
Theory
A psychological theory is a set of statements that
satisfies five philosophical criteria. The first
criterion is that the proposed explanation can be
used to deduce the behavioural phenomena to be
explained. For example, suppose someone asks,
‘Why is bread good to eat?’ We use operational
definitions of ‘bread’ and ‘good to eat’ in order to
link these concepts to the world of observations.
Define a substance as ‘good to eat’ if more than 
75 per cent of 1-year-old rats given access to water
and that substance under standard lab conditions
survive on this diet for six months. Define ‘bread’
as what comes from the market in a package
marked ‘Weber’s bread’.

The following argument illustrates deduction:

P1: Bread is made of cyanide

P2: Everything made of cyanide is good to eat

C: Bread is good to eat.

If both premises are true, then the conclusion
follows by logic. This example illustrates deduc-
tion. It also shows that one can deduce a true
conclusion from false premises. Thus, a true
conclusion does not ‘prove’ the premises to be
true. However, if the conclusion is false, at least
one of the premises must be false. For this rea-
son, we speak of testing theories rather than
‘proving’ them.

The second criterion of a theory is that it should
not be meaningless. The empirical meaning of a

statement is equivalent to the set of specifiable,
testable implications. If a statement has no testable
implications, then it is devoid of empirical mean-
ing. Unfortunately, many so-called theories, like
psychoanalysis, are built on entities such as sub-
conscious conflicts that cannot be observed
empirically. By definition, the contents of a mind
are private, which means that only one mind can
observe the contents of that mind. By definition,
the contents of the subconscious mind cannot be
observed by that mind itself. Unless concepts are
linked to events and objects that can be observed,
measured, or tested, they fall outside the world of
science and into the pages of poetry. So, if we
theorize that all rats have subconscious conflicts
and whenever an organism has a subconscious
conflict, bread is good to eat, we have a deductive
theory, but one that is meaningless, except for its
conclusion.

The third criterion of a theory is that it is pre-
dictive. In principle, if one knew the theory in
advance, one could have predicted the behav-
iour or events to be explained. A system that is
deductive, meaningful and predictive is a called
a predictive system. An example of a predictive
system is Kepler’s laws of astronomy. Kepler
postulated that planets travel in elliptical orbits
around the sun with the sun at one focus and
that they sweep out equal areas in the ellipse in
equal time. He also assumed that the squares 
of the periods of revolution are proportional to
the cubes of the average distance from the sun.
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From these three assumptions and geometry,
one can make many predictions of the future. For
example, one can accurately predict the positions
of Sun, Moon, Venus, Mars, Jupiter and Saturn as
seen against the stars for any date in the next
thousand years, predict when these planets will
go into retrograde motion, and predict eclipses
of both sun and moon.

Although a predictive system can be valuable,
we usually want more from an explanation than
just prediction. The fourth criterion of an expla-
nation is that it should contain a causal argu-
ment. That means that the explanation provides
a way, in principle, to control the behaviour to
be explained. In other words, we can predict the
results of manipulation of variables. Whereas
correlational relationships allow one to predict
ongoing behaviour, it is causal statements that
allow us to predict what would happen if we
introduced changes in the system. Kepler’s
astronomy does not predict what would happen
if we could change the mass of the sun, for
example, but Newton’s laws do allow such ‘what
if ’ calculations.

The difference between correlation and cau-
sation is the difference between prediction and
control. Both are useful concepts, but they lead
to different uses and they can appear to be oppo-
sites. For example, a correlational survey would
find that people who received antibiotics last
year are more likely to be dead this year than
people who received no antibiotics last year. So
we can use antibiotics to predict death. However,
by means of an experiment, we can randomly
assign people with infections to two groups, one
that receives antibiotics and the other receives a
placebo. The results of such studies show that
antibiotics cause a reduction in the death rate.
So, we find that receiving antibiotics is positively
correlated with death in surveys and receiving
antibiotics is negatively correlated with death in
an experiment. Although paradoxical, there is
no contradiction.

Both correlational and causal relations are
interesting and useful, even when they seem to
say the opposite things. Suppose you have a life
insurance company; you sell insurance that pays
out when a person dies. Before you sell someone
insurance, you could ask if they have been
taking antibiotics. If yes, you do not want to sell
them insurance because they are likely to die.

However, if you already sold a policy to a client
and that person becomes sick, you would like
them to take antibiotics because it causes a reduc-
tion in the death rate.

Correlation has been called the ‘instrument of
the Devil’ when evidence of a correlation is used
to argue for a causal conclusion. For example, it
has been shown that students in small classes do
worse in high school than students in large
classes. What class in a high school is the small-
est? It is the class for ‘special education’ students,
students who have behaviour problems or 
are mentally retarded. So, small classes size is
correlated with poor performance. Those who
misunderstand this correlation argue that all
classes should be large, because larger classes get
better performance.

The fifth criterion of an explanation is that it is
general. A general explanation for one phenome-
non can also be used to explain other phenomena.
Put another way, the premises of an explanation
have the characteristics of scientific laws, state-
ments that hold in general. This means that
good explanations lead to new testable implica-
tions. Although we can’t change the mass of our
sun in practice, we can bring objects of different
masses together on earth and measure the forces
between them. Newton’s laws are considered
very general because they can be used to make
many predictions for objects in space and on
earth including falling bodies, trajectories of
cannon balls, collisions and thousands of other
calculations useful in mechanical and structural
engineering.

Experiments test among theories
Psychology is the study of alternative explanations
of behaviour. The purpose of an experiment is
to test between alternative theories. Students
sometimes talk about trying to ‘prove’ a theory, as
if they could somehow show that a theory is ‘true’.
Such thinking leads to bad research. For example,
consider a person who thinks that bread is good
to eat because it is made of cyanide, and every-
thing made of cyanide is good to eat. To ‘prove’
the theory, the person eats bread and argues that
this ‘proves’ the theory true, since if the theory is
true, bread should be good to eat. I assume the
reader can think of some different experiments
that would refute these premises.
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Consider the diagram of Figure 25.1. Suppose
the box represents the universe of all possible
results of experimental tests, and the elements
inside the circle represent data that would be
consistent with the theory. Many researchers
conduct experiments to look inside the circle;
that is, they look for confirmations of their
theory. For example, a person might eat bread to
‘prove’ their theory. Instead, what researchers
should do is devise experiments to test the theory
by looking outside the circle; that is, they should
for results that would refute the theory. For
example, test if bread is really made of cyanide
and test if cyanide is really good to eat.

The fallacy that one should try to ‘prove’ one’s
theory leads to bad research. To avoid this prob-
lem, I suggest that researchers think in terms of
comparing at least two theories, and searching
for implications to test that would be consistent
with one theory and that would refute the other.
If both theories qualify as theories of the behav-
iour in question, one should be able to devise a
test that would refute at least one of them.

Example: expected value theory
Suppose a researcher wanted to test the theory
that people evaluate gambles by their expected
values. In particular, let G = (x1, p1; x2, p2; K ; xn, pn)
represent a gamble with n mutually exclusive,
exhaustive outcomes, which pay cash prizes of
xi with probabilities, pi, where Σn

i=1 pi = 1. Let G ! F
represent systematic preference for gamble G over
gamble F. The concept of systematic preference
is given the following operational definition: we
can reject the hypothesis that the probability of

choosing F over G is less than or equal to 1/2 in
favour of the hypothesis that the probability of
choosing G over F exceeds 1/2.

Now suppose we have the following theory:

G ! FBU(G)>U(F)BEV(G)>EV(F), (1)

(2)

According to this theory, increasing the
expected value of a gamble should improve it.
So, consider the following two gambles:
G = ($100,0.5; $0,0.5), a ‘fifty-fifty’ gamble to win
either $100 or $0, and F = ($100,0.2; $0,0.8), a 
20 per cent chance to win $100 otherwise $0. The
expected values are EV(G) = $50 and EV(F) =
$20, so people should prefer G over F. Indeed,
few people would not prefer G to F. Similarly,
people should prefer G = ($100,0.5; $0,0.5)over
F′ = ($50,0.5; $0,0.5) because EV(G′) = $50 and
EV(F′) = $25. We could continue doing such
‘confirming’ experiments for years and con-
tinue to find evidence consistent with (‘for’) EV.
However, such research is not very informative –
it is like eating bread to prove that bread is made
of cyanide. To test a theory, we should think of
how it can be refuted rather than on how it might
succeed.

According to EV theory, two gambles with the
same EV should be equally attractive. Consider
G = ($100,0.5; $0,0.5) and F′′ = ($55,0.5; $45,0.5)
which both have EV = $50. When these gambles
are presented for comparison, most people prefer
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Figure 25.1 Set representation
of results of studies to test a
theory. It is argued that people
should devise experiments to
look outside the circle of
implications of the theory.
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F′′ ! G, so this result is not consistent with EV.
Indeed, most people prefer $45 for sure to gamble
G, which has a higher EV of $50. By looking 
for exceptions to the theory, we find that EV is
systematically violated. Not only do people prefer
‘safe’ gambles with lower EV over ‘risky’ ones with
higher EV, it has been known for about 300 years
that people even prefer a small amount of cash
to certain gambles with infinite expected value.

The St Petersburg paradox involves a gamble
with infinite expected value. Suppose we toss a
coin and if it is heads you win $2, but if it is tails
we toss again, and now if heads occurs you win
$4, but if tails, we toss again. If the coin shows
heads on the third toss, the prize is $8, but if
tails, we toss again. The prize for heads doubles
each time tails occurs. When heads shows the
prize is given and the game ends. This gamble
has infinite expected value because

(3)

However, most people say they would prefer $10
for sure over a chance to play the game once.
This preference was known as a ‘paradox’ because
mathematicians who accepted expected value as
the ‘fair’ price of a gamble also thought it was
reasonable to prefer a small amount of cash over
this gamble.

Bernoulli (1738) proposed expected utility
(EU) as an explanation for the St Petersburg
paradox and showed how this theory could
explain why people might buy and sell gambles
and insurance. Expected utility of gamble G=
(x1, p1; x2, p2; K ; xn, pn) can be written as follows:

(4)

where u(x) is the utility of a cash prize of x.
Whereas x is the objective cash value, Bernoulli
assumed that utility of money is not linearly
related to money. In particular, Bernoulli sug-
gested that utility is a logarithmic function of
wealth. If so, the St Petersburg gamble has finite
expected utility (equivalent to the utility of $4)

even though it has infinite EV. Bernoulli showed
how EU implies a poor person would not be ill-
advised to sell a 50–50 chance to win 20,000
ducats to a rich man for less than its expected
value, and how a rich person should be happy to
buy it for that price.

Expected utility theory is a theory that is
more general than EV in the sense that EV is a
special case of EU in which u(x) = x. Therefore,
evidence consistent with EV is also consistent
with EU, but EU can predict phenomena that
cannot be explained by EV. This situation is
shown in Figure 25.2. In a sense, it seems almost
‘unfair’ in that there is no observation that can
refute EU in favour of EV but there are results
that can refute EV in favour of EU.

Allais’ paradoxes refute EU
Allais (1953) proposed two paradoxes that vio-
lated EU. These were combinations of choices
that cannot be reconciled with either EU or EV.
They are known as the ‘constant ratio’ paradox
and the ‘constant consequence’ paradox. The
constant ratio paradox can be illustrated by the
following two choices (Birnbaum, 2001):

A: 0.5 to B: sure to 89.5% 
win $100 win $50 choose B
0.5 to win $0

C: 0.01 to D: 0.02 34.9% 
win $100 to win $50 choose D
0.99 to win $0 0.98 to win $0

According to expected utility, A ≺ BBC ≺ D
From EU,

A ≺ BBEU(A)<EU(B). EU(A) = 0.5u($100) +
0.5u($0); EU(B) = u($50). Because most people
choose B over A, we have, 0.5u($100)+0.5u($0) <
u($50). Multiplying both sides of the inequality
by 0.02, we have 0.01u($100)<0.02u($50); subtrac-
ting 0.01u($0) from both sides, we have, 0.01u
($100)<0.02($50)−0.01u($0); adding 0.99u($0)
to both sides, we have, 0.01u($100)+ 0.99u($0)
< 0.02u($50)+0.98u($0), which holds if and only
if C ≺ D. Consistent with Allais’ paradox, which
has been replicated many times (Kahneman and
Tversky 1979), Birnbaum (2001) found that most
people violate EU. Indeed, of the 743 participants
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who made both choices, 426 (57 per cent) chose 
A≺ B and C !D and only 20 (2.7 per cent) had the
opposite pattern of preferences.

The constant consequence paradox can be
illustrated with the following two choices:

E: 15 to win F: 10 to win 70% chose F
$500,000 $1,000,000
85 to win $11 90 to win $11

G: sure to win H: 10 to win 29% chose H
$500,000 $1,000,000

85 to win 
$500,000
05 to win $11

Birnbaum (in press-b) tested 200 participants
who made each choice twice. According to EU
theory, E ≺ FBG ≺ H. This implication follows
from EU because E ≺ FBEU(E)<EU(F). EU (E) =
0.15u ($0.5M) + 0.85u ($11) < EU(F) = 0.1u($1M)
+ 0.9u($11). We can subtract 0.85u ($11) from
both sides and add 0.85u($0.5M), so, u($0.5M)<
0.1u($1M)+ 0.85u(0.5M)+ 0.05u($11), which
holds if and only if G ≺ H. Therefore, the fact that
significantly more than half the participants pre-
ferred F over E and significantly more than half
preferred G over H is inconsistent with EU theory.

In the illustration of Figure 25.2, the Allais
paradoxes fall outside the circles representing 
EU and EV theory. These results refute both EV
and EU. A number of theories were proposed to
account for the Allais paradoxes and new para-
doxes have been devised to test among these new
theories. The point of this example is to illus-
trate how the Allais paradoxes led to refutation
of EU theory.

To pick up the modern thread of this story,
which includes the development of prospect theo-
ries to account for the Allais paradoxes (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1992),
see Birnbaum (2004a, b, 2005a, b; in press a, b).
Although the prospect theories can explain the
classic Allais paradoxes, Birnbaum showed
that a series of ‘new’ paradoxes refute both ver-
sions of prospect theory. The new paradoxes
remain consistent with a model by Birnbaum,
which awaits the invention of new paradoxes to
refute it.

Between versus within-subjects
designs
Suppose we want to manipulate a variable to
determine its causal effect. For example, to test
EV theory, we might want to compare gambles
with equal EV that have different variances.
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Figure 25.2 Relationship between EV and EU theories. EV is a special case of EU.
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This could be done by randomly assigning partic-
ipants to groups that receive different levels of
the variable or by manipulating the variable for
each person. When we randomly assign people
to different groups, it is called a between-subjects
design, and when the same person receives two
or more levels of the independent variable, it is
called a within-subjects design.

Confounded contexts
It is important to realize that when the dependent
variable of an experiment is a judgement, within
and between-subjects designs often yield oppo-
site conclusions. For example, Birnbaum (1999)
randomly assigned participants to two groups,
each of which was instructed to judge ‘how big’
a number was. One group judged the size of the
number 9, and the other group judged the
number 221. It was found that 9 is significantly
‘bigger’ than 221. Of course, no single partici-
pant ever said that 9 is greater than 221, but by
the rules of between-subjects designs, an experi-
menter would conclude that 9 is ‘subjectively’
bigger than 221. This conclusion should seem
silly, but some investigators studied less obvious
examples to draw odd inferences.

The problem with between-subjects research
is that the context for judgement and the stimu-
lus are completely confounded. Although people
have seen numbers both larger and smaller than
9 and 221 before participating, they do not have
a context for comparison so they must supply it
themselves. Apparently, the number 221 brings
to mind a context that includes larger numbers
(among which 221 seems ‘small’) compared to
the context evoked by the number 9. This example
was devised to create a situation in which few
would argue that the conclusion is that 9 ‘really
is’ subjectively bigger than 221.

There are many different areas of psychology
in which between-subjects designs have been
used to reach conclusions that are reversed in
within-subjects designs. For example, Jones and
Aronson (1973) found that respectable victims
are rated more at fault for their own rape than
less respectable victims. In particular, women
described as a ‘virgin’ or ‘married’ were rated more
blameworthy than those described as ‘divorced’.
Jones and Aronson theorized that in order to
believe in a ‘just world’, a respectable victim would

not deserve to be raped and therefore she must
have done something to deserve it. However, this
conclusion is reversed in a within-subjects design.
When participants rate both victims or even
when they rate both victim and perpetrator, the
divorced woman is judged more at fault than the
virgin or married woman (Birnbaum 1982).

In the area of human judgement, it has been
argued that people ‘neglect’ base rate, based on
the small effects observed when this variable is
manipulated between-subjects (Kahneman and
Tversky 1979). Similarly, people supposedly fail
to distinguish sources of information that differ
in validity when making predictions. However,
when these variables are manipulated within-
subjects, people do attend to base rate and to
source credibility (Birnbaum 1976; Birnbaum
and Mellers 1983).

Kahneman has argued that the world is ‘more
like’ a between-subjects design than a within-sub-
jects design. So, when results from these designs
conflict, he prefers the between-subjects design. If
you believe that 9 is subjectively ‘bigger’ than 221,
then you might accept these arguments for
between-subjects designs, but if you think other-
wise, you should be sceptical of results until they
are confirmed or reversed by within-subjects tests.

Dropouts in between-subjects designs
Many investigators are attracted to web research
because of the possibility of testing large numbers
of subjects. Between-subjects designs require large
numbers of participants, so web-based research
might seem a good way to do such research. For
example, if a person has a simple 2 × 2 × 2 design
with 50 participants in each condition, it requires
400 participants. This requirement might exceed a
semester’s quota an experimenter might be able to
receive from the ‘subject pool’ of many universi-
ties. So, experimenters designing between-subjects
studies are attracted to the idea of recruiting large
numbers of participants via the Web.

However, web-based experiments have higher
dropout rates than lab studies. In lab studies, a
participant would have to tell someone they are
leaving, so there is some social pressure to stick
it out to the end. Via the Web, however, people
feel no qualms about just clicking another but-
ton to leave a boring task (Birnbaum 2004b, c;
Birnbaum and Reips, 2005). For studies of who
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quits, when and why, see Frick et al. (2001). See
also Reips (2000, 2002a, b; Reips and Stieger 2004)
for suggestions about how to minimize dropout
and how to analyse the causes of dropout. When
there are dropouts, even when dropout rates are
equal in all groups, the data can give a mislead-
ing picture of the actual effects of a variable.

For example, Birnbaum and Mellers (1989)
showed that a treatment intended to improve
test scores (e.g., workshops intended to prepare
people to take the Graduate Record Exam [GRE])
could appear to be beneficial by simply includ-
ing a sample test at the end of the treatment.
Suppose that the treatment actually lowers test
scores, but people who do poorly on the sample
test are less likely to take the GRE at the next test
date. Because those who would score low decide
not to take the test, a harmful treatment could
appear to produce a beneficial gain compared to
the control group, when all it did was increase
the correlation between preparation and the
decision to retake the test. See Birnbaum and
Mellers for a detailed numerical example of how
this can happen.

Dropouts are still a problem but a less serious
problem for within-subjects studies because
dropping out is not confounded with the manip-
ulated independent variable – everyone who
completes the study provides a separate test of
the two conditions. To test for the effects of a
GRE workshop, each participant receives both
the treatment condition and the control condi-
tion, with half the participants receiving the two
treatments in each of the possible orders.
Participants in both groups will receive the sam-
ple test. This mixed design allows both between-
subjects comparisons for the effects of treatment
orders and within-subject comparisons for the
effects of the treatment. The test also provides
two dependent variables, the test score after the
first treatment and the test score following the
second treatment.

Representative design
Brunswik (1956) argued that between-subjects
designs should be avoided because they create
situations that are not representative of the
environment to which generalization is desired.
He also argued against systematic designs (such
as one factor designs and factorial designs), in

which the independent variables are made to
have zero correlations with other variables and
with each other. If people use the distribution of
the variables including the variance and covari-
ance of the independent variables, then systematic
research creates situations in which important
variables influencing judgement will have been
fixed to unrealistic levels.

Brusnwik (1956) argued that the only basis
for generalization from experiments is the the-
ory of statistical sampling. If we wish to know
the mean in a population, for example, and if we
have random samples, we can use statistical the-
ory of random sampling to estimate and make
inferences about that population mean. Similarly,
if we want to know the effect of an independent
variable, we should sample that variable ran-
domly as well. If the effect of a variable depends
on its levels and correlation with other variables
in the textured environment, we need to sample
randomly from that environment if we hope to
generalize our results to that environment.

Brunswik went on to argue that if for practi-
cal reasons we cannot sample randomly, the
next best approach is to sample representatively.

For example, suppose we wished to predict
the outcome of a district election, and we know
that republicans and democrats favour different
candidates. Suppose 55 per cent of those who
vote in this district are democrats. It would cer-
tainly be unrepresentative if our sample included
90 per cent republicans. To achieve a more repre-
sentative sample, we can make sure that the
percentage of democrats in our sample matches
the percentage of democrats among those we
think likely to vote. The same could be done for
age, gender, and other variables that we think
might affect the outcome. Representativeness is
not a very precise concept; indeed, random sam-
ples are often not representative. Nevertheless,
some scientists are content to treat samples that
they believe are representative as if they were
random and apply the same statistics.

Brunswik theorized that people are sensitive
to the ecological validities of cues in perception.
The ecological validity of a cue is the correlation
between that cue and the distal state of nature
that the perceiver is trying to infer. For example,
in order to know how large an object is, one
must not only use its proximal size (the size of
the retinal image), one needs to know its distance.
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But there are many cues to distance; among
them are binocular disparity (relative separa-
tions in the retinal positions of objects in the
two eyes), height in the visual field, geometric
perspective and many others. Usually, objects
that are higher in the visual field are farther
away than objects lower in the field. For exam-
ple, the horizon is both farther away and higher
in the visual field than one’s foot on the ground,
so this cue has ecological validity in predicting
distance.

Suppose an experimenter sets up a study to
make height in the visual field independent of
all the other variables. If so, that experimenter
has made the ecological validity of that cue zero,
because in a systematic study of one variable,
height in the visual field no longer correlates
with actual distance or anything else. If people
are sensitive to the ecological validity of a cue,
and cue intercorrelations, they should stop using
height in the visual field in this experiment,
because it no longer has validity as a predictor of
distance. In other words, when an experimenter

makes this variable independent of all other
variables, the experimenter has changed the
situation to one from which one cannot gener-
alize. To Brunswik, trying to use this experiment
to predict the effect of height in the visual field
would be like trying to predict an election with a
sample of all republicans.

Figure 25.3 shows a diagram of a factorial
design in which each level of variable X is paired
with each of the five levels of independent
variable Y. This makes X and Y uncorrelated.
If this correlation is itself an important determi-
nant of behaviour, this experiment sets this
variable to a level that may not be representative
of the natural ecology of the person tested.

Brunswik proposed using representative design,
in which variables were to be studied in the
natural environment. Statistical analyses would
then be required to tease apart the effects of
confounded variables. Unfortunately, these ideas
led to the use of multiple linear regression as both
a data analysis device and substantive theory of
human judgement. Multiple linear regression is
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Figure 25.3 Factorial design. Variables X and Y are independent, producing a zero correlation, but
suppose the correlation is not zero in the natural environment and suppose it affects behaviour; if so,
then this design sets this factor to an unrealistic value.
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known to have many flaws, which are exacerbated
when variables are correlated. As a data analysis
device, it is not well-understood by those who
use it, who often draw inappropriate conclusions
from its calculations.

It is unfortunate that some people took
Brusnwik’s term, ecological validity, and changed
its definition as if it referred to a characteristic
of an experiment, a theory, a task, or of results.
In Brunswik’s terminology, ecological validity is
an objective concept and it can be calculated.
When this term is misued, it usually refers to
someone’s mushy intuitive judgement of how
‘good’ or ‘bad’ someone’s study is with respect to
how well it psychologically resembles somebody’s
idea of some ‘real world’. When the term ‘ecologi-
cal validity’ is used in reference to an experiment,
one can simply rewrite the sentence, ‘the study
has low ecological validity’, as follows: ‘this study
does not appeal to me’. For another view of repre-
sentative design and the misuse of terms, see
Hammond (1998): http://www.albany.edu/cpr/
brunswik/notes/essay2.html.

Brunswik also discussed the use of a hybrid
design in which a factorial design is modified by
leaving out certain combinations that are unusual,
creating correlations among variables. But this
approach assumes that presentation of these
combinations would affect the responses to
other combinations and allows no way to test
that proposition. Figure 25.4 shows an example
of hybrid design. In this case, it was assumed
that the environmental correlation between X and
Y is positive, so the experimenter has removed
some of the cells of the factorial design that are
rare in nature to preserve this correlation in the
experiment.

Systextual design
A criticism of representative design is that it
assumes an empirical theory to determine a
methodological approach that prevents testing
of the empirical theory upon which the method
is founded (Birnbaum and Veit 1973, 1974;
Birnbaum 1975). An alternative approach is to
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Figure 25.4 Brunswik deleted some cells in order to remove combinations of variables that were not
representative of the natural environment, calling the remaining design a ‘hybrid’ design. This design
still holds the correlation between variables fixed.
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use systextual design rather than representative
design. Systextual design requires systematic
manipulation of the research design itself, includ-
ing all aspects of the environment that are thought
important to behaviour. This method allows us to
determine if these variables are important and it
allows us to use theory supported by evidence to
generalize to new environments, including ones
not found in nature.

The theory that people are influenced by cue
correlations and intercorrelations is a theory
that can be tested by systextual design, which
involves systematic manipulation of the context
in an experiment. Birnbaum (1975) shows how
one can use contextual stimuli to manipulate
the correlation between two variables while
using a factorial design nested within the overall
correlation to analyse the effects of the variables,
including the correlation. Several studies reported
that the effect of a variable can be altered and

even reversed by manipulation of its correlation
with a third variable.

Figure 25.5 illustrates an example of systex-
tual design that allows an experimenter to
manipulate cue intercorrelation and still use a
factorial design to analyze the data. In this case,
the factorial combinations form a 5 × 5, X by 
Y factorial design. In order to manipulate the
correlation between X and Y, some additional
cue combinations are added to create a correla-
tion. To create a positive correlation between X
and Y, the experimenter could present stimuli
shown in the figure as ‘+’ symbols. To create 
a negative correlation, the experimenter can
present those combinations indicated by ‘−’,
and to create a zero correlation while keeping
the range and marginal distributions of X and 
Y the same, the experimenter can alternate
presentations of the cue-combinations labeled
‘−’ and ‘+’.
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Figure 25.5 Systextual design. In systextual design, additional cells are added to manipulate the
correlation between the independent variables. In this case, adding the combinations denoted plus (+)
creates a positive correlation between the variables; adding only the combinations marked with a
minus (-) creates a negative correlation, and by presenting both sets of contextual combinations, one
maintains a zero correlation. Thus, a factorial design can be nested within an overall correlation.
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Using this approach, Birnbaum and Veit
(1973) showed that the effect of variable X on
judgments can be reversed by manipulating its
correlation with Y. They manipulated the corre-
lation between the number of dots on a card and
the size of the card. Participants were instructed
to judge the subjective numerosity of the dots on
the cards. Participants saw the size of each card
before it was turned over to show the number of
dots. When there was no correlation between
size and actual number, ratings of numerosity
were lower on larger backgrounds, as if people
expected more dots on larger cards. When the
correlation was positive, this effect was magni-
fied. However, when the correlation was nega-
tive, judgements were increased in larger areas,
showing contrast with a reversed expectancy.

So Brunswik’s empirical assumption is not
unfounded: people do react to correlations
among variables. However, by means of systextual
design we can test theories of the effect of these
correlations. It is not sampling but theory that is
the basis for generalization. By knowing how
correlation affects behaviour, we can develop
theories that enable us to generalize to any new
environment in which the correlations might be
different. Brunswik was right to be concerned
that cue intercorrelation can influence behaviour,
but his advice to use representative design does
not allow the scientist to test that proposition 
or to generalize to a new situation with any corre-
lation, which is possible via theory combined
with systextual design.

Parducci (1995) summarizes a research pro-
gramme investigating the effects of the spacing
and probability distribution of independent
variables. He has shown that the relationship
between physical stimuli and judgments of
those stimuli depends on the stimulus distribu-
tion, and that this effect is not linear but follows
instead a range-frequency compromise. Indeed,
this theory was used by Birnbaum (1982) in his
analysis of between-subjects studies.

Another literature that involves a systematic
manipulation of context is reviewed and sum-
marized by Rieskamp et al. (2006). They review
studies in which the probability of choosing 
A over B depends on the other alternatives in the
choice set.

Ordóñez (1998) manipulated the correlation
between price and quality by means of a systextual

design. It is usually the case that goods of higher
quality come at higher prices, but not always,
and when the price is fixed, the components 
of quality are often negatively correlated. For
cameras of the same price, one digital camera
might have a higher powered optical zoom and
another might have a higher resolution. If these
correlations were perfect, one would need only
to decide how much to pay for an item and one
would automatically find the best quality for
that price. But these correlations are not perfect,
so buyers must compare products.

Fasolo et al. (2005) studied how consumers
use websites that allow comparisons of goods
like digital cameras. They investigated consumer
behaviour by means of systextual design and
found that people indeed adapt to and use the
correlation between cues when they use websites
to make decisions about consumer goods. This
web-based study examined ways that products
can be described on the Web, the effects of deci-
sion-aiding tools intended to help people make
decisions, and the effect of quality intercorrela-
tions on the way people search for information
about the goods. They found that people are
sensitive to the correlation structure when they
search for information about products. Two
decision aids were compared: a compensatory
model that aggregated the attribute information
and an elimination by aspects model that set
thresholds for quality on the attributes. In the
negative correlation condition, with the com-
pensatory aid, people clicked on more options.
With the elimination by aspects aid, people
made more attribute clicks with the negative
than positive correlation.

Thus, how people search for information to
compare products should not be thought of as a
fixed process. It is not the case that people look
at attributes for each option or compare the
options on a given attribute. Instead, the man-
ner in which people search for information
depends on the structure of the environment. In
particular, the correlation among the attributes
as well as the decision aids available influence
how people search for information.

Conclusions
There is a famous question that is asked at nearly
all doctoral oral examinations. This question is
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some variation of the following: ‘I see that your
results agree with the theory that you proposed.
What would it have been like if your theory were
wrong?’ As one might expect, the student who
passes the final orals should be able to describe
what would have convinced them that their the-
ory was wrong and who can show that the study
was capable of disproving that theory. Unless
one attends to devising a test of at least one
theory (and preferably at least two), the effort
may be viewed as another case of a person eating
bread.

The results of psychological experiments can
and do depend on the experimental designs
used to establish causal effects. For example, the
effect of a variable can be opposite in within- as
opposed to between-subjects designs; indeed,
in between-subjects, we find that the number 9
is ‘bigger’ than 221, whereas within-subjects,
everyone says 221 is bigger than 9. Between sub-
jects designs are also vulnerable to experimental
dropouts, so use of these methods should be
avoided if possible in web research, where par-
ticipants find it easy to drop in and drop out. If a
between-subjects design is absolutely required, it
is suggested that the experimenter do everything
possible to reduce the dropout rate to an absolute
minimum.

The effect of a variable can also be reversed
when the correlations among independent vari-
ables are manipulated via systextual design.
These findings mean that the conclusions one
draws need to be restricted to the type of exper-
imental design used until one has established
the effects of experimental designs themselves.
Whereas the representative design uses the the-
ory of sampling to generalize to a particular
context, this article advocates the use of psycho-
logical theory to generalize to any context.
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