Scale Convergence as a Principle for the Study of Perception

, MicHAEL H. BIRNBAUM

At one time, scientists accepted the view that celestial and earthly events were governed
by different laws. It was believed that the elements of earth, fire, water, and air and
their chemical reactivity did not “‘generalize” to the heavens. Instead, the heavens were
supposed to be composed of a different element and to be inert. It can be argued that
the dismissal of this belief in favor of a simpler hypothesis in the time of Galileo made
possible great new developments in the science of astronomy.

If different laws characterize earthly and heavenly events, then how can earthlings
learn about the stars? The simpler view that the heavenly objects are composed of the
same elements and obey the same laws as earthly objects has led to modern astronomy.
Astronomers now assume that the physical laws that can be tested in simple, tiny labo-
ratory experiments on earth apply to the objects we see in the sky. This premise has
not really been tested, it has been assumed. It gives us powerful leverage for studying
objects that cannot yet be manipulated or directly observed, whose existence and be-
havior are known only through a tiny sample of electromagnetic waves detected here

. on earth. There is a lesson in this story for psychologists, and I will try in this chapter to
spell it out.

The principle of scale convergence in psychology may be an analogous assumption
of coherence that may prove useful to the study of perception and judgment. The prin-
ciple of scale convergence asserts that measurements interlock laws of different empirical
relationships. To introduce the application of scale convergence in perception, the
next section discusses algebraic models with emphasis on size constancy as an example.
It will be assumed that the same subjective scale of distance ties together several pheno-
mena of size perception.

Algebraic models of perception and judgment

In many situations, simple algebraic laws have been proposed to explain psychological
phenomena. For example, psychologists explain the moon illusion, in which the moon
seems larger on the horizon than it does overhead, with the following premises:

PI:S = RD
Pz:R" = RZ
P3:DH > Dza

where S is perceived size; R is retinal image size; and D is subjective distance. Premise 1
assumes subjective size is the product of retinal size and subjective distance. Premise 2
asserts that the retinal image sizes are equal for the moon on the horizon (H) and zenith
(Z). Premise 3, attributed to Ptolemy, is that the subjective distance to the horizon
exceeds the subjective distance to the zenith. The three premises imply RyDy > RzDgz;
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therefore Sy > SZ Thus, subjective size on the horizon exceeds subJectlve size of the
zenith.

Coherent theory

The first premise, S = RD, can be regarded as a psychological “law” with potential
for great generality. Some of the phenomena that can be explained using this premise
are illustrated in Fig. 1. It can be used in explanations of geometric illusions like .the
Miiller-Lyer, and Ponzo illusion, the Ames room, apparent size in stereoscopic views,
size constancy, and the subjective sizes of afterimages.

A theoretical system is described as coherent if the same premise can be used in the
explanations of a variety of phenomena. The premise, S = RD, can be used in explana-
tions of the phenomena illustrated in Fig. 1, given suitable assumptions concerning R
and D. To account for the Miiller-Lyer, Ponzo, and Baldwin illusions, it is assumed
that R, = Ry, but D, > Dy. To account for the sizes of stereo images it is assumed
that depth is a functlon of retmal disparity. If the red filter is worn on the right eye and
the green on the left, then the two squares will “fuse™ to a larger size when the red square
is to the left of the green rather than vice versa. In the Ames room, it is assumed that
D, = Dybut R; < R, hence §, > S,. However, in the normal room it is assumed that
retinal size is a function of visual angle, R = b®s/®;,. Thus, subjective distance is propor-
tional to objective distance, D = a®,,. Thus, subjective sizes are equal (S, = Sp) when
physical sizes are equal, (P54 = Psp), i.€., size constancy.
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Fig. 1: Some phenomena that can be explained using the premise, S = RD. In the moon illusion, the moon

on the horizont looks larger than the moon on the zenith. Emmert’s after images vary with retinal size and

“projection” distance. In the Baldwin illusion, Ponzo illusion, and Miiller-Lyer illusion, line A seems

larger than line B, even though actual lengths are equal. In the trapezoidal Ames room, a person seems to

change size while moving about, although size constancy is maintained (approximately) in rectangular -
rooms. In stereo views through Red (R) and Green (G) filters, Red and Green squares fuse to different

sizes (and distances) as the horizontal distance between them is varied.
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Emmert’s law extended

Consider the following explanation of the apparent sizes of after-images:

P,:S=RD
P,: R depends only on flash size
P3:D = H(¢D) e

P4: “Sn = J[Sr] + g,

where H is the function relating subjective distance (D) to objective distance (&), J
is the function relating subjective size to judged size, and ¢ is a random error component
with a mean of zero. In the experiment, the subject is exposed to a flash presented to
one eye, resulting in a circular after-image, The subject then “‘projects” the after-image
onto surfaces of varying actual distance (®,), using both eyes. The visual angle of the -
inducing flash is assumed to affect retinal size of the flash, R. The subjective distance (D)
is assumed to depend on actual distance, though the function need not be linear. The
judged size is denoted ““S”, and is assumed to be a monotonic function of subjective °
size plus a random error component. '
Hypothetical errorless data for this experiment are presented in Tab. 1. Each entry
in the table represents judged apparent size in centimeters. The rows of the table repre-
sent after-images produced by flashes with differing visual angle (different R). The
columns represent different actual distances. The data are perfectly consistent with
the model, with H negatively accelerated and J a similarity function. Note that subjective .
size is directly proportional to physical distance up to 160 cm, but thereafter increases as
a negatively accelerated function.

'

Tab. 1: Hypothetical data: Perceived sizes of after-images

Actual distance (cm)

After-image 10 20 40 80 160 320 640
size L

1 5 1 2 4 7 13 24
2 1 2 4 8 14 26 48
3 1.5 3 6 12 21 39 72

Each entry represents the judged size of an after-image projected to various distances.

Explanations such as the above can be constructed for each of the phenomena of
Fig. 1 using the premise $ = RD and appropriate premises for R and D.

Comprehensive theory of D is lacking

Although the separate explanations of the phenomena in Fig. 1 satisfy the philosophical
criteria for explanations, the system as yet lacks a complete theory of D. In each expla-
nation, the appropriate premise concerning D was plugged in to make the deduction
work. In the explanation of Tab. 1, H was estimated from the data. We would like a
complete theory from which the appropriate premise for D can be deduced. What we
have is a set of mini-theories and a list of variables (cues) that affect D.
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Experiments can be done to test mini-theories such as “‘a proximal rectangle will be
perceived as a distal rectangle with equidistant sides” or “‘converging lines are perceived
as parallel lines receding in depth” or “the resultant value of D is the weighted average
of the values of D implied by each cue.” These mini-theories of distance are testable,
but are not yet complete enough to predict the value of D in any visual environment.
For this reason, the values of D are derived from the data in an experiment like the one
represented in Tab. 1.

Scale convergence for subjective distance

In the absence of a theory of D, it seems reasonable to require that the same transfor-
mation D = H(®p) should appear in several phenomena. Thus, the difference between
the explanation of size-constancy and the Ames room illusion is supposed to be due
to different H functions in the two rooms. The principle of scale convergence demands
that the H functions be taken seriously and forces an additional constraint that requires
coherence in a theoretical system.

To illustrate the idea, consider'two experiments that can be conducted in the same
visual environments (e.g., the normal and Ames rooms). One can “project” after images
as in Tab. 1, yielding an H function for each visual environment. One can also present
actual objects in the same environment and ask the same subjects to judge their sizes.
Consider the following theory for size judgments:

S =RD
R = boy/d,
D = H(®,)
“S” =kS + ¢.

Tab. 2 shows some hypothetical judgments of sizes of actual objects as a function of
size and distance that are perfectly consistent with the above premises. Notice that .
size constancy is maintained for distances less than 160 cm, but for greater distances,
objects grow smaller with distance. However, the pattern in Tab. 2 is implied by the H
function obtained in Tab. 1. Thus, Tabs. 1 and 2 can be represented with the same H
function, using the premise S = RD.

Tab. 2: Hypothetical data: Test of size constancy

Actual Actual distance (cm)

size

(mm) 10 20 40 80 160 320 640
50 51 51 51 51 44 41 38
100 102 102 102 102 89 83 76

200 . 153 153 . 153 153 134 124 115

Each entry represents the judged size of an actual object. Viewing conditions the same as for Tab. 1.

‘Despite the lack of a specific theory from which the H function can be deduced, the
system of theories is enhanced by being interlocked by the same scale of subjective
distance. It is also important to emphasize that D = H(®,) does not represent an in-
variant “psychophysical law” for subjective distance, because it only applies to the
particular viewing conditions in the “normal” room. In the Ames room, a different
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H function would be obtained, but scale convergence would require that this new H
function should apply to judgments of the size of afterimages projected into the room
as well as judgments of actual objects. The H function would be further enhanced by
the number of phenomena it can be used to explain. For example, subjects could also
be asked to judge the “‘differences in distance” between each pair of positions in the
room; hopefully, the same H functlon would reproduce this matrix of “difference”
Judgments

The size-distance issue has been simplified to use as an illustration of how coherent
laws can be interlocked by the principle of scale convergence. Discussions of this issue,
including potential difficulties for the depth explanation of geometric illusions can be
found in Gregory (1978), Gogel (1968), Kaufman (1974), and Rock (1975).

Scale convergence as a constraint

Scale convergence can be considered a theoretical constraint that can cause one theo-
retical system to be preferred to another. Kepler’s solar system was preferred to Ptolemy’s
because Kepler’s could be deduced from principles .of Newtonian physics that could
be tested in the laboratory. Similarly, in psychology a coherent system of laws inter-
locked by common scales should be preferred to a system that requires new scales for
every new situation. Scale convergence can be used in this way to resolve otherwise
unsolvable problems that can arise when mathematical models are tested.

Outcomes of model tests

When mathematical models of perception or judgment are tested, three outcomes
can occur: (a) The data can show ordinal violations, in which case the model can be
rejected. (b) The data may be numerically consistent with the model. (c) The data may
be numerically inconsistent with the model, but ordinally consistent. In this case, the
experimenter must decide whether to transform the data to fit the model or not. But
if transformation is permitted in case c, then the experimenter also needs to consider the
possibility that data that fit the model (case b) should also be transformed.

Suppose an investigator hypothesized that the row and column factors of Tab. 3
combine additively. In Tab. 3, the data show ordinal violations that contradict the
additive model. The additive model implies that it should be possible to find values
of a; and b; such that R;; > R,, whenever a; + b; > a, + b,. This 1mplles that if
R;; > Ry then a; + b; > a; + by; therefore b; > b, Addmg a, to. both sides, it follows
that a +b;>a + b,, therefore R,; > Rk, Similarly, R;; > R,; implies R, > R,,.
However, thlS property of independence is violated repeatele in 'll‘ab 3. For example
R(1,1) < R(2, 1) whereas R(l, 5) > R(2, 5). If the rank order in Tab. 3 were well-
established (based on enough consistent data), there would be no doubt that the additive
model should be rejected.

Tab. 3: Hypothetical data: Ordinal violations

Level of Level of B

A 1 2 3 4 5
1 0 4 8 12 16
2 9 10 11 12 13
3 2 4 6 8 10
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In Tab. 4, the data are numerically consistent with the additive model. In other words,
it is possible to find values of 4; and b; such that R;; = a; + b, For Tab. 4, leta, =1,
a,=2,a,=3,b=1,b,=2,b;=3,b =4, and b, = 5. These values perfectly
reproduce the entries in the table when added. Thus, the additive model remains consistent

with the data in Tab. 4.

Tab. 4: Hypothetical data: Perfect fit

Level of Level of B

A 1 2 3 4 5

1 2 3 4 5 6
3 4 5 6 7

3 4 5 6 7 8

The hypothetical data in Tab. 5, however, pose a problem to an investigator who has
hypothesized an additive model. The data are ordinally consistent with an additive
model, but numerically inconsistent. That is, it is possible to solve for values of @, and
b; such that R;; > Ry if a; + b; > a; + a,. However, it is not possible to find g; and b;
such that R;; = a; + b;. Put another way, there exists a nonlinear monotonic trans-
formation, 7, such that T(R;;) = a; + b;. For Tab. 5, T is the logarithmic transforma-
tion; the logs of the numbers in Tab. 5 are additive. On the other hand, the raw data
are perfectly numerically consistent with the multiplicative model, R;; = atb}, where
af =1,a =2,af =3,bF=1,bf =2, bf =3, bf =4, and b¥ = 5. In sum, the
data in Tab. 5 are ordinally consistent with either an additive or multiplicative model,
but they are numerically inconsistent with the additive model.

Tab. 5: Hypothetical data: Metric violations

Level of Level of B -

A 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 ‘9 12 15

The problem for the investigator is as follows: given the data of Tab. 5 is there any
reason to prefer the additive over the multiplicative model? The criterion of scale con-
vergence allows an additional constraint. The basic idea is as follows: Suppose there
are two empirical phenomena to be explained. Suppose there are two rival theories
of these phenomena. The principle of scale ¢onvergence that one prefers a theory in
which the measurements of the stimuli are the same for both phenomena. If the values
of b for Tab. 5 were known to be 1, 2, 3,4, and 5, the multiplicative model would
be preferred to the additive for Tab. 5. Similarly, the explanation of the sizes of after-
images and size constancy (or inconstancy) should postulate the same scale of subjective
distance, D, for the same actual distances under the same viewing conditions. Tabs. 1
and 2 conform to the criterion of scale convergence given the theories postulated.
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Brief review of studies of scale convergence

The principle of stimulus scale convergence asserts that the scale values (measurements)
of the stimuli are independent of the task and model interrelating the measurements.
By requiring this additional constraint, it becomes possible to differentiate. theories
that would otherwise be equivalent. Tab. 6 lists studies in which the principle of scale
convergence was used to reduce the number of hypotheses that are plausible for a given
situation involving two or more empirical relationships. Birnbaum (1974a, 1982) and
Birnbaum and Veit (1974) discuss the principle of scale convergence further and relate
it to previous conceptions of convergent operationism.

Tab. 6: Selected studies of scale convergence

Reference ‘ Dimension Task

Birnbaum (1974a, Exp. 3) likableness D,C,DC

Birnbaum & Veit (1974) heaviness of R,D,A
lifted weights

Rose & Birnbaum (1975) magnitude of R,D

Birnbaum (1974 b) numbers M (context)

Birnbaum & Mellers (1978) positions of “ratios of easterliness”
U.S. Cities “differences of easterliness”

“ratios of westerliness”
“differences of westerliness”

Birnbaum (1980) (Review)

Birnbaum & Elmasian (1977) loudness R,D

Elmasiam & Birnbaum (1979) | pitch R,D

Birnbaum (1978) darkness of R,D

. dot patterns

Veit (1978) darkness of grays R,D,RD
Hagerty & Birnbaum (1978) likableness R,D, RR,RD, DR, DD
Birnbaum (1982) darkness of dots R,D, RR,RD, DR, DD
Metlers & Birnbaum (1982a) darkness R, D, (context)
Mellers & Birnbaum (1982 b) class performance . C, M, (context)
D = “difference” task, C = “combination” task,
DC = “difference between combinations”,
A = “‘averaging” task, RE = “ratios of easterliness”,
DW = “differences in westerliness”, M = ‘“‘magnitude” rating task,
Impression formation

Birnbaum developed scale convergence as a criterion for rescaling in 1970 in order to
assess whether derivations from a simple model of impression formation were “real”
or due to “nonlinear judgment bias”. Judgments of the likableness of hypothetical
persons described by adjectives were inconsistent with the constant-weight averaging
model that was believed at the time to be acceptable (Anderson, 1979). However, it
was unclear whether the major deviations of fit should be attributed to an interactive
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integration process or to a nonlinear judgment function. To resolve this problem, Birn-
baum (1974a, Experiment 3) asked subjects to rate the differences in likableness of
combinations of the adjectives. It was possible to reject the following model:

P: G = Jel(wosy + wys; + wys)/(Wo + Wy + wy)]
PZ:Dij = JD[S;‘ — Sf]
Pyis; = s},

where C;; = rating of likableness of a person described by the combination of adjectives
i and j, which have scale values of 5; and 5;, 5, and w, are the scale value and weight
of the initial impression, and w, and w, are weights. The functions J and J;, are assumed
to be strictly monotonic judgment functions, and D;; is the judged “difference” in likable-
ness between adjectives i and j, which are assumed to have scale values of s* and s7.
The third premise is the assumption of scale’ convergence, s = s*.

Tabs. 7 and 8 show matrices of C;; and D,; obtained by Birnbaum (19742) together
with the theoretical interpretations of the subtractive model of “differences” and the
constant-weight averaging model of “combinations.” The rank order in Tab. 7 implies
that s, — 5, > s; — s, whereas Tab. 8 implies that s — s¥ < s¥ — s¥. These ordinal
contradictions (and others) require rejection of the theory consisting of P, P, and
Py
Instead, the data were consistent with a configural-weight model for combinations
in conjunction with the subtractive model for comparisons. This interpretation allows
preservation of scale convergence. Birnbaum (1982, Section F) gives a more detailed
" presentation of the ordinal analysis of scale convergence for this issue.

Tab. 7: Mean ratings of likableness

Level of A
Level of B 1 2 3 4 5
1 - 1.54 2.10 2.50 2.76 345
) (@) (a+b) @+b+c¢c) (@+b+c+ad
“ 2 2.10 2.92 382 444 5.08
2a) 2a + b) QRa+b+c) Qa+b+c+d
3 2.50 3.82 5.15 5.90 6.72
(2a + 2b) QRa+2b+c¢) RQa+2b+c+d)
4 2.76 4,44 5.90 6.53 7.25
QRa+2b+2c)Qa+2b+2c+4d
L .
S 345 5.08 6.72 7.25 7.90

(2a + 2b + 2¢ + 2d)

. Each entry is the mean judgment of likableness of a person described by both A and B. Each off-diagonal
cell is averaged over six pairs of adjectives; 600 judgments from 300 subjects (data from Birnbaum,
1974a, Experiment 1). Algebraic symbols give additive representation, C;; = Jifs; + s;], with 5, = 0,
a=5—5,b =5 —%¢=s5,—5,d = 55 — 5,. Arrows represent inequalities showing thata > b +¢
anda>c+ d
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Tab. 8: Mean ratings of differences

Level of A
Level 1 2 3 4 S
of B
1 0 1.18 1.86 2.49 3.20
(a*) (a* + b%) @* + b* + c*) (@*+ b* + c* +d%
2 5 —1.18 0 92 1.64 243
®" &* +c* (b* + c* + d*)
3 —1.86 — 92 0 .53 1.54
(Cog] (c* + d%)

4 —2.49 —1.64 — .53 .0 - .85

@)
5 —3.20 —2.43 —1.54 — .85 0

Each number is the mean judgment of difference in likableness, A—B. Each cell is averaged over six pairs
of adjectives, 180 judgments from 90 subjects (from Birnbaum, 1974a, Experiment 3). Algebraic symbols
give subtractive representation, D, = Jp[sf — 5], with sf =0, a* = 57 —sf, b* =57 — 57, ¢* =
s¥ — s}, d* = s¥ — s}. Arrows represent inequalities showing that a* < b* + ¢*and a* < ¢* + d*.

A scale-free test verified the interaction (Birnbaum, 1974a, Experiment 4). In this
experiment, subjects judged “differences between combinations*. The three matrices
of data can be represented by the following model, which contains two types of scale
convergence. Both scale values and subjective impressions are assumed to be indepen-
dent of the task.

= J bls} — st
aﬂu] '
DC.-,-u = Jpc[¥ — P¥]
Wij = Y’i"} = Is;, Sj]
5 = s,

where J),, J, and Jp. are approximately linear, and I is a configural-weight model
(Birnbaum, 1982). In the configural-weight model, the weight of an item depends on
its rank order within the set of items to be integrated (Birnbaum & Stegner, 1979). The

worst trait receives extra weight in impression formatlon and moral evaluations (Birn-
baum, 1972, 1974a, 1982).

Contextual effects in ratings

Birnbaum (1974c¢) presented subjects with sets of integers from 108 to 992 and asked
them to rate the magnitude of the numbers on a ninepoint scale. Nine different groups
of subjects received different distributions of the stimuli. For example, in one distri-
bution there were eight stimuli between 100 and 200 in another distribution, only one
stimulus fell in this interval. Plotting Judgmems against stimulus magnitude led to
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nine different curves that differed drastically from one another. Birnbaum (1974c)
fit a version of Parducci’s (1965, 1974) range-frequency theory. For the conditions
of Birnbaum’s experiment the theory can be written:

Gy = aF(®) + S

where G, is the category rating of stimulus @; in distribution k; Fi(®,) is the cumulative
density of stimuli less than or equal &, in context k; a is estimated from the data, and
s; are the scale values of the stimuli, also estimated from the data. When the psycho-
physical function is assumed to be strictly monotonic and error free, the F, function is
known. Therefore, if this equation can be fit to the data, it provides a basis for deriving
scale values from contextual effects. It was found that the data were well-described
by this model in terms of a single scale for number.

“Ratios” and “‘differences” of numbers

The scale for number derived by Birnbaum (1974¢) was negatively accelerated, con-
sistent with findings by investigators using other methods (e.g., Rule & Curtis, 1973).
Rose and Birnbaum (1975) asked undergraduates to divide a line segment so that either
the “ratio of the two lines would equal the ratio of the two numbers” or so that the
“difference in the two lines would be proportional to the difference between the two
numbers.” They found that subjects gave virtually the same responses for the “ratio”
and “difference” tasksirrespective of the instructions, despite a careful training procedure
that explained mathematical properties of actual ratios and differences and a test to
check understanding of these concepts (Rose & Birnbaum, 1975, Experiment 2).!

The data were consistent with the theory that subjects used the same operation for
both tasks, which could have been either a ratio or a subtractive operation. In order
to decide between these interpretations, Rose and Birnbaum (1975) applied the scale
convergence criterion to state the following two theories of three data sets:

ratio theory:
Ry; = Jglst/sf]

D, = Jpls7/st]
Gy = af, k(‘pi) + 5
s* =g

subtractive theory:
R;j = JRls} — 57l

o = Jolst — st]
G, = aF (D) + s
§* = 8

Rose and Birnbaum (1975) found that the ratio model led to a scale of numbers s*, that
was positively accelerated relative to physical value, and positively accelerated relative
to s. The subtractive theory led to a single scale, s = s*, that was negatively accelerated
relative to physical number. Thus, the ratio theory was rejected in favor of the subtractive
theory.

This example illustrates how scale convergence permits an interesting contrast between
two theories that would otherwise be equivalent. It also reveals that if one wished to

! Quotation marks are used to distingush tasks given to the subject from theories. Quotations are
used for “ratio” judgments but not actual ratios. Judged “ratios” may or may not fit the ratio model.

’
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retain the ratio interpretation it would be necessary either to revise range-frequency
theory or to give up the premise of scale convergence. The same difficulties confront
the relative ratio model, (s;/(s; + s;)), which is ordinally equivalent to the ratio theory.

Psychophysical *“‘averaging”

When subjects are asked to judge the “average™ value of several psychophysical stimuli,
what model describes the combination process? Several experiments indicated that
ratings of ‘“‘averages” violate the constant-weight averaging model (Parducci, Thaler,
& Anderson, 1969; Birnbaum, Parducci, & Gifford, 1971). However, a few other studies
obtained data that were interpreted as consistent with this model (Anderson, 1972;
1979; Weiss, 1972). ' :

To investigate the issue, Birnbaum and Veit (1974) applied the scale convergence
criterion to the comparison of “difference” judgments and “‘average” judgments. The
“average” heaviness shows a convergent interaction similar. to that previously found
for loudness and length. The data were not consistent with the following:

Dy; = Jplsf — sf]

Ay = T [wese + wys; + wys)[(w + wy + wy)] ;

S;!‘ = Sj N

where 4,; is the rated “average” and J, is the strictly monotonic judgment function.
Instead, the data were consistent with the interpretation that the interaction was *“‘real”:

Dy = Jpls} — st]

Aij JAlL(s;, Sj)]
s} Sjo

where I is the configural-weight model, and both J functions are approximately linear.
As a further check on the judgment functions, 4;; was plotted against s¥. Most models
for “averaging” imply that the ““average” of two equal stimuli should be a linear function
of the scale value of the stimulus. Birnbaum and Veit (1974) found that 4, was very
nearly a linear function of s¥, consistent with the theory that J, was linear, and therefore
that the interaction was “real”. In sum, the principle of scale convergence in this case
provided an indication that the deviations from the constant-weight model of “averaging”
should not be attributed to the response scale, but rather . to the combination process
itself. '

“‘Ratios” and “‘differences”

Birnbaum and Veit (1974) asked subjects to judge “‘ratios” and “‘differences” of heaviness,
in addition to “‘averages”. It was initially expected that the two judgments could be
transformed to fit the following two-operation model: : '

Dy = Jolst — sf]
Iiij = JR[sj/si]
Sj = Sj )

where D;; and R;; are judgments of “differences” and “ratios”, Jp, and Ji are strictly
monotonic judgment functions, and s* and s are the two scales. In principle, if a single
scale accommodates both difference and ratio operations, the scale attains ratio scale
uniqueness, i.e., only a similarity transformation would allow the scale to successfully

reproduce both rank orders using the two-corresponding operations (Krantz, Luce,
Suppes, & Tversky, 1971).
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Tab. 9: Four theories of “‘ratio” and “‘differences™

Task Theories

two operations one operation

simple biased ratio subtractive
R A/B (A/B)" A/B exp (A—B)
D « A—B A—B log(A/B) A—B

In each theory, the response is assumed to be a linear function of the table entry. All of the above theories
assume scale convergence and imply bilinearity for “ratios” and parallelism for “differences”.

However, Birnbaum and Veit (1974) found that the data were consistent with a simpler
model:

Rij = Jpls; — 5]

li;, = Jplsf — s?]
st =3,

where only one operation is assumed to characterize both comparison tasks. Thus,
the data provided nontrivial support for a prior conjecture of Torgerson (1961) that -
judges compare the two stimuli in the same way, irrespective of instructions.

Four special cases of these models with the J functions specified are listed in Tab. 9.
The two-operation model assuming J linear implies that marginal means for correspon-
ding stimuli should be linearly related, contrary to the data (Birnbaum & Veit, 1974).
The “biased” two operation theory with a power function for magnitude estimation
implies that marginal mean log “ratios” should be a logarithmic function of marginal
mean “‘differences”, contrary of data of nine experiments (Birnbaum, 1980). The one
operation theories in Tab. 9 imply this relationship should be linear.

Birnbaum (1980) reviewed nine studies that have investigated “ratios” and *diffe-
rences”. Dimensions studies included loudness and pitch (Birnbaum & Elmasian,
1977; Elmasian & Birnbaum, 1979), darkness of grays or dot patterns (Veit, 1978;
Birnbaum, 1978), easterliness and westerliness of U.S. cities (Birnbaum & Mellers,
1978), and likableness of adjectives (Hagerty & Birnbaum, 1978). These studies yielded
results consistent with the hypothesis that judges use the same operation to compare
stimuli whether instructed to judge “ratios” or “differences”. The data from these
studies were closely approximated by the following model:

R, = aexp [s; — 5]
blst — s+ ¢
s* =y,

where a, b, and ¢ are empirical constants, and the judgment function for magnitude
estimations of “ratios” is approximated by the exponential function. An alternative
one-operation ratio theory would be consistent with “ratio”” and “difference” data
but is tested by a further extension.
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Extension of ratio-difference problem - .

The principle of scale convergence has been added to other constraints in order to in-
vestigate alternative theories of the ratio-difference problem. Of great concern is the
question, can the ratio theory be modified to explain judgments of “ratios”?

Veit (1978), Hagerty and Birnbaum (1978) and Birnbaum (1982) have investigated
“ratio” and “‘difference” tasks along with tasks involving the comparison of two stimulus
relations. For example, the subject can be shown four stimuli (A, B, C, and D) and
asked to judge the “ratio of the difference” between the first two relative to the difference
between the second two ((A — B)/(C — D)). These four-stimulus tasks allow one to
compare a larger number of district theories, four of which are listed in Tab. 10.

Tab. 10: Selected theories of stimulus comparison

Theory

Task model = task subtractive ratio transformation
R A/B A—B A/B A/B

D A—B A—B ’ A/B A/B

RR (A/B)/(C/D) (A—B)—(C—D) (A/B)/(C/D) A/B/C/D

RD (A—B}Y(C—D) (A-—-B)J/C~—-D) (A/B)/(C/D) (@ —b)/lc—d)
DR (A/B) — (C/D) (A—-B)—(C—D) AB—-C/D A/B/C/D

DD (A—B)—(C—D) (A—-B)—(C—-D) (A/B)(C/D) (a —b)c—d)

For the transformation theory, a = logA, b = logB, etc.

Several theories of stimulus comparison that account for such tasks were proposed
and discussed by Birnbaum (1978, 1979, 1982). Eisler’s (1978) transformation theory
is discussed by Birnbaum (1979, 1982). The subtractive theory gave the best account
of the data of these experiments. According to this theory, subjects compare two stimuli
by subtraction whether instructed to judge “ratios” or “differences. Two differences
are also compared by subtraction whether the subject is instructed to judge “differences
of differences”, “differences of ratios”, or “ratios of ratios”. However, when instructed
to compute “ratios of differences”, the subjects use this model. The theory can be written
as follows:

R;; = JR[SJ — 5

Dy = Jpls; — si]

RR;ju = Jgl(s; — s) — (s — sp]
Ri_jkl = Jpgl(s; — s) — (s« — s}

DDyju = JDD[(SJ —5) — (5, — )]

RDyjy = Jppl(s; — 5)/(s; — )l

Scale convergence is assumed across all six tasks. Veit (1978) and Hagerty and Birnbaum
(1978) derived separate scales from each model for each task and showed that they
were linearly related. They found that other theories led to violations of scale conver-
gence. Birnbaum (1982) fit the models to all of the data simultaneously using one set
of scale values, and found that the subtractive theory (above) gave the best account
of all of the data.
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Reverse or invérse attributes

The relationship between loudness and softness of tones, lightness and darkness of
grays, etc. provides another application of scale convergence.' It seems appealing to
suppose that the scale values of tones are independent of the task to judge loudness
or softness and that they are only mapped differently into responses.

Birnbaum and Mellers (1978) asked subjects to judge “ratios” and “differences”
of easterliness and westerliness of U.S. cities. They found that the data were inconsi-
stent with a ratio model in which distances from zero points were compared. Instead
the data were consistent with the assumption that there is only one mental map (one
scale) with different judgment functions. Data were well-fit by the model:

DE; = a(s; — s)
i = exp(s; —sy)
DW;; = a(s; — s))

Wi =exp(s;—s),

where DE, RE, DW, and RW are “differences” and “ratios” of easterliness and wester-
liness, respectively. The model predicts that “ratios” of easterliness and westerliness
are reciprocally related. All four matrices can be reproduced using the same mental
map. Reciprocal relationship between loudness and softness has not been rejected
a priori by psychophysical theorists, but it seems a very unattractive theory for the mental
map. By analogy, the subtractive theory for “ratios” and “‘differences” of easterliness
and westerliness seems attractive for other inverse attributes such as lightness and dark-
ness, etc.

Contextual effects in comparison

In the previous applications, scale convergence was regarded as a necessary condition
and the attitude was to reject a model rather than give up the premise of scale conver-
gence. The principle can also be regarded as a testable proposition that may be rejected.
When the model is well-established and a plausible theory implies the scales should
change, then scale convergence seems more an empirical issue than a principle to be
assumed. Experiments by Mellers and Birnbaum (1982a, b) illustrate this use of scale
convergence.

Mellers and Birnbaum (1982b) asked subjects to rate the darkness of dot patterns.
Six dot patterns (12, 18, 27, 40, 60, 90 dots) were common to two different contexts
of spacing. In the positively skewed context there were five extra patterns with between
14 and 25 dots. In the negatively skewed context, the five extra patterns had between
45 and 85 dots. The usual contextual effects occurred in the ratings, consistent with

. Parducci’s (1974) range-frequency theory.

To decide whether such contextual effects can be attributed to changes in the values
compared or the judgment function (H or J), Mellers and Birnbaum (1982b) also asked
judges to rate the “differences” between pairs of stimuli presented in the same two
distributions. Two theories were considered. One theory assumes that ratings of single
stimuli are like scale values. Therefore, differences in single ratings should predict
ratings of “differences”. The other theory assumes that differences in scale values esti-
mated from range-frequency theory would predict the rank order of judged “differences”
despite the context in which the “difference” ratings were obtained.
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Mellers and Birnbaum also obtained judgments of “ratios” of stimuli in the same
two contexts, yielding four matrices of data. The following model gave a good account
of the data:

Rijk = ay €Xp (SJ . Si) + bk
Dy = ailsy — s)+ dy,

where R,;, and D,;, are “ratxo” and “difference” judgments in context k; a,, b,, c,,
and d, are constants fit to the data; and s, and s, are scale values, which are independent
of task and independent of stlmulus spacing. Thus the same scale values could be used
to reproduce the data in all four matrices. When scale values were estimated separately
for aech context, they were found to be virtually identical.

The alternative theory that scale values depend on stimulus spacing was not required
by the data. The rank order of differences in rating (from the single stimulus Judgments)
did not predict the rank order of “differences.” That is

Dyj # JIGy — Gyl

for some monotonic J function.

Mellers and Birnbaum (1982b) found evidence that scale values inferred from additive
and subtractive models of cross-modality combination and comparison tasks do appear
to vary as a function of the context. It may be that cross-modality comparisons require
judgment prior to combination or comparison, whereas within-modality comparison
does not require a preliminary relative judgment.

Concluding comments

The scale convergence principle led to confidence that the constant-weight averaging
model should be rejected as a representation of psychophysical “averaging” and as a
theory of impression formation. Thus, it provided an argument against rescaling the
data to fit a model that did not fit raw ratings.

The principle also led to rejection of a model that gave a good fit to raw data. The
ratio model gives a reasonable fit to “ratio’ judgments when certain experimental
procedures are employed. However, the ratio theory fails to give a coherent account
of both “ratio” and “differences” judgments, contextual effects, the four-stimulus
tasks, and “inverse/reverse” judgments. The subtractive model does give a coherent
account of the results.

The social sciences have long envied the coherence of the physical sciences. The dream
of Fechner that psychology would develop a coherent system of laws interlocked by
scales has not yet been achieved. My suggestion is that psychologists take their measure-
ments seriously enough to assume that they will be reflected in several phenomena.
By building scale convergence into our investigations we can find new knowledge that
would not be forthcoming in separate experimental studies of single phenomena.
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