only if lowest or highest. In a finite experiment such as Table

1, the ratios of weights must ‘‘straddle’’ the ratios of
wLu(x) / wMu(y) / wHu(z*) differences in utility specified by the experiment to pro-

duce a violation of branch independence. (Note: Chang-õ wLu(x*) / wMu(y*) / wHu(z*). (4)
ing the common outcome to the middle value can also
produce violations of branch independence; derivationsThis expression implies
follow the same approach as Eqs. (2–7). Extensions to
situations in which outcomes are varied in probability

wLu(x) / wMu(y) õ wLu(x*) / wMu(y*) and the number of outcomes is changed are described
in Appendix B).

therefore,
Expected Utility Theory

wL

wM
õ u(y*) 0 u(y)

u(x) 0 u(x*)
. (5) Expected Utility (EU) theory assumes equal weights

for all ranks, so EU theory and Savage’s SEU predict no
violations of branch independence. The psychological

This analysis shows that if the ratios of weights of version of SEU theory (Edwards, 1954), which uses a
adjacent ranks are equal, then there would be no viola- weighting function of probability, would also have the
tions in any experiment due to any change in common same implication, because three equally probable
outcome from lowest to highest (z to z*). In order to events are also equal in weight. (In this experiment,
observe this violation of branch independence, the ra- branch independence and event independence coin-
tios of successive weights must ‘‘straddle’’ the ratio of cide).
differences in utility as follows:

Editing and Cancellation Theory

Suppose the subject were to edit comparisons be-
wL

wM
õ u(y*) 0 u(y)

u(x) 0 u(x*)
õ wM

wH
. (6)

tween gambles by canceling any equal probability,
equal outcome that is common to both gambles. Such

By reversing the preference relations and inequalities a subject would be following Savage’s axiom, whether
in the above derivation, one can see that the opposite motivated by a principle of rationality or by a desire to
pattern of violations of branch independence will occur simplify the decision problem. The theory that subjects
when the following holds: edit and cancel equal aspects in making choices has

been proposed by Tversky (1969; 1972), elaborated by
Kahneman and Tversky (1979), and reiterated by Tver-wL

wM
ú u(y*) 0 u(y)

u(x) 0 u(x*)
ú wM

wH
. (7)

sky and Kahneman (1992). If subjects canceled com-
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94 BIRNBAUM AND MCINTOSH

TABLE 1

Rank-Dependent Utility Theory Analysis of Violations of Branch Independence in This Experiment

Contrast Utility function

Row (x, y) (x *, y *) u(x) Å x u(x) Å x.88 u(x) Å x.5 u(x) Å log x

1 (50, 54) (12, 96) 1.11 .99 .68 .40
2 (45, 49) (11, 97) 1.41 1.25 .84 .48
3 (40, 44) (10, 98) 1.80 1.58 1.03 .58
4 (35, 39) (12, 96) 2.48 2.18 1.45 .84
5 (30, 34) (11, 97) 3.32 2.89 1.86 1.04
6 (25, 29) (10, 98) 4.60 3.95 2.46 1.33

Note. Entries in the last four columns show ratios of differences in utility: [u(y *) 0 u(y)]/[u(x) 0 u(x *)]. According to rank-dependent
theory, branch independence will be violated between the cases in which z is smallest or largest when the ratios of successive weights
‘‘straddle’’ the ratios specified by the experiment and the utility function. For example, if u(x) Å x, then (z, $40, $44) will be preferred over
(z, $10, $98), for z õ $10 and ($10, $98, z* ) will be preferred over ($40, $44, z *) for z * ú $98 if wL/wM õ 1.8 õ wM/wH.

mon outcomes, there would be no violations of branch In this case, the smaller range pair (x, y) will be pre-
ferred to (x*, y*) in the first two rows of Table 1; thereindependence, apart from random error. Because this

strategy might apply to choice but not to independent will be a violation of branch independence in the third
row; and the last three rows would have consistentjudgment, it might be possible to observe violations of

branch independence in a judgment task (as in Birn- preferences for the gambles containing the wider
range, (x*, y*) pair of higher expected value.baum et al., 1992), but not in a choice task (as in Wak-

ker et al., 1994). Figure 1 illustrates the predictions of these parame-
ters by showing the equivalent cash value of each gam-It is also possible that a cancellation strategy might

be induced by the context within the experiment, if ble as a function of the common outcome, z. The gamble
with the higher ordinate value should be preferred,most of the trials involved comparisons that would per-

mit such a cancellation. There is evidence that the according to the theory. The crossing of the curves
shows a violation of branch independence.model that represents subjects’ judgments can actually

change, depending on the distribution of stimuli pre- For the same weights, assuming a square root func-
tion for utility, the pattern is similar but now the rever-sented to the subjects, so this concern should not be

taken lightly (see Mellers, Ordóñez, & Birnbaum, 1992, sal is predicted to occur in the fifth row of the table,
Experiment 3). The present experiment was designed
to include a large number of ‘‘filler’’ judgments in which
all six outcomes were distinct, so that fewer than half
of the choices involved comparisons in which a cancella-
tion would be possible. Wakker et al. (1994) used an
experimental design in which all of the choices included
at least one common branch.

Rank-Dependent Utility Theory

Suppose u(x) Å x. If the weights stand in the ratios
of 3:2:1 for Low, Medium, and High ranks, then a viola-
tion of branch independence will occur in the third row
of Table 1 (since 3

2 õ 1.8 õ 2
1), and subjects will express

the preferences

($2, $40, $44) ¥ ($2, $10, $98)

and
FIG. 1. Rank-dependent utility theory predictions, using weights

of 3/6, 2/6, and 1/6 for lowest, middle, and highest outcomes, respec-
tively. Crossing of the curves is a violation of branch independence.($40, $44, $136) ≥ ($10, $98, $136).
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95VIOLATIONS OF BRANCH INDEPENDENCE

since the ratios of weights straddle 1.86 (32 õ 1.86 õ 2
1).

Changes in the utility function thus change the row(s)
in which violations of branch independence would oc-
cur, holding the weights constant.

The above derivations (Expressions 2–7) show that
rank-dependent utility theory implies no change in
preference order when the common outcome maintains
the same rank but is changed in value. The require-
ment of rank-dependent utility theory that there be no
violations for gambles in which the common outcome
maintains the same rank order is termed ‘‘comonotonic
independence’’ by Wakker et al. (1994). In Fig. 1, the
comonotonic independence prediction can be seen as
the parallelism of the curves when the outcomes have
the same rank (i.e., for z õ $10 and for z* ú $98).

FIG. 2. Cumulative prospect theory predictions, plotted as in Fig.Median Theory
1. Note that crossover pattern is opposite that in Fig. 1.

Median Theory is a special case of rank-dependent
utility theory, with weights of 0, 1, and 0 for Low, Me-
dium, and High ranks, respectively. This model evalu- conforming to Expression 7. The cumulative prospect
ates each gamble as equal to its median (which mini- model also uses a power function for value of money,
mizes a loss function defined as the sum of absolute u(x) Å x.88 (see Table 1).
deviations of the outcomes about the gamble’s value). Therefore, the weighting function of cumulative pros-
According to this theory, there should be a violation of pect theory (apart from any editing assumptions that
branch independence in every row of the experiment would eliminate systematic violations of branch inde-
in Table 1. The subject should always choose the low pendence) predicts that the subject should prefer the
range combination (x, y) when the common outcome is gamble containing the wider range pair (x*, y*) in all
lowest (since the median is highest) and should always rows when the common outcome is lowest, but it im-
choose the high range combination when the common plies that the subject should prefer the gamble with
outcome (and the median) is highest. Median theory the smaller range pair (x, y) when the common outcome
implies comonotonic independence, and it also implies is highest in the first four rows. Thus, this theory pre-
that changes in the highest or lowest outcome of a three dicts violations in the first four rows of Table 1 in the
outcome gamble will not affect the gamble’s utility. direction implied by Expression 7 and opposite that
Therefore, this theory implies that there should be no implied by Expression 6.
effect of rows in Table 1 on preferences. Because the model of Tversky and Kahneman (1992)

places the least weight on the middle of three equally
Cumulative Prospect Theory likely outcomes, it predicts preferences and violations

of branch independence in the opposite direction fromCumulative Prospect Theory, in this experiment, is
those predicted by the 3:2:1 pattern or median theory,a special case of rank-dependent utility theory in which
which place relatively more weight on the middle out-middle values receive lower relative weight than higher
come. The predictions of the cumulative prospect modelor lower outcomes (Tversky & Kahneman, 1992, Eq.
are shown in Fig. 2, plotted for comparison with Fig.6). Because of its weighting function, which has been
1. Note that cumulative prospect theory also obeys theconfirmed by Wu and Gonzalez (in press), the cumula-
comonotonic independence assumption, yielding paral-tive prospect model predicts the opposite pattern of
lel curves for z õ $10 and z* ú $98.violations of branch independence from that in Fig. 1.

As long as the middle outcome holds the least weight,
Configural-Weight Theory

Expression 7 follows, rather than Expression 6. For
three equally likely positive outcomes, the parameters Birnbaum (1974) noted that the range model of Birn-

baum, Parducci, and Gifford (1971) is a configuralof Tversky and Kahneman (1992) yield weights of low-
est, middle, and highest outcomes equal to .487, .177, weighted averaging model in which the relative weight of

a stimulus component depends on the rank of that stimu-and .336, respectively, yielding ratios of adjacent
weights of wL/wMÅ 2.75 and wM/wHÅ .53, respectively, lus component among the other components comprising
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96 BIRNBAUM AND MCINTOSH

the within-set context. Birnbaum and Stegner (1979) fit
Birnbaum’s (1974) range model as well as a revised rank-
dependent, configural weight model that provided a better
fit to buying, selling, and neutral’s prices.

Birnbaum and Stegner’s (1979, Eq. (10)) revised
model is illustrated in Fig. 3 for three equally credible
sources. According to this revised model, the absolute
weight of a stimulus component is transferred ac-
cording to rank in proportion to the absolute weight
of the stimulus that loses the weight. Birnbaum and
Stegner (1979) found that the proportion of weight
transferred and the direction of transfer depends on
the judge’s point of view. For the buyer’s point of view
and the neutral’s, weight is transferred from the high-
est value to the lowest; however, for the seller’s point
of view, weight is transferred from the lowest to the

FIG. 4. Predictions of theory of minimizing asymmetric losses.highest. Birnbaum and Sutton (1992) and Birnbaum et
Although similar to RDU in this case (Fig. 1), this theory can violateal. (1992) found similar changes of relative weight as
comonotonic independence.a function of point of view, as did Birnbaum and Zim-

mermann (1995).
For the revised version of the model (Birnbaum &

Stegner, 1979, Eq. (10)) for the buyer’s point of view, rationale that subjects act as if they minimize asym-
the transfer of weights results in absolute weights of metric loss functions (see also Weber, 1994). For three-
1 / .385, 1, and 1 0 .385, for the lowest, middle, and outcome gambles, however, generalization of the loss
highest values, respectively. These absolute weights function approach yields configural weights that de-
imply relative weights of .46, .33, and .21, which con- pend on both the ranks and relative spacing of the
form to Expression 6; they imply violations of branch outcomes. For a squared loss function, with asymmetric
independence in row two of present experiment, similar weights for over- vs underestimation, one can derive a
to those described in the section on rank-dependent configural weight model that is identical to a rank-
utility theory for the 3:2:1 pattern of weights, illus- dependent utility theory only on a limited subdomain.
trated in Fig. 1. Over a global domain, the theory violates comonotonic

independence. Comonotonic independence has been de-Configural-Weighting Derived from Asymmetric Loss
scribed as the key distinction between RDU and EUFunctions
theories (Wakker et al., 1994).Birnbaum et al. (1992) showed that for binary gam-

Because this theory can violate comonotonic indepen-bles, a rank-dependent model can be derived from the
dence, the loss function theory is distinct from RDU
theory in general, although it can be almost equivalent
to RDU in restricted situations, such as the experiment
of Table 1 under most parametric assumptions. An il-
lustration of this theory is shown in Fig. 4. Gamble
equivalent values, t, calculated to minimize an asym-
metrically weighted loss function, L(t), are plotted in
Fig. 4. The function minimized is as follows:

L(t) Å 2Éu(x) 0 u(t)Ér if x õ t

L(t) Å Éu(x) 0 u(t)Ér if x § t.

Where u(x) Å xb, b Å .9 and r Å 1.8. These parameters
were chosen to make Figs. 1 and 4 similar. Although
similar, note that the curves in Fig. 4 are not parallel
for comonotonic outcomes (unlike Fig. 1), which allowsFIG. 3. Birnbaum and Stegner’s revised model. The configural
this theory to violate comonotonic independence.weight parameter, v, represents the proportion of absolute weight

transferred from stimulus losing weight to stimulus gaining weight. Although the loss function approach may seem more
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97VIOLATIONS OF BRANCH INDEPENDENCE

complex than rank-dependent weighting, it can be sim- 1. ($5, $45, $49) vs ($5, $11, $97)
pler than a purely rank-dependent model, because only
one parameter may be needed to represent the asym- The numbers within the parentheses represent equally
metry of the loss function for any number of stimuli, likely outcomes of a gamble. The gamble on the left
rather than requiring a parameter for each rank posi- represents an equally likely opportunity of winning $5,
tion. Additional information on configural weighting $45, or $49. The gamble on the right represents equal
derived from loss functions is presented in Appendix A, chances to win either $5, $11, or $97. The values within
with an example illustrating violation of comonotonic each choice were presented in ascending order left to
independence. right.

The booklet included 94 pairs of gambles, displayed
METHOD as in the example above. Each pair of gambles was

numbered and preceded by a space in which the sub-The subjects were given pairs of gambles, asked to
jects were to write their judgments of strength of pref-choose between gambles, and to indicate their strength
erence.of preference using two different methods in two experi-

ments. In Experiment 1, they judged the amount of Design
money they would pay to receive their preferred gamble

The experiment consisted of two subdesigns. In therather than the other gamble in each pair. In Experi-
first subdesign, 36 pairs of gambles were of the formment 2, they rated the strength of preference on a cate-
of (x, y, z) vs (x*, y*, z), with z common to both gambles.gory rating scale.
This subdesign was a 6 by 6 factorial in which the

Instructions common outcome, z, could take on 6 levels ($2, $5, $33,
$42, $108, or $136) and the 6 comparisons of (x, y) andSubjects received printed instructions which were
(x*, y*) were: ($50, $54) vs ($12, $96), ($45, $49) vs ($11,also read aloud to them. The instructions stated that
$97), ($40, $44) vs ($10, $98), ($35, $39) vs ($12, $96),each gamble consisted of three equally likely slips of
($30, $34) vs ($11, $97), and ($25, $29) vs ($10, $98),paper with numbers written on them; these slips were
as in Table 1. Note that the sum of x* and y* is constantto be mixed and one would be selected at random to
(and the range is also large and nearly constant), butdetermine the gamble’s outcome.
the sum of x and y was varied from 104 to 54 in stepsOne group of subjects were presented pairs of gam-
of 10, with a constant small range of $4.bles and were instructed (in part), ‘‘Your task is to de-

The second subdesign consisted of 48 pairs of gam-cide which of the two gambles you would prefer to play
bles, in which all six values were distinct, (x, y, z) vsand to judge how much you would pay to play your
(x*, y*, z*), constructed from an 8 by 6 factorial designpreferred gamble rather than the other gamble.’’ Sub-
of the first and second gambles. The 8 levels of (x, y, z)jects circled the gamble they would prefer to play and
choices were ($7, $8, $9), ($80, $8, $9), ($7, $8, $82),then judged the strength of their preference in dollars.
($80, $8, $82), ($7, $81, $9), ($80, $81, $9), ($7, $81,For purposes of data analysis, a negative sign was asso-
$82) and ($80, $81, $82). (These 8 were composed of aciated with choice of the gamble on the left.
2 by 2 by 2 factorial design of x by y by z, where x ÅAnother group of subjects received identical instruc-
$7 or $80; y Å $8 or $81; and z Å $9 or $82). These 8tions and stimuli, except that their task was to judge
gambles were crossed with 6 (x*, y*, z*) gambles [($13,the strength of preference on a 19-point rating scale,
$14, $15), ($13, $14, $48), ($13, $14, $92), ($84, $85,labeled as follows: 09 Å Prefer the gamble on the left
$15), ($84, $85, $48), or ($84, $85, $92)]. (These six werevery very much more; 07 Å Prefer the gamble on the
constructed from a 3 by 2 factorial design, in which z*left very much more; 05 Å Prefer the gamble on the
Å $15, $48, or $92 and (x*, y*) Å ($13, $14), or ($84,left much more; 03 Å Prefer the gamble on the left
$85)). The second subdesign was included to ensure amore; 01 Å Prefer the gamble on the left slightly more;
majority of trials in which all six levels would be dis-1 Å Prefer the gamble on the right slightly more; 3 Å
tinct, to reduce the possibility that the subjects mightPrefer the gamble on the right more; 5 Å Prefer the
adopt a strategy to cancel common values, whichgamble on the right much more; 7 Å Prefer the gamble
seemed a possibility if all trials were from the firston the right very much more; 9 Å Prefer the gamble
subdesign.on the right very very much more.

ProcedureStimuli

Each choice between gambles was presented using The choices from both subdesigns were intermixed
and printed in booklets in random order with the re-the format of the following example:

/ a706$$2627 07-12-96 08:37:20 obha AP: OBHDP



98 BIRNBAUM AND MCINTOSH

TABLE 2

Percentage of Choices for (x, y, z) over (x *, y *, z) as a Function of Common Outcome (z)

Contrast Common outcome ($)

(x, y) (x *, y *) z Å 2 z Å 5 z Å 33 z Å 42 z Å 108 z Å 136

($50, $54) ($12, $96) 83 73 71 68 63 63
77 69 58 69 65 71

($45, $49) ($11, $97) 70 78 65 68 53 52
67 71 67 69 40 48

($40, $44) ($10, $98) 65 67 50 56 39 49
75 71 33 50 40 33

($35, $39) ($12, $96) 61 53 48 39 37 37
54 48 48 38 33 29

($30, $34) ($11, $97) 51 51 35 41 28 37
38 42 33 33 15 29

($25, $29) ($10, $98) 37 42 36 27 20 16
31 35 19 21 10 19

Note. Each entry is the percentage of choices of (x, y, z) over (x *, y *, z), as a function of z. Upper entry in each cell is for Experiment 1;
lower entries are from Experiment 2. Branch independence implies that choice percentages should not change as a function of z.

strictions that successive trials did not repeat a row or Within each cell, the upper and lower numbers show
the results for Experiments 1 and 2, respectively. Re-column of either subdesign, and no two successive tri-

als came from the first subdesign. (Thus, no two succes- call that the (x, y) pairs have a small range and de-
crease in value down the rows; the (x*, y*) pairs havesive trials would permit a cancellation.) Each booklet

contained two pages of instructions with example tri- wide range and a constant total (x* / y* Å 108). The
percentage of choices favoring (x, y, z) declines from theals, six warm-up trials, followed by four unlabeled prac-

tice trials and 84 experimental trials. top row to the bottom, showing increasing preference
for the wide range pair as the values of (x, y) decrease.The experimenter checked the first six warm up tri-

als. Initial examples were very simple, such as the This decrease is contrary to Median Theory.
choice between ($10, $20) vs ($50, $100)—if the subject
did not choose ($50, $100) in this instance, the experi- Tests of Branch Independence
menter would ask the subject to explain the choice, and

Columns of Table 2 represent the value of the com-direct the subject to reread the instructions as needed.
mon outcome, z. According to branch independence,The warm up examples increased in complexity to in-
preferences should not change as a function of the com-clude choices like those of the actual experiment. After
mon outcome. Instead, the percentages choosing (x, y,the warm ups were checked, subjects proceeded to 4
z) over (x*, y*, z) decrease from left to right in each rowadditional unlabeled practice trials (in which there
as z is increased. This decrease indicates that prefer-were no common branches), followed by 84 experimen-
ences changed, and that more changed in one directiontal trials.
than the other. When z changes from smallest toSubjects completed the experiment within one hour,
largest, preference switches from the gamble with theworking at their own paces.
small range (x, y) to the gamble with the large range
(x*, y*).Subjects

Table 3 shows crosstabulations for Row 3 of Table 2,The subjects were 154 undergraduates enrolled in
with data for Experiment 1 shown below the diagonalIntroductory Psychology, who participated for extra
and data for Experiment 2 above the diagonal. For eachcredit. There were 106 who participated in Experiment
of the 15 combinations of z and z*, we can examine the1, expressing their preferences in money, and 48 differ-
two by two crosstabulation of preferring the smallerent participants in Experiment 2, who used the cate-
ranged gamble (z, $40, $44), designated ‘‘S,’’ or prefer-gory rating scale.
ring (z, $10, $98), designated ‘‘R,’’ combined with pref-
erences between ($40, $44, z*) and ($10, $98, z*), labeledRESULTS
again with ‘‘R’’ indicating preference for the wider
range ($10, $98) and ‘‘S’’ for the smaller range. TheTable 2 presents the percentage of subjects who pre-

ferred the (x, y, z) gamble over the (x*, y*, z) gamble. binomial sign test for correlated proportions is used to

/ a706$$2627 07-12-96 08:37:20 obha AP: OBHDP



99VIOLATIONS OF BRANCH INDEPENDENCE

TABLE 3

Preference between ($10, $98, z) vs ($40, $44, z) Crosstabulated by Preference
between ($10, $98, z *) vs ($40, $44, z *)

z Å 2 z Å 5 z Å 33 z Å 42 z Å 108 z Å 136

Common S R S R S R S R S R S R

z Å 2
S 32 4 16 20* 22 14* 16 20* 15 21*
R 2 10 0 12 2 10 3 9 1 11

z Å 5
S 60 9 15 19* 21 13* 16 18* 15 19*
R 11 26 1 13 3 11 3 11 1 13

z Å 33
S 45 24* 45 26* 12 4 9 7 10 6
R 8 29 8 27 12 20 10 22 6 26

z Å 42
S 49 20 48 23 45 8 13 11 11 13
R 10 27 11 24 14 39 6 18 5 19

z Å 108
S 33 36* 35 36* 28 25* 32 27* 12 7
R 8 29 6 29 13 40 9 38 4 25

z Å 136
S 44 25* 46 25* 35 18 42 17 32 9
R 8 29 6 29 17 36 10 37 20 45

Note. S indicates preference for gamble containing small range ($40, $44) pair; R indicates preference for gamble containing higher range
pair ($10, $98). Entries show the number of subjects who exhibit each conjunction of preferences. Data for Experiment 1 are shown below
diagonal; data for Experiment 2 are shown above diagonal.

* p õ .05, by two-tailed sign test of symmetry of violations of branch independence.

test the significance of the changes in proportion due independence and 10 showed the opposite pattern;
none of these were statistically significant. For Experi-to changes in z (violations of branch independence).

This test does not use instances in which choices con- ment 2, 67 crosstabs showed the same pattern as the
majority in Experiment 1, 23 of these were significantform to branch independence; instead, it compares the

numbers in the off-diagonal cells, where branch inde- including at least one in each row, 17 showed the oppo-
site pattern (none of which were significant), and sixpendence is violated. For example, the two by two cross-

tabulation in the upper, right corner of Table 3 shows showed equal splits.
Twelve of the crosstabulations represent tests ofthat 21 subjects out of 48 in Experiment 2 preferred

($2, $40, $44) over ($2, $10, $98) and preferred ($10, comonotonic independence. None of these crosstabs in
either experiment showed a significant asymmetry in$98, $136) over ($40, $44, $136), and only 1 violated

branch independence in the opposite direction. If the violations. Five of these twelve crosstabs in Experiment
1 and seven in Experiment 2 showed the opposite pat-violations were due to random error, then the 22 viola-

tions should be equally likely to split in either direction. tern from that shown by the majority. These results are
consistent with rank-dependent utility theory, whichInstead, the binomial is ‘‘significant,’’ since the two-

tailed probability of obtaining 1 or fewer or 21 or more requires comonotonic independence to be satisfied.
However, the comonotonic changes in z in this experi-(out of 22 binomial trials with p Å .5) is .00001, which

is less than .05. ment are smaller than the noncomonotonic changes, so
the manipulation is not really comparable to the largerCrosstabulations corresponding to Table 3 were ex-

amined for all rows of Table 2, with similar results. changes in z that produced significantly asymmetric
violations of noncomonotonic independence.Out of 90 two by two crosstabulations (6 rows by 15

comparisons) in Experiment 1, 77 showed the same To examine individual differences, we examined two
comparisons in each row for each subject, countingpattern: as z was increased, the proportion of prefer-

ence for the wider range pair increased, 44 of these whether there was a violation between z Å 2 and z Å
136 and also between z Å 5 and z Å 108. There arewere significant by the two-tailed sign test, including

significant changes in every row. Of the 13 remaining thus 12 comparisons per subject. Out of 106 subjects
in Experiment 1, only 13 subjects had no violations ofcrosstabs, 3 showed equal splits of violations of branch
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branch independence among these 12 comparisons; 66 This model was fit to all 84 cells in Design 1 and
Design 2 of Experiment 1. The correlation between pre-showed more violations in the direction of switching

from preferring the low range pair when z was low to dicted and obtained mean judgments was only .95. This
model did most poorly in predicting judgments in De-choosing the high range pair when z was highest (the

pattern in Table 2); 18 showed more violations of the sign 2 for cases in which one gamble dominated the
other on all three values by small amounts. In thoseopposite type; and 9 subjects made an equal number

of violations in either direction. Out of 48 subjects in cases, the judgments were more extreme than pre-
dicted by the model, as if preference judgments are aExperiment 2, only 2 had no violations for these 12

comparisons; 33 showed more violations switching mixture of strength of preference and certainty of
choice. This pattern of residuals appears to be similarfrom preference for (x, y) to (x*, y*) as z was changed

from lowest to highest; 10 showed more violations of to the type of higher order configural effect discussed
by Birnbaum, Thompson, and Bean (in press); Mellers,the opposite type; and 3 had an even split.

These individual violations were also examined to Chang, Birnbaum, and Ordóñez (1992); and Stuhl-
macher and Stevenson (1994), among others, in whichinvestigate Median Theory. A person who always se-

lects the gamble with the highest median would show a small difference that is easy to discriminate can pro-
duce a large judgment of strength of preference.12 violations of branch independence, and would show

no tendency to increase preference for the wide range
(x*, y*) pair as x and y are decreased in successive rows. A Premium for Dominance
Combining both experiments, there were 29 subjects

Equation (8) was modified to allow an additive con-who had 7 or more violations among these 12 tests; 26
stant to represent a premium for dominance and alsoof these had more violations in the direction of the
allowed the weights to be different for the cases of com-medians, but only one did not show increasing prefer-
parison with or without strict dominance on all threeence for (x*, y*) as x / y decreased. Therefore, we did
ranked outcomes. The weights for the nondominatednot find evidence that a subgroup of subjects chose con-
case were .28, .17, and .09 for lowest, middle, and high-sistently according to medians.
est outcomes, respectively. These weights satisfy Ex-In summary, the data of both experiments show the
pression 6 because .28/.17 õ 1.8 õ .17/.09, predictingsame pattern of violations of branch independence. The
a violation in Row 3 of Tables 1 and 2. For the dominantpattern is consistent with rank-dependent utility the-
choices, the weights were .26, .04, and .03, respectively,ory under the assumption of Expression 6, as depicted
with a premium for dominance of $8.17. This modelin Fig. 1.
correlated .98 with the judgments of strength of prefer-
ence in Experiment 1 and did a better job of fitting bothModeling of Strength of Preference
the violations of branch independence in Design 1 and

To approximate strength of preference judgments ac- the strength of dominated choices in Design 2. Subjects
cording to the rank-dependent model, mean judgments appeared to offer too much to get dominant choices
of strength of preference were fit by the following (often more than the expected value difference); fur-
model: thermore, the weights indicate that they attend mostly

to the improvement in the worst outcome in these domi-
Pref(x, y, z; x*, y*, z*) nating cases. Similar results were obtained for the rat-

ings in Experiment 2, with even more extreme ratingsÅ wL(x 0 x*) / wM(y 0 y*) / wH(z 0 z*) (8)
in the case of dominant choices (the modal and median
judgments in these cases were all 9 or 09).where x õ y õ z and x* õ y* õ z*; Pref(x, y, z; x*, y*, z*)

is the judged strength of preference between gamble For the nondominated comparisons of Experiment 1,
the ratios of weights for the group fit are wL/wM Å 1.62(x, y, z) and gamble (x*, y*, z*); wL, wM, and wH are the

weights of the lowest, middle, and highest outcomes and wM/wH Å 1.92, which ‘‘straddle’’ 1.8 and therefore
predict a violation of branch independence in Row 3 ofwithin each gamble, respectively. This model assumes

(a) that the preference judgment is proportional to the Table 1, assuming u(x) Å x. This row indeed showed a
violation in the mean judgments of strength of prefer-difference in utilities between the gambles; (b) that the

utility of gambles can be represented by a rank-depen- ence, which changed signs in that row in both experi-
ments. Analysis of variance of the strengths of prefer-dent, configural weight average of the utilities of the

outcomes; and (c) that the utility of money can be ap- ence showed that all main effects and interactions in
both designs were statistically significant, except forproximated by u(x) Å x for this range of outcomes. As-

sumptions (b) and (c) are consistent with the results of the five way interaction between the outcomes in De-
sign 2. The main effect of the common consequence wasBirnbaum et al. (1992) for this range of outcomes.
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.071 for lowest, middle, and highest outcomes respec-
tively. These median weights satisfy the inequality of
Expression 6, wL/wMõwM/wH; the majority of individu-
als had weights that also satisfied this inequality, con-
sistent with the systematic pattern of violations of
branch independence in Table 2.

Power Function for Utility Produces Minimal
Improvement

The model was further generalized to allow a power
function approximation for the utility function, u(x) Å
xb. This model assumes that subjects compare two gam-
bles taking the difference in their certainty equiva-
lents. For the nondominated cases, the model is as fol-
lows:

FIG. 5. Fit of configural weight model. Filled circles and open
squares show empirical marginal mean judgments for ($13, $14, z) Pref(x, y, z; x*, y*, z*)
and ($84, $85, z), respectively. Lines show predictions.

Å a[CE(x, y, z) 0 CE(x*, y*, z*)] (9a)

wherestatistically significant in Design 1 of both experi-
ments, F(5, 525)Å 4.69, and F(5, 235)Å 8.58, for Exper-
iments 1 and 2 respectively, contrary to branch inde- CE(x, y, z) Å (wLu(x) / wMu(y) / wHu(z))(1/b)

pendence. The main effect of the total of x / y in the
(9b)first design was also significant, F(5, 525) Å 59.27, and

F(5, 235) Å 52.90, for Experiments 1 and 2, respec- CE(x*, y*, z*)
tively, contrary to Median Theory.

Å (wLu(x*) / wMu(y*) / wHu(z*))(1/b), (9c)To further examine the fit of the model and examine
the interactions among outcomes, marginal means of
Design 2 of Experiment 1 were calculated, along with where CE(x, y, z) represents the certainty equivalent

of the gamble; the weights are defined as in Equationthe marginal means of the predictions. These are plot-
ted in Fig. 5. Symbols show the marginal mean (2); a and b are constants. In addition to the exponent

for the utility function, this model includes a conver-strength of preference judgments; curves show predic-
tions of the model. Note that the curves diverge to the sion factor, a, between the certainty equivalent differ-

ence and the judged value; therefore, weights can beright, as predicted by the model, which assigns greater
weighting to lower outcomes. The model appears to restricted to sum to one. When b Å 1, this model is

equivalent to Eq. (8). The least-squares estimates of aapproximate the interaction fairly well. Similar results
were also obtained for the row marginal means in De- and b were .535 and 1.10; the weights were .54, .31,

and .15 for lowest, middle, and highest outcomes, re-sign 2 of Experiment 1, and similar divergent interac-
tions were also obtained in Experiment 2 for both rows spectively. This version of the model reduced the sum

of squares in the residual from 415.4 to 414.2, a trivialand columns.
The revised model was also fit to the data of each improvement.

Expressions 9 were also fit to the data for nondomi-individual subject in Experiment 1, with a median cor-
relation of .83 with the individual judgments. The me- nated choices of individual subjects, with similar re-

sults. The median value of b was .99. Only 10 of 106dian value of the premium for dominance was $7.56;
88 of the 106 subjects had their greatest weight on subjects had improvements of more than 1% of the vari-

ance with values of b significantly different from 1;the lowest outcome for dominated comparisons; median
weights for the dominated case were .20, .02, and .003. 7 of these had values of b § 5; but none produced a

substantial improvement of fit. We concluded that theFor the nondominated case, 70 of the subjects placed
their greatest weight on the lowest outcome; 26 placed assumption of a linear function for u(x) need not be

rejected in favor of a power function to fit the indivi-greatest weight on the middle outcome, and 10 subjects
placed most weight on the highest outcome; median dual subject data, once rank-dependent configural

weighting is allowed.weights for the nondominated case were .264, .144, and
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DISCUSSION EVs had been equal. Assuming that u(x) Å x, the sub-
ject would violate branch independence with equal EVs

These results show systematic violations of branch if the weights straddled 1, i.e., if the subject placed the
independence. The pattern is predicted by rank-depen- most or least weight on the middle outcome. If few
dent configural weighting, according to Expression 6, subjects have such a pattern of weights (as suggested
illustrated in Fig. 1. The pattern is also consistent with by the present results), violations would be infrequent
the predictions in Fig. 4. Because branch independence when EVs are restricted to be equal.
is a weaker form of Savage’s axiom, the present results
rule out EU and SEU theories and other weighted util- Median Theory Refuted
ity theories that would require branch independence.

The data of Experiments 1 and 2 are not consistent
with Median Theory. Although Median Theory cor-No Support for Editing of Common Components
rectly predicts the direction of the violation of branch
independence within rows of Table 2 (the effect of col-The present results provide no support for the theory
umns), it does not account for the systematic decreasethat subjects consistently edit and cancel common com-
in choice proportions in Table 2 as x / y is decreasedponents when making choices (Kahneman & Tversky,
down the rows. Close inspection of individual data did1979). If subjects had eliminated common outcomes
not find any subgroup of subjects whose data appearedfrom consideration, then there would have been no sys-
consistent with Median Theory.tematic violations of branch independence. It may be

that subjects place less weight on a common outcome
Generic Rank-Dependent Utility Theory Satisfiedand perhaps more weight on differing outcomes in mak-

ing their comparisons, so the general idea of placing The present results are quite compatible with generic
more emphasis on differing outcomes is still viable. rank-dependent utility theory (Luce, 1992). The viola-
Nevertheless, the strong form of the principle of editing tions of branch independence observed were systematic
and cancellation can be rejected in this study by the for changes in z that were not comonotonic. The pattern
systematic violations of branch independence. of violations of branch independence are consistent

Editing and cancellation in the strong form may in- with greater weight on the lowest outcome, followed
deed be in the repertoire of subjects, if the experiment by the middle outcome, then the highest outcome; the
facilitates the use of such a strategy. In the present pattern of violations also indicates that ratios stand in
experiment, fewer than half of the experimental trials the order, wL/wM õ wM/wH, as in Expression 6.
would have allowed a cancellation, and no two succes- Tests of comonotonic independence did not find sys-
sive trials would allow a cancellation. Therefore, in this tematic violations, consistent with rank-dependent
experiment, the strategy of cancellation would not suf- utility theory, although the present experiment does
fice to handle most of the trials. Wakker et al. (1994) not provide comparable manipulations. The tests of
did not employ these design features and did not de- comonotonic independence involved smaller changes in
tect systematic violations of independence. Weber and z. Therefore, the property of comonotonic independence
Kirsner (in press) concluded that the previous failure has not been put to a strenuous test in this experiment.
to find violations of independence may have been due As shown in Appendix A, minimum loss theory can
to the use of a cancellation strategy in the Wakker et yield violations of comonotonic independence when the
al. study. Thus, it may be that subjects can use largest outcome is taken to very high levels, and this
cancellation if the experimental design promotes such implication has not yet been tested.
a strategy.

Another difference between the present study and Related Research on Configural Weighting
that of Wakker et al. is that they tested for violations of
independence using comparisons in which the expected The results of this study appear consistent with the

pattern of weighting observed by Birnbaum & Stegnervalues (EVs) of the gambles were always equal. In con-
trast, the present study compared lower EV, smaller (1979), Birnbaum and Sutton (1992), Birnbaum et al.

(1992), Birnbaum and Zimmermann (1995), Birnbaumrange pairs [e.g., (z, $40, $44)] against higher range,
higher EV pairs [e.g., (z, $10, $98)]. The median and Beeghley (in press) and Weber and Kirsner (in

press) for the buyer’s point of view: lowest outcomesweights of the present study would not predict viola-
tions of branch independence in Table 1 for equal EV receive the greatest weight, followed by middle, fol-

lowed by highest. One might think that the task ofpairs, and extrapolation from the first row of Table 2
suggests that most subjects would have chosen the Experiment 1 may induce a buyer’s viewpoint in the

subjects, since they are asked to judge how much theylower range pair combined with any value of z, if the
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would pay to receive their preferred gamble rather than take less time, also indicating that the less favorable
traits carry greater weight.the other. Although very similar choice proportions

Birnbaum et al. (in press) found that strength of pref-(Table 2) were also obtained in Experiment 2, which
erence judgments conformed to weak transitivity, butused a rating task that seems more neutral, it would
they also found deviations from scalability, especiallybe interesting to study whether weights would change
when one gamble dominated another by smallif the task were to judge the price required to give up
amounts. Similar to the findings in the present study,the preferred gamble and receive the less preferred one.
judgments seemed too high when one gamble domi-The present data are also consistent with results of
nates another by small differences on each value.recent studies of strength of preference between two-

It is important to emphasize that the present experi-outcome gambles (Birnbaum, Thompson, & Bean, in
ment does not rest its test of branch independence onpress). Those experiments asked subjects to express
the subtractive model, as does the test of interval inde-preferences between gambles consisting of two equally
pendence in Birnbaum et al. (in press). All that is re-likely outcomes by stating how much they would pay
quired to test branch independence is the preferenceto receive one gamble rather than the other or by rating
relation. The analyses in Tables 1, 2, and 3 make usethe strength of preference. The purpose of those studies
only of the direction of preference, not the magnitudeswas to assess interval independence: the effect of a
of strength of preference.common consequence on the judgment of a strength of

preference due to a particular contrast. Subjects judged
Cumulative Prospect Model Makes Wrong Predictionthe strength of preference between ($6, $8) and ($6,

$74) to be less than the strength of preference between The violations of branch independence observed here
($8, $100) and ($74, $100). If strengths of preference are not consistent with predictions (Figure 2) based on
are monotonically related to differences in utility be- the weighting function of cumulative prospect theory
tween gambles, then their results indicate that lower (Tversky & Kahneman, 1992). This weighting function
outcomes receive higher weights. implies that the middle outcome should have less

Birnbaum et al. (in press) estimated the relative weight than either extreme outcome. Figure 2, which
weights of the lower and higher outcomes to be .63 and shows the pattern predicted by this weighting function,
.37 for strength of preference judgments. These values was not descriptive of the present data, since the pres-
agree with those estimated from judgments of the ‘‘fair’’ ent results (e.g., Table 2) show systematic violations in
prices of gambles between two positive outcomes (Birn- the opposite direction from that predicted by the model
baum et al., 1992), and (as shown below) they also pre- of Tversky and Kahneman (1992).
dict choice-based certainty equivalents for binary gam- Tversky and Kahneman (1992) estimated their
bles (Tversky & Kahneman, 1992). Results for binary weighting function from certainty equivalents of gam-
gambles refute the rank-dependent theory of Quiggen bles to win x with probability p and otherwise receive
(1982), which assumes that the weights of two equally $0 (x, p; 0) as follows: CE(x, p; 0) Å u01[W(p)u(x) ]. They

fit the W(p) function as follows:likely outcomes should both be 1
2.

The result of Birnbaum et al. (in press) is analogous
to that of Birnbaum (1974), who asked subjects to judge W(p) Å pg

[pg / (1 0 p)g]1/g , (10a)
‘‘differences’’ in likeableness between persons described
by pairs of adjectives. Birnbaum found that the differ-
ence due to variation in one trait was greater if the where g is the parameter of the weighting function,
common trait was high in likeableness than when the estimated to be .61; and u(x ) Å x .88. This model implies
common trait was low. For example, subjects rated the an inverse-S relationship between W(p) and p, as
difference in likeableness between ‘‘LOYAL & UNDER- shown by the dashed curve in Fig. 6. According to the
STANDING’’ and ‘‘LOYAL & OBNOXIOUS’’ to be theory, when there are more than two outcomes,
greater than the difference in likeableness between a weights of the outcomes are given by the expression,
person who is ‘‘MALICIOUS & UNDERSTANDING’’
and one who is ‘‘MALICIOUS & OBNOXIOUS.’’ Birn- w(i) Å W(pi) 0 W(qi), (10b)
baum concluded that subjects use a rank-dependent
weighted average, placing the greatest weight on the where w(i) is the weight of outcome, xi ; pi is the (decu-
lowest-valued trait in forming their integrated impres- mulative) probability that an outcome is greater than
sions. Birnbaum and Jou (1990) found that the compar- or equal to xi given the gamble and qi is the probability
ative response times were also compatible with the ‘‘dif- that an outcome is greater than xi . For the highest

outcome, the weight is given by W(p); for a middle out-ference’’ ratings: greater ‘‘differences’’ in likeableness
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and .37) that can account for Tversky and Kahneman’s
(1992) data also predict judgments of strength of pref-
erence (Birnbaum et al., in press), and judgments from
the neutral, or ‘‘fair price’’ point of view (Birnbaum et
al., 1992). Thus, in configural-weight theory, the in-
verse-S prediction is merely a consequence of relative
weighting, and it does not imply anything about the
weight of a middle outcome. See Appendix B for further
implications.

However, in cumulative prospect theory, the inverse-
S for binary gambles is taken as a direct measure of
the cumulative weighting function, so Eq. (10b) makes
the incorrect prediction that the middle of three equally
likely outcomes should have the least weight.

The present failure of the weighting function derived
from binary gambles to predict choices among three

FIG. 6. Cumulative prospect model (dashed curve) vs relative outcome gambles seems in accord with Tversky and
weighting model (solid curve shows Eq. (11), with u(x ) Å x ). These Kahneman’s (1992, p. 317) pessimistic assessment of
models are virtually identical for binary gambles. the generality of their model. However, the present

results do not test the structural assumptions of the
theory, so the basic idea of cumulative weighting has
not been directly refuted here. It should be possible tocome in a set of three, the weight depends not only on
get direct tests of the theory by combining the approachthe outcome’s probability, but also the probability of
of Wu and Gonzalez (in press) with the present ap-higher outcomes in the same gamble. With binary gam-
proach within the same experiment. Systematic viola-bles, Eq. (10a) can be fit, but Eq. (10b) remains un-
tions of monotonicity or stochastic dominance wouldtested.
also refute the theory directly.The relationship between judged proportions and ob-

jective proportions has also been found to resemble an
Branch Independence vs Monotonicity Violationsinverse-S. Varey, Mellers, and Birnbaum (1990) noted

that the inverse-S relationship can be explained by a The property of branch independence seems similar
relative ratio model in which subjective frequencies are to the property of outcome monotonicity, but they are
negatively accelerated functions of objective frequen- distinct. Monotonicity can be defined as follows:
cies.

If gamble A and A* differ in one outcome on one branch:In the configural-weight averaging models of Birn-
baum and Stegner (1979) and Birnbaum et al. (1992),
each weight is divided by the sum of the weights, pro- A Å (x, p(x); a2 , p(a2); . . . ; ai , p(ai))
ducing a relative ratio. According to the configural

A* Å (y, p(x); a2 , p(a2); . . . ; ai , p(ai)),weight model of Birnbaum et al. (1992), the absolute
weight of an outcome is the product of the configural

where p(x) Å p(y) is the probability to receive outcomesweight parameter, which depends on the point of view
x (or y) given choice A (or A*), respectively. Monoton-and rank of the outcome (apart from the probability
icity requires that subjects prefer gamble A to A* if anddistribution), and a function of the outcome’s probabil-
only if they prefer gamble B to B*, whereity. The relative weight (dividing each weight by the

sum of the weights) is given as in the following rewrit-
B Å (x, p*(x); b2 , p(b2); . . . ; bi , p(bi))ing of Birnbaum et al. (1992, Eq. (4)):

B* Å (y, p*(x); b2 , p(b2); . . . ; bi , p(bi))
wH f (p)

wH f (p) / wL f (1 0 p)
. (11)

for all p*(x)Å p*(y), bi , p(bi). Monotonicity requires that
if a subject prefers x to y in one gamble, then the prefer-
ence should be in the same direction in the context ofThis expression, with wL Å .63, wH Å .37, and f (p) Å

p.6, produces an inverse-S that is virtually identical to any other gamble. In contrast, branch independence
requires the trade-off of two or more outcomes to beTversky and Kahneman’s weighting function, as shown

by the solid curve in Fig. 6. The same weights (.63 independent of the value of the common outcome.
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Birnbaum and Beeghley (in press). They asked subjects
to judge the ‘‘highest price that a buyer should pay’’ to
buy each of 168 three-outcome gambles and also asked
them to judge the ‘‘least that a seller should accept to
sell’’ each gamble, rather than to play it. Selected re-
sults from Birnbaum and Beeghley are shown for buy-
er’s and seller’s viewpoints in Figs. 7 and 8, respec-
tively, plotted in a fashion similar to Figs. 1, 2, and 4.
Note that the curves for wide range gambles have
steeper slopes as a function of the common outcome
than narrower range gambles. The pattern of violations
of branch independence is similar to that shown in the
present study (as in Figs. 1 and 4 but not 2), yet differ-
ent small range gambles cross over in different points
of view.

Birnbaum and Beeghley found that for the buyer’s
FIG. 7. Buyer’s point of view. Open circles show mean judgments viewpoint, increasing the range of (x, y) pair (holding

of (z, $12, $96). Filled diamonds, circles, and squares show means x / y constant) always decreased the judgment, for any
for (z, $27, $33), (z, $33, $39), and (z, $39, $45), respectively. Lines value of z. However, from the seller’s point of view,show predictions of configural weight model.

increasing the range increased the judgment when z
was the highest outcome, but it decreased the judgment
when z was the lowest, suggesting that the middle out-

Even though outcome monotonicity seems more com- come has the greatest weight in the seller’s point of
pelling than the sure thing principle, outcome mono- view. This change in violations is consistent with Birn-
tonicity has been violated in studies of judgment. For baum and Stegner’s (1979) theory that point of view
example, Birnbaum et al. (1992) found that subjects affects the configural weights of the outcomes. Birn-
judge the gamble ($96, p, $0) to be worth more than baum and Beeghley (in press) estimated the weights
($96, p, $24) when p § .8, but the order of judgments of lowest, middle, and highest outcomes to be .47, .30,
is reversed when p õ .8. Similar results have been and .07 for the buyer’s point of view and .23, .44, and
obtained by Birnbaum and Sutton (1992); Birnbaum .18 for the seller’s point of view, respectively, with u(x)
(1992); Mellers, Weiss, and Birnbaum (1992); Birn- Å x.
baum and Thompson (in press); and Mellers, Berretty, For the present study, the relative weights for non-
and Birnbaum (1995).

Birnbaum and Sutton (1992) found that although
judgments show consistent violations of monotonicity,
subjects rarely violate the principle in direct choices
between the gambles. Von Winterfeldt, Chung, Luce,
and Cho (in press) found different rates of violations
with different procedures. They found few violations
when gambles were ordered according to certainty
equivalents determined using PEST, a sequential,
staircase method for determining certainty equiva-
lents. However, Birnbaum (1992) and Birnbaum and
Thompson (in press) found violations of monotonicity
when certainty equivalents based on choices between
gambles and a fixed set of amounts of money were com-
pared. Because monotonicity is a fundamental assump-
tion of many utility theories, it is important to pin down
the situations in which it is satisfied or not.

Judgment vs Choice FIG. 8. Seller’s point of view. Open circles show mean judgments
of (z, $12, $96). Filled squares, small triangles, and large triangles

Violations of branch independence have also been show means for (z, $39, $45), (z, $45, $51), and (z, $51, $57), respec-
tively. Lines show predictions of configural weight model.investigated for judgments of the value of gambles by
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TABLE 4 ings of attractiveness and prices assigned to binary
gambles (Tversky et al., 1988). However, tests of scaleEstimated Relative Weights of Three Equally Likely

Outcomes as a Function of Rank convergence (the assumption that the utility function
in this case is invariant) required rejection of contin-

Rank of outcome gent weighting theory (Mellers, Ordóñez, and Birn-
baum, 1992) for this situation in favor of the theoryExperiment Lowest Middle Highest
that the operation combining probability and outcome

Buyer’s prices .56 .36 .08 changed between those two tasks.
Seller’s prices .27 .52 .21
Preferences .51 .33 .16

CONCLUSIONS
Note. Relative weights are normalized to sum to one by dividing

by the sum of weights in each case. Values for Preferences are based In summary, the present experiments show clear vio-on the model of strength of preference judgments for the nondomi-
lations of branch independence. Therefore, these re-nated choices in this experiment; values for Buyer’s and Seller’s
sults deal a severe blow to descriptive theories thatPrices are from Birnbaum and Beeghley (in press). All three studies

were fit with the same utility function. represent the value of a gamble as the sum of weighted
products of a function of probability and a function of
the outcome.

dominated comparisons are .51, .33, and .16 for low, The data also show that subjects do not necessarily
medium, and high value outcomes. Relative weights cancel common outcomes when comparing gambles.
from Birnbaum and Beeghley (in press) are shown in The particular pattern of violations of branch indepen-
Table 4. All three situations are compatible with the dence are inconsistent with the weighting function of
same utility function, u(x)Å x; the different rank orders probability used in cumulative prospect theory. In-
produced by the different tasks are explained entirely stead, the violations show the opposite pattern: when
by changing configural weights. Although the prefer- the common outcome is the lowest in each gamble, peo-
ence orders differ in each case, the ratios of weights ple tend to prefer the narrower range pair; when the
conform to the same inequality (Expression 6), which common outcome is highest, they tend to prefer the
implies a similar pattern of violations of branch inde- wider range pair.
pendence in all three studies. These results are compatible with rank-dependent

In this case, despite differences in weighting, judg- utility theory, with the assumption that the lowest out-
ments and choices seem to agree, because patterns of come receives the greatest weight, followed by the mid-
judgments in both viewpoints agree with the pattern of dle value, and least weight is given to the highest out-
violations observed in the present choice experiments. come; furthermore, the ratio of weight of the middle
These findings suggest that the pattern of violations is outcome to the highest is greater than the ratio of the
not due to some process of comparison, such as editing, lowest to the middle outcome. That comparison of ra-
that would be unique to choice experiments, but rather tios appears to hold for choice experiments, and for
that the pattern is produced by a combination process judgment experiments involving buying and selling
that is common to all three experiments. prices, despite changing configural weights in the three

tasks.
Preference Reversals and Scale Convergence The present experiment found no systematic evi-

dence of violation of comonotonic independence, but theThe configural weights in Table 4 can be used with
experiment did not provide a strenuous test of thisthe same utility function to explain different preference
property. The theory that configural weighting is dueorders for different points of view in the judgment task
to minimization of a loss function is also consistentand for choice. Changing preference orders between
with the present results, with the assumption that itdifferent situations are sometimes termed ‘‘preference
is more costly to overestimate the value of a chosenreversals.’’ Contingent weighting theory (Tversky, Sat-
gamble than to underestimate its value.tath, & Slovic, 1988) is a theory of preference reversals

that should not be confused with configural weight the-
ory. In contingent weight theory, the relative weights APPENDIX A: MINIMIZING ASYMMETRIC

LOSS FUNCTIONS CAN VIOLATEof probabilities vs outcomes depends on the task;
COMONOTONIC INDEPENDENCEwhereas in configural weight theory, the weights of

higher or lower outcomes depend on the configuration
of outcomes and the subject’s point of view. Contingent Suppose we choose t to minimize the following loss

function:weight theory was fit to the relationship between rat-
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solution is between xb and yb, then we can minimize the
loss function by taking the derivative of the following
equation with respect to t, setting it to zero, and solving
for t as follows:

L(t) Å wL(xb 0 t)2 / wH(yb 0 t)2 / wH(zb 0 t)2

L*(t) Å 0 Å 02wL(xb 0 t) 0 2wH(yb 0 t) 0 2wH(zb 0 t)

0 Å wLxb 0 wLt / wHyb 0 wHt / wHzb 0 wHt

(wL / wH / wH)t Å wLxb / wHyb / wHzb

therefore,

t Å wLxb / wHyb / wHzb

wL / wH / wH
. (13)

FIG. 9. Violation of comonotonic independence predicted by The above expression is a rank-dependent, configural
asymmetric loss function with r Å 2. weighted average of the utilities of the gambles. By a

similar derivation, the case in which the solution is
between yb and zb leads to the following solution:

L(t) Å wLÉu(xi) 0 tÉr for xi ú t (12a)

t Å wLxb / wLyb / wHzb

wL / wL / wH
. (14)L(t) Å wHÉu(xi) 0 tÉr for xi £ t (12b)

Suppose that rÅ 2. If wLÅwHÅw, then this expression This equation is also a rank-dependent, configural
leads to expected utility theory. The solution for t in weight average. However, in second case, the absolute
this case is tÅSwu(xi)/Sw. For equally likely outcomes, weight of yb has changed from the weight of a high in
p(x) Å w/Sw for all outcomes. Because t represents ex- Eq. (13) to the weight of a low in Eq. (14). Because the
pected utility, one would need to apply the u-inverse denominator also changes, the relative weights of the
function to convert t to a cash equivalent. other two outcomes change as well. To convert to a cash

When the weights of over- and underestimation are value, one would apply the inverse function to the value
not equal (wL x wH), the loss function is said to be of t at the solution [i.e., t(1/b)].
asymmetric. From the premise of an asymmetric loss Although these equations are equivalent to rank-de-
function, we can derive an interesting family of config- pendent utility theory on a given subdomain (outcomes
urally weighted models.

The case of r Å 1 leads to the median and its general-
izations. This situation is sometimes illustrated with
the example of the ‘‘newsboy’’ problem. The newsboy
must buy his papers to sell, faced with uncertainty
concerning the number of customers that will buy pa-
pers any given day. If he buys too many papers, he
loses the cost of each unsold paper. If he buys too few,
he loses the chance to make profits on those sales. The
cost of each paper and the cost of each lost profit are
in general not equal, so this loss function is asymmet-
ric. This case leads to the conclusion that the best solu-
tion is a percentile that depends on the asymmetry of
costs. With symmetric costs, the solution is the median.

The case of r Å 2 is convenient to study because
calculus gives us simple, unique solutions. For three
outcomes, however, there two cases to consider, which
give different equations for the solutions. Consider

FIG. 10. Difference between values of gambles in Fig. 9.three outcomes, x õ y õ z. Suppose u(x) Å xb. If the
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are chosen so that the solution is always in the same powerful constraints on the configural weighting func-
tions.interval), this model can violate comonotonic indepen-

dence in a large enough experiment, when comonotonic For three outcomes with unequal probabilities, we
can rewrite branch independence as follows:changes in the outcomes move the solution from one

subdomain to another. An example of violation of como-
notonic independence is shown in Figs. 9 and 10, in
which b Å 1, r Å 2, wL Å 2, wH Å 1. The values of t that

(x, p; y, q; z, r) preferred to (x*, p*; y*, q*; z, r)

if and only if

(x, p; y, q; z*, r) preferred to (x*, p*; y*, q*; z*, r).

(15)minimize the loss function are plotted as a function of
the common outcome, z, with separate curves for the
gamble (z, $38, $39) and the gamble (z, $29, $51).

Note that the curves in Fig. 9 cross when z is in- Where (x, p; y, q; z, r) is the gamble to win x with
creased from $55 to $105. Any crossover is a violation probability p, y with probability q, and z with probabil-
of branch independence; because this crossover occurs ity r; p / q / r Å p* / q* / r Å 1.
when z is increased without changing the rank order It is useful to analyze a choice experiment with re-
of the outcomes, this crossover represents a violation spect to rank-dependent configural weight theory in
of comonotonic independence. which the relative weights of equally likely outcomes

It is instructive to plot the difference between the depend entirely on the ranks of the outcomes. Out-
curves, as in Fig. 10. Note that for values of z above comes are selected so that 0 õ z õ x* õ x õ y õ y* õ
$100, the difference between the curves is constant. In z*. We restrict attention to the case in which p Å p*
this region, comonotonicity will be satisfied. This loss and q Å q*; r Å 1 0 p 0 q (With equal distributions
function theory has an interesting psychological inter- the denominator of the relative weights is constant,
pretation. For the case of three outcomes, the subject allowing common components to be subtracted off in
treats them as either one low outcome and two high configural weight theory). Consider the preference rela-
ones, or as two low outcomes and one high one. Thus, tion, ¥, between two such gambles, with a common
($29, $51, $55) would be treated as one low outcome value of z or z* that is lowest or highest outcome, respec-
(29) and two high ones (51 and 55). However, in the tively.
case of ($29, $51, $105), the subject interprets the array Suppose
as two low values and one high one. Thus, the spacing
of the outcomes (as well as their ranks) determines (z, r; x, p; y, q) ¥ (z, r; x*, p; y*, q).
their weights. Changing the value of the highest out-
come caused the medium outcome to change weight and
from that of a high to that of a low; furthermore, since
the total weight increased, the relative weight of the (x, p; y, q; z*, r) ≥ (x*, p; y*, q; z*, r).
lowest and highest outcomes also decreased.

If there are many outcomes, this loss function ap- In order to observe this violation of branch indepen-
proach is simpler than the full rank-dependent model, dence, the ratios of successive weights must ‘‘straddle’’
because there are only two weights. However, the the- the ratio of differences in utility as follows:
ory adds the metric parameter, r, and the additional
aspect of spatial configuration: the spacing among the wL(p)

wM(q)
õ u(y*) 0 u(y)

u(x) 0 u(x*)
õ wM(p)

wH(q)
. (16)values determines the weights assigned to the out-

comes as well as their ranks.

The opposite pattern of violations of branch indepen-
APPENDIX B: GENERALIZATION OF ANALYSIS

dence is also possible, when the following holds:OF BRANCH INDEPENDENCE

The findings of the present experiment, that people wL(p)
wM(q)

ú u(y*) 0 u(y)
u(x) 0 u(x*)

ú wM(p)
wH(q)

. (17)
violate branch independence and do not edit and elimi-
nate common components in comparison, suggests that
the approach of Eqs. (1–7) can be applied to more gen- By conducting a series of experiments with different

probabilities (p and q), each one like that in Table 1,eral situations to learn more about patterns of config-
ural weighting. In this section, we sketch out a general- in which different values of the utility interval are var-

ied to determine a violation of branch independence, itization to situations involving outcomes of unequal
probability and to situations with different numbers of is possible to obtain an ordering on the ratios of weights

for any pair of probabilities. One can then constructoutcomes. Violations of branch independence provide
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independence in judgments of the value of gambles. Psychologicalweighting functions for outcomes of different probabili-
Science.ties in different rank positions. Such an experiment

Birnbaum, M. H., Coffey, G., Mellers, B. A., & Weiss, R. (1992).could test the distinction between cumulative prospect
Utility measurement: Configural-weight theory and the judge’stheory, for example, and the prediction of the configural
point of view. Journal of Experimental Psychology: Human Percep-

weight model of Birnbaum et al. (1992, Eq. 4). Ac- tion and Performance, 18, 331–346.
cording to that theory, weights are the product of a Birnbaum, M. H., & Jou, J. W. (1990). A theory of comparative re-
function of probability and a configural weighting pa- sponse times and ‘‘difference’’ judgments. Cognitive Psychology, 22,

184–210.rameter that depends on rank and point of view. In that
theory, the same preferences should hold whenever p Birnbaum, M. H., & Mellers, B. A. (1983). Bayesian inference: Com-

bining base rates with opinions of sources who vary in credibility.Å qú 0, since the ratios in Eqs. (16–17) would depend
Journal of Personality and Social Psychology, 45, 792–804.only on the ratios of the configural weight parameters.

Birnbaum, M. H., Parducci, A., & Gifford, R. K. (1971). ContextualFurthermore, if the function of probability ( f (p) in Eq.
effects in information integration. Journal of Experimental Psy-(11)) is a power function, then the same violations of
chology, 88, 158–170.

branch independence should hold whenever p/q is con-
Birnbaum, M. H., & Sotoodeh, Y. (1991). Measurement of stress:

stant, in this experiment. Cumulative prospect theory Scaling the magnitudes of life changes. Psychological Science, 2,
makes very different predictions. 236–243.

Extension of the present approach to a greater num- Birnbaum, M. H., & Stegner, S. E. (1979). Source credibility in social
ber of outcomes is straightforward. For example, with judgment: Bias, expertise, and the judge’s point of view. Journal

of Personality and Social Psychology, 37, 48–74.four equally likely outcomes, there can be one or two
Birnbaum, M. H., & Stegner, S. E. (1981). Measuring the importancecommon branches. With two common branches, the

of cues in judgment for individuals: Subjective theories of IQ as aanalysis will resemble Eqs. (1–7), except that there are
function of heredity and environment. Journal of Experimentalsix cases to consider: the common branches could be
Social Psychology, 17, 159–182.

the two lowest, the two highest, the two in the middle,
Birnbaum, M. H., & Sutton, S. E. (1992). Scale convergence andthe two extremes, or they could alternate in two differ- utility measurement. Organizational Behavior and Human Deci-

ent ways. Each of these six experiments would then sion Processes, 52, 183–215.
be designed to find violations of branch independence, Birnbaum, M. H., & Thompson, L. A. (in press). Violations of mono-
which would then provide orderings on six comparisons tonicity in choices between gambles and certain cash. American

Journal of Psychology.of ratios of the four weights, two at a time. By determin-
ing weights for 2, 3, 4, etc. equally likely outcomes, Birnbaum, M. H., Thompson, L. A., & Bean, D. J. (in press). Tests

of interval independence vs. configural weighting using judgmentsit will be possible to test theories of how configural
of strength of preference. Journal of Experimental Psychology: Hu-weighting depends on the number of outcomes.
man Perception and Performance.
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