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ABSTRACT. Monotonicity is a fundamental assumption of axiomatic decision
theories. According to this principle, if two alternatives are otherwise iden-
tical, except one has an outcome for at least one nonempty state of nature
that is preferred to the corresponding outcome for the other alternative, then
the alternative with the better outcome should be preferred. Applied to judg-
ments of the value of gambles, the principle states that the judged value of a
gamble should increase monotonically as a function of each outcome, holding
everything else constant. As appealing as this axiom is for normative theory, it
has been systematically violated in experiments in which subjects judge cash
values of gambles. The violation has not been observed in transparent, direct
comparisons, but it has been replicated when the gambles are compared to a
fixed set of cash values. The violations can be explained by the assumption
that decision weights in judgment differ depending on the rank and also on the
augmented sign (which is negative, zero, or positive). Violations of branch in-
dependence can also be explained by rank-dependent configural weighting. The
pattern observed rules out the theory that subjects cancel common outcomes
in comparison. The pattern is also opposite that predicted by the inverse-S
weighting function used in cumulative prospect theory. Testable properties are
suggested to distinguish different models of configural weighting.

1. INTRODUCTION

The principle of consequence monotonicity can be stated briefly as follows: If
two alternatives are otherwise identical but one alternative has a consequence for
one nonempty state of nature that is preferred to the corresponding consequence
for that state of nature given the other alternative, then the alternative with the
better consequence should be preferred.

For gambles defined as probability distributions whose consequences are mon-
etary outcomes, outcome monotonicity can be defined as follows:

Key words and phrases. Decision making and judgment, axiomatic theories of decision-
making, monotonicity, Savage’s axiom, subjective expected utility theory, cumulative prospect
theory, configural weighting, rank-dependent utility theory, dominance, choice, preference, utility.

Acknowledgments. Research summarized in this paper was supported by a National Science
Foundation Grant, SES 8921880, to California State University, Fullerton Foundation. Prepara-
tion of this chapter was facilitated by SBR-9410572. I thank R. Duncan Luce, Barbara Mellers,
John Miyamoto, Peter Wakker, Elke Weber, and an anonymous reviewer for helpful comments on
an earlier draft.

Address for correspondence. Prof. Michael H. Birnbaum, Department of Psychology, Califor-
nia State University, P.O. Box 6846, Fullerton, CA 92834-6846. E-mail: mbirnbaum@fullerton.edu




74 MICHAEL H. BIRNBAUM
Suppose gambles A and A’ differ in their outcomes on one branch as follows:

A =(z,p(z); az, p(az); ... 585, p(as); . . . ; am,p(am))
A" =(y,p(x); a2, p(az); - .. ;0i,0(a:); . - - ; G, D(am))

where p(z) is the probability to receive outcome = (or y), given choice A (or A’ ),
respectively; and the sum of the probabilities is 1 within each gamble. Monotonicity

requires that gamble A is preferred to A’ if and only if gamble B is preferred to B’
where:

B =(z,p'(2); b2, p(b2); - - - 185, 0(b5); - - ; bn, (b))
B' =(y,p'(x); b2, p(b2); . .. ;5,0(b5); - - ; b, D(Br))

for all gambles so defined.

The term stochastic dominance refers to the relation between nonidentical gam-
bles, A and B, such that gamble A stochastically dominates gamble B if and only
if the probability of receiving z or less given gamble A is less than or equal the
probability of receiving z or less given gamble B, for all z. Tversky and Kahne-
man (1986) reported a violation of stochastic dominance, when the relation was
not transparent.

Stochastic dominance combines monotonicity with respect to outcomes and
monotonicity with respect to probabilities. A violation of outcome monotonicity
also violates stochastic dominance, but a violation of stochastic dominance is not
necessarily a violation of monotonicity, unless other assumptions are made (Luce,
1986a, 1988). Luce and von Winterfeldt (1994) noted that it is therefore useful
to decompose the concept of dominance into consequence (outcome) monotonicity
and event monotonicity. In Luce’s (1988) approach, the Ellsberg paradox can
be interpreted as a violation of event monotonicity, but is not a test of outcome
monotonicity.

This chapter deals with outcome monotonicity, concerning which Luce ( 1992¢)
remarked, “Because monotonicity is a keystone to all existing theories of choices
among uncertain alternatives, it is essential that we decide whether or not it is
generally applicable. If not, it’s back to the drawing boards.” (p. 23)

The next section reviews research showing that certain types of judgments sys-
tematically violate outcome monotonicity. A configural weight model is presented
in the third section to describe the violations. The fourth section presents exper-
imental replications and extensions of the research paradigm. The fifth section
takes up choice-based certainty equivalents, which give mixed results, depending
on the method used. The sixth section reviews experiments that have estimated
the configural weighting function for positive, negative, and zero outcomes. The
seventh section takes up a related phenomenon, violations of branch independence,
which can be used to test among different configural weighting models. The eighth
section summarizes the current status of evidence and describes testable properties
that can be used to compare different classes of configural weighting models, and
the ninth section gives a summary of conclusions.
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2. VIOLATIONS OF MONOTONICITY IN JUDGMENT

Although outcome monotonicity seems a very reasonable axiom for the rational
decision maker, recent experiments have found situations in which mean judgments
violate the principle systematically. Birnbaum and Gregory Coffey designed and
conducted two experiments in 1986, following the approach of Birnbaum and Steg-
ner (1979). Their first experiment showed violations of monotonicity that appeared
to indicate that the outcome of zero receives less weight than nonzero outcomes,
similar to results previously reported by Anderson and Birnbaum (1976). Birn-
baum and Coffey designed a stronger test for violations in their second experiment.
Their results were reported by Birnbaum (1987a, 1987b, 1987c).

At this time, collaborative projects were under way with Elke Weber, Barbara
Mellers, Carolyn Anderson, and Lisa Ordéiiez to investigate whether principles of
judgment, inferred from judgments in other domains, also applied to judgments
of gambles. Weber et al. (1992) applied the approach of Birnbaum and Stegner
(1979) to model the relationships between ratings of the risk and attractiveness
of gambles. One line of research was devoted to testing the models of preference
reversals of Goldstein and Einhorn (1987) and Tversky, Sattath, and Slovic (1988),
using the criterion of scale convergence (Birnbaum, 1974, 1982). Although the
expression theory of Goldstein and Einhorn (1987) can accommodate violations of
monotonicity, neither it nor the contingent weighting theory of Tversky et al. (1988)
correctly accounts for changes in rank order between ratings and prices using the
same scale of utility (Mellers, Ordéiiez, & Birnbaum, 1992a). ’

The experiments of Birnbaum and Coffey had been designed to test several
predictions of configural weighting models, including a specific pattern of changes
in rank order of judgments that should be produced by point of view if point of
view affects configural weights, as postulated in Birnbaum and Stegner (1979). The
violations of monotonicity, confirmed in their second experiment, excited interest
and became the focus of new research.

Sara Sutton, Barbara Mellers, Patricia Berretty, and Robin Weiss soon joined in
the study of these phenomena, fitting the data to models and exploring the effects of
different subjects, different values, different stimulus formats, and other variations.
Results of these investigations were published in several papers (Birnbaum, 1992b;
Birnbaum et al., 1992; Birnbaum & Sutton, 1992; Mellers et al., 1992b; Weber
et al., 1992). That research led to further investigations (Birnbaum & Thompson,
1996; Mellers et al., 1995; von Winterfeldt et al., 1997). This chapter will review
this body of empirical research.

Let (z,p;,y) represent the binary gamble to receive z with probability p, and
otherwise receive y (py = 1 —p, > 0). Monotonicity requires that (z1,p:1,y) is pre-
ferred to (2, p1,y) if and only if (z1, ps,y) is preferred to (z2, p2,y); in other words,
if and only if z; is preferred to z2. Birnbaum et al. (1992) found that ($0, .05, $96)
receives a higher mean judgment than ($24,.05,$96), although ($24,.5,396) re-
ceives a higher mean judgment than ($0,.5,$96); indeed, we assume that $24 is
better than $0.

Figure 1 illustrates the pattern of results observed by Birnbaum et al. (1992).
Mean judgments from the buyer’s point of view (the “most a buyer should pay” for
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each gamble), the neutral’s point of view (“fair” price), and the seller’s point of view
(the “least a seller should accept to sell the gamble”) are plotted in separate panels
as a function of the probability to win $96, with open circles for gambles in which
the lowest outcome was $0, and filled circles for gambles in which the worst outcome
was $24. According to outcome monotonicity, filled symbols ($24) should exceed
the open symbols ($0), for all values of p. Instead, the data values cross for three
levels of 1 —p > .8 in each point of view. The percentage of subjects who violated
monotonicity when 1 — p = .95 was 53%, 60%, and 36% in the buyer’s, neutral’s
and seller’s points of view, compared with 34%, 25%, and 36% who conformed to
it, respectively, and the rest were ties. Similar results were observed when $72
replaced $96.
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FIGURE 1. Mean judgments of binary gambles (z,p,y) as a func-
tion of the probability to win $96 (1 — p), with unfilled circles
showing results when = = $0, and filled circles showing results
when z = $24. Separate panels show judgments in the buyer’s,
neutral’s, and seller’s points of view. Crossing of the curves indi-
cates violation of outcome monotonicity. Lines show predictions of
configural weight model. Data from Birnbaum et al. (1992).

3. CONFIGURAL WEIGHT MODEL OF VIOLATIONS AND POINT OF VIEW

The term configural is used to indicate that the parameter representing a stim-
ulus component depends on the relationships between that component and others
that comprise the stimulus array presented on each trial (Birnbaum, 1974). Sub-
jective expected utility (SEU) theory (Savage, 1954), for example, is not configural
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because the weight of each outcome’s utility is independent of the value of the out-
come and its relationships to other outcomes in the same gamble, and the utility
of each outcome is independent of the other outcomes. Similarly, Edwards (1954)
version of SEU using a weighting function for probabilities is also not configural,
for the same reason. “Configural weighting” models allow the weights of the out-
comes to depend on the configuration of outcomes and probabilities that comprise
the gambles, but assume that the utility function is independent of context and
configuration.

Birnbaum’s (1974, p. 559) configural weight model allows the weight of a stimu-
lus component to depend on its rank among the other components that comprise the
stimulus array. Applied to gambles, the weight of the same outcome with the same
probability can be different in different gambles depending on the other outcomes
in those gambles (Birnbaum, 1982, 1992a, 1992b; Birnbaum et al., 1992; Birnbaum
& Sotoodeh, 1991; Birnbaum & Stegner, 1979; Weber et al., 1992; Weber, 1994).

Configural weighting models, such as Birnbaum’s (1974) range model, are
closely related to rank-and sign-dependent utility models (Chew & Wakker, 1996;
Lopes, 1990; Luce, 1992b, 1992c, 1995b; Luce & Fishburn, 1991, 1995; Luce &
Narens, 1985; Quiggin, 1982; Tversky & Kahneman, 1992; Yaari, 1987), which
were developed independently [see review by Wakker (1993)].

Rank-dependent utility theory and rank-and sign-dependent utility theories are
configural weight models that allow violations of outcome independence (see Section
7), but assume monotonicity. The model of cumulative prospect theory is a specjal
case of rank- and sign-dependent theory with a restricted weighting function; this
model implies stochastic dominance. To account for violations of monotonicity,
the numerical representation of rank- and sign-dependent utility theory (Luce &
Fishburn, 1991), for example, would have to be modified to aliow different weights
for different outcomes. Luce (1992b) noted that the violations observed thus far
have been restricted to gambles including the outcome zero, and suggested how a
rank- and sign-dependent representation of certainty equivalents could be modified
to accommodate the violations. In the eighth section of this chapter, empirical
properties are described that can test among various configural weight models. In
this section, we present the model of Birnbaum et al. (1992) to account for violations
of monotonicity and which also describes changes in rank order that depend on the
judge’s point of view.

Birnbaum et al. (1992) represented judgments of binary gambles, (z, pz,y), by
the following configural weight model:

Uy (@,pay) = 21 E 2L (12)

where Uy (z, ps,y) is the utility of the gamble in point of view V; u(z) and u(y) are
the utilities (subjective values) of the lower- and higher-valued outcomes (z < y);
and A and B are their absolute configural weights, which depend on the judge’s
point of view, on probability, and value as in the following equations:

A= O/VS;,;(P::) (1b)
B=(1-ay)[l-5:(1-py)] (1c)
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where ay is the configural weighting parameter for point of view V; p, and py are
the probabilities to receive = or y, respectively; and S;(p;) is a function of the
probability of the lower-valued outcome, =, that depends on its value.

Birnbaum et al. (1992) posited two different S, functions for the cases in which
z > 0 and for z = 0. For .04 < p < .96, S;(p) can be approximated by S,(p) =
.59p+.29, for z > 0; however, for 2 = 0, So(p) is approximated by Sy(p) = .74p+.14.
Note that So(p) is less than S;(p), especially for small values of p. In this model,
monotonicity violations occur because the lowest outcome of zero has less weight
than a lowest outcome that is a small positive amount (for the same low probability).

For three-outcome gambles (z,p;;y,py;2,p,), where 0 < z < y < 2, and
Pz =1 — py — py, Birnbaum et al. (1992) used the following expression:

Au(z) + Bu(y) + Cu(z
UV($7Pz;yaPy§z:pz) = ( )A+B(Z{|20 ( )

(1d)
where
C=(1-ay)[l-S:(1-p,). (1e)

A and B are as defined in Expressions 1b and lc.

In this model, u(z) and S;(p;) are assumed to be independent of point of view,
context, and configuration. Birnbaum et al. (1992) assumed that the weights of
the middle and highest stimuli are equal when they are of equal probability (i-e.,
C = B when p, = p,), an assumption that will be reconsidered in Section 7.

This model can be derived from the assumption that the subject is minimizing
an asymmetric loss function, assuming that the stimuli are spaced so that the re-
sponse is between the lowest and middle stimuli (Birnbaum et al., 1992; Birnbaum
& MclIntosh, 1996). When the response is between the middle and highest stimuli,
however, the weight of the middle stimulus would equal that of the lowest outcome,
a switch of configural weights that allows violations of comonotonic independence
(Birnbaum & McIntosh, 1996). Thus, the loss function approach implies that con-
figural weights will depend not only on rank but also on the spacing of the stimuli.
Experiments to test these interpretations are proposed in Section 8.

The loss function concept also provides a rationale to explain why configural
weights would depend on the judge’s point of view (Birnbaum & Stegner, 1979).
Judge’s “point of view” refers to instructions that may affect the relative costs
of judgment errors in different directions. Examples of viewpoint manipulations
are instructions to the judge to identify with the buyer or seller in a transaction,
to judge the morality of others or to consider being judged, or to identify with
the prosecution or defense in a trial. If point of view affects the relative costs of
over- or under-estimating a value, and if judges choose responses to minimize costs,
then configural weights should depend on viewpoint. If weights change in different
viewpoints, the models predict special patterns of reversals of preference due to
changes in point of view (Birnbaum, 1982; Birnbaum & Beeghley, 1997).

Previous research that fit configural weight models to judgments concluded
that weights also differ for neutral, or zero-valued outcomes (Anderson & Birn-
baum, 1976); such an assumption allows configural weighting to explain violations
of monotonicity. Configural weight models assume scale convergence, the principle

S
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that the utility (or value) function is independent of point of view and configura- ¢
tion. The assumption of scale convergence was used to test rank dependent models

against the nonconfigural models (Birnbaum et al., 1992; Birnbaum & Sutton,

1992).

The configural weight parameters, ay, predict how the rank order of gambles
change in different points of view. For the seller’s point of view, ay was set to
.5, and the values estimated for the neutral’s and buyer’s points of view were
approximately .6 and .7, respectively. Configural weight theory (Expressions la-1e)
led to an estimated u(z) function that was invariant with respect to point of view
(Birnbaum et al., 1992); nonconfigural theories require different u(z) functions in
different viewpoints. This model led to an estimated u(z) function that was also
compatible with estimates of u(z) based on judgments of “ratios” and “differences”
of riskless utility (Birnbaum & Sutton, 1992).

4. REPLICATIONS AND EXTENSIONS

Monotonicity Satisfied in Direct Comparisons. Birnbaum and Sutton
(1992), as part of their study of scale convergence, included a partial replication of
the tests of monotonicity from Birnbaum et al. (1992). They also asked subjects
to choose between pairs of gambles, including pairs involving tests of monotonicity.
Although mean and median judgments violated monotonicity, replicating the find-
ings of Birnbaum et al. (1992), few subjects violated monotonicity when asked to
make direct comparisons.

Figure 2 shows mean judgments from Birnbaum and Sutton (1992) in the
seller’s point of view. [Medians for both buyer’s and seller’s viewpoints are similar,
as shown in Birnbaum & Sutton (1992, Figure 9)]. Mean judgments for (30, p, $96)
and for (80, p, $72) are shown as open squares and circles, respectively, connected by
dashed lines; mean judgments of ($24,p, $96) and ($24, p, $72) are shown as filled
squares and circles, respectively, connected by solid lines. The crossing of open
and filled symbols represent violations of monotonicity. Figure 2 also shows that
judgments of ($24, p, $96) are not simply $24 plus the judgments of ($0, p, $72).

Equations la-1le fit the data of Birnbaum et al. (1992), and predicted the pat-
terns of monotonicity violations obtained by Birnbaum and Sutton (1992) and
Birnbaum (1992b). The gambles in these studies were presented as in the following

example: 5 g

$24 $96

which represents ($24,.2,$96). One possibility was that subjects were violating
monotonicity because of some numerical algorithm induced by the particular stim-
ulus display.

Violations with Pie charts, Negative Outcomes, and Cash Incentives.
Mellers et al. (1992b) replicated and extended the investigation, using a graphical
display of probability, different numerical values, and different subjects. Whereas
Birnbaum et al. (1992) and Birnbaum and Sutton (1992) had used numerical proba-
bilities, Mellers et al. (1992b) represented probability by means of pie charts, to see
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FIGURE 2. Mean judgments of selling prices plotted against the
probability to win either $96 (squares) or $72 (circles) with unfilled
and filled symbols showing results when the lower outcome is $0
or $24, respectively. Data from Birnbaum and Sutton (1992).

if the violations would persist when probability was presented graphically. Figure
3 shows an example display.

FIGURE 3. An example stimulus display, using a pie chart to rep-
resent probability. This stimulus represents ($31.50, .2, $83.50)

With these stimuli, similar violations were observed. Mellers et al. (1992b)
studied judgments of gambles of the form (z,p,y) and (0,p,y) as a function of z
and p. Judgments were made from an ownership point of view, in which the subject
judged either the lowest selling price (to give up playing favorable gambles) or the
most they would pay (to avoid playing unfavorable gambles, like buying insurance).

Mean judgments are shown in Figure 4, with negative numbers representing
offers to pay to avoid the gamble. With y set to $83.50, judgments are plotted
as a function of z with a separate curve for each level of the probability to win
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$83.50 (1—p). A violation of monotonicity is observed for all seven levels of p, com-
paring mean judgments of (30, p, $83.50), shown as unfilled circles, compared with
(85.40, p, $83.50), shown as filled circles connected by dashed lines. (Note that all
seven dashed curves have negative slope.) There were also significantly more indi-
vidual violations of monotonicity between ($0, .05, $83.50) and ($31.50, .05, $83.50)
than between ($5.40,.05,$83.50) and ($31.50, .05, $83.50), even though the former
comparison has a greater difference in expected value.

80 -

.80

.65

Mean Judgment
T
8 -« J

.50

.35 .

31 -0 5 0 5 9 31 56
Amount (z)

FIGURE 4. Mean judgments of binary gambles of the form
(z, p, $83.50), plotted as a function of x with a separate curve for
each level of 1 — p, the probability to win $83.50. The nonmono-
tonic “kink” at £ = $0, shown as unfilled circles and dashed lines,
depicts a violation of monotonicity for each probability used. Data
from Mellers, et al. (1992b)

In another experiment, Mellers et al. (1992b) used monetary incentives, in-
structing subjects that they would play for real cash payoffs one of two selected
gambles, the one to which they assigned the higher value. Violations of monotonic-
ity in judgment persisted even when real money was used as an incentive. They also
found that violations were observed when both x and y are negative; for example,
subjects offered to pay more on the average to avoid the gamble ($0,.05, —$85.50)
than the gamble (—$31.50,.05, —$85.50). Similar violations were obtained when
the absolute magnitudes of the stakes were changed by multiplying both outcomes
by the same constant (see Mellers, et al., 1992b, Figures 6-8 and Tables 1 and 2).
Violations were rare, however, when z and y were of opposite sign.

Violations in Three Outcome Gambles. One interpretation of the con-
figural weighting explanation of monotonicity violations was that subjects adopt
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a simplifying strategy with two-outcome gambles, so zero outcomes would receive
a reduced weight only in simple, two-outcome gambles. For these two outcome
gambles only (this idea assumes), people multiply probability and value, ignoring
the outcome of zero. When there are two nonzero outcomes or three outcomes,
they average the outcomes using weights that are more “regressed” than probabil-
ities. This interpretation implies that violations of monotonicity should not occur
with three-outcome gambles having two nonzero outcomes. Nevertheless, the same
equations and approximated parameters from Birnbaum et al. (1992) successfully
predicted violations of monotonicity in a new set of three-outcome gambles (Mellers
et al., 1995), using the assumption of Birnbaum et al. (1992) that the lowest out-
come receives the same absolute weight in both two- and three-outcome gambles,
and the other two outcomes each receive the weight that a higher outcome receives
in a two-outcome gamble (Expressions la-le).

In later work with three outcome gambles, this simplifying assumption was
revised (as will be discussed in Section 7); nevertheless, the simple assumption and
extrapolation of parameters from Birnbaum et al. (1992) to three outcomes did a
fair job predicting violations of monotonicity with the new gambles.

Although violations of monotonicity have been found consistently in judgment
studies in which the key gambles are judged separately, conditions that facilitate
comparisons among the gambles appear to reduce violations. Mellers et al. (1992b)
found that when the two gambles involving a dominance relation are presented
for judgment in a short list of gambles, the frequency of violations is reduced.
Because direct choices yield a different ordering from that obtained from judgment,
Birnbaum and Sutton (1992) identified their finding as a new type of preference
reversal between judgment and choice.

5. MONOTONICITY AND CHOICE-BASED CERTAINTY EQUIVALENTS

The certainty equivalent is the amount of cash that is psychologically indifferent
to a gamble. Some preference reversals can be reduced when choice rather than
judgment is used to find certainty equivalents (Bostic et al., 1990), so it is reasonable
to ask if the choice task itself, rather than the transparency of the choices presented,
induces conformity to monotonicity.

Choices between Gambles and Fired Set of Cash Values. Birnbaum
(1992b) offered subjects choices between gambles and a list of cash values that
was the same for all gambles. By examining how each gamble stacked up against a
fixed set of cash amounts, this procedure separates choice from transparent compar-
ison. Birnbaum (1992b) found that violations of monotonicity persisted even when
gambles are ordered by choice-based certainty equivalents (based on comparisons
between gambles and a list of sure amounts of money).

The following model is useful for discussing choices between gambles and cash:

P(c,G) = Flu(c) - U(G)] (2)

where P(c,G) is the probability of choosing the sure cash, ¢, over the gamble
G = (2,p,y); U is a function that assigns an overall utility to each gamble; u is
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the utility function for money; F is a monotonic function that maps a given utility
difference into a choice probability.

The certainty equivalent, ¢*, of gamble G is defined as the value of cash that
would be indifferent to the gamble in the sense that it would be preferred half the
time; i.e., the value of ¢* for which P(c*,G) = 1/2. Birnbaum (1992b) found that
values of ¢* violate monotonicity, when certainty equivalents are determined by a
choice procedure in which each gamble is compared to a fixed set of comparison
cash amounts.

Contextual Effects in Choice. Birnbaum (1992b) also found that the value
of ¢* depends on the particular set of comparisons used; higher values of c* are
observed when the average value of the cash amounts offered for comparison are
higher than when the cash amounts are lower on the average. An example of
contextual effects found by Birnbaum (1992b) is illustrated in Figure 5. Note that
the inferred certainty equivalent for this gamble, (80,.95, $48), is larger when the
context of comparison cash values has a median of $77 (filled circles) than in the
context of comparisons with a median of §14 (open circles). The fact that choice
indifference points depend on the context of comparisons makes the interpretation
of choice-based certainty equivalents more complicated.
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FIGURE 5. Percentage choosing cash over the gamble ($0, .95, $48)
as a function of the value of cash, with a separate curve for each
context. Each context used a different set of cash values; filled cir-
cles show results when median of cash values was $77; open circles
show results when median of comparisons was $14. Note that the
certainty equivalents (abscissa projections of 50%) are larger when
the context of cash values has a higher median. Redrawn from
Birnbaum (1992b).
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PEST-based Certainty Equivalents. von Winterfeldt et al. (1997) found
different rates of violations of monotonicity when certainty equivalents were ob-
tained from different procedures. Using PEST, a staircase method in which different
gambles receives different cash comparisons, depending on each subject’s choices,
they concluded monotonicity violations are less frequent than they are in judgment.
Procedures such as PEST confound the distribution of cash values offered with the
gambles to be assessed. Because the same gamble can receive different indifference
points when different contexts of comparisons are used, when different gambles are
presented with different sets of comparisons, it is difficult to know what would have
happened if the gambles had been compared to the same standards.

One (overly simple) model of contextual.effects is to assume that on some por-
tion of the trials, the subject chooses randomly. If so, then the observed choice indif-
ference point will be a compromise between the “true” choice indifference point and
the median of the comparison cash values offered. Thus, the finding by von Winter-
feldt et al. (1997) that certainty equivalents in the PEST method obey monotonicity
may be due either to the subjective values of the gambles obeying monotonicity, or
the fact that on the average higher cash values are presented for comparison to the
dominant gambles in this method.

Unfortunately, the PEST algorithm (and the algorithm used by Tversky and
Kahneman, 1992, as well) allows a gamble of higher expected value to receive com-
parisons of higher average value than a gamble of lower expected value. Such a
procedure may thus find greater satisfaction of monotonicity because it capitalizes
on contextual effects and the monotonicity of expected values rather than because
the procedure itself reveals a “truer” measure of certainty equivalents. Although an
attempt was made by von Winterfeldt et al. (1997) to statistically correct for dif-
ferences in context, statistical partialling does not properly correct for confounded
variables (Birnbaum & Mellers, 1989).

It would be useful to explore a variation of the PEST procedure using the same
values of sure cash for both gambles being compared. One approach would be to
study directly contextual effects by systematic variation of the algorithm. Another
approach would be to “yoke” two gambles, such as ($0, .05, $96) and (824, .05,
$96), so that the same cash comparisons were presented on different trials against
these two gambles. Such an experiment could provide the same context for both
gambles being compared.

Scalability and Monotonicity in Choices between Cash and Gambles.
Birnbaum and Thompson (1996) considered the following set of relations. For each
value of ¢, operationally define the relation, >, as follows:

A >, B if and only if P(c,A) < P(c,B) 3)

where P(c, A) represents the proportion of subjects preferring cash amount ¢ over
gamble A in a context in which the distribution of cash amounts is fixed for all
gambles.

If Equation 2 held with a single function ¥, then all of the relations in Expres-
sion 3 should agree (i.e., the comparison between two gambles would be independent
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of the cash value ¢). The agreement of the relations in Expression 3 is termed scala-
bility. If F' were subscripted for each gamble, then the inferred ordering of gambles
in this set of relations can depend on the value of ¢, violating scalability. Busemeyer
(1985) found violations of scalability that suggest that F' in Equation 2 depends on
the variance of the outcomes within the gamble. Birnbaum and Thompson (1996)
found that observed choice proportions violate both monotonicity and scalability.

Figure 6 illustrates these violations by plotting the proportion of choices favor-
ing the cash over (8$0,.2,$96) and ($48,.2,$96), shown as open and filled circles,
against the value of cash, ¢. Crossing of curves in Figure 6 represent violations
of scalability. Monotonicity is violated in Figure 6 when the open circles are be-
low and to the right of the filled circles. For values of ¢ less than $48 (the lowest
positive outcome), monotonicity of >, is satisfied, but when ¢ > $55, it is system-
atically violated. For these gambles, certainty equivalents (abscissa projections of
c¢* corresponding to ordinate = 50%) and the >, relationship (for ¢ > $55) violate
monotonicity.
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FIGURE 6. Percentage of choices preferring cash to gambles, plot-
ted as a function of the amount of cash, using solid circles for
($48,.2,$96), and open circles for (80,.2,896). Crossing of the
curves represents violation of scalability. When solid circles are
above open circles, there is a violation of monotonicity for that
value of ¢. In this case, monotonicity is satisfied for ¢ < $55, but
not for ¢ > $55. Certainty equivalents (abscissa projections of
50%) also violate monotonicity. Similar results were obtained for
other gambles. Data from Birnbaum & Thompson (1996).

6. WEIGHTING FUNCTIONS

The violations of outcome monotonicity can be predicted by different weighting
functions for gambles with or without the outcome zero. This section explores
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determinants of the weighting functions as a function of the number, rank, and
sign of the outcomes.

Weights of Equally Likely Outcomes as a Function of Number. Birn-
baum and McCormick (1991) used yet another procedure for investigating viola-
tions of monotonicity in judgment. Their experiment was also designed to estimate
weighting functions for positive, negative, and zero outcomes presented with dif-
ferent frequencies. Gambles were presented in the form of a list of equally likely
outcomes that would be placed into an urn, from which one would be drawn at
random to determine the outcome. For example,

(924, $96, $96, $96, $96)

represents an urn with five equally-likely tickets, from which one will be selected at
random to determine the prize. This gamble offers a probability of .2 to win $24
and a .8 probability to win $96. However, in this procedure, the probabilities are
not stated, but left to the subject to infer from the lists of values.

Gambles were judged from the viewpoint of “receipt indifference”. Subjects
were instructed to judge the amount of money that was equal to each gamble in the
sense that they would be indifferent between receiving (or paying) that amount or
receiving (or paying out) the outcome of the gamble. Forty-three undergraduates
judged the values of 230 distinct gambles, consisting of from 2 to 32 outcomes
that were positive, zero, or negative, of different frequencies. The gambles were
constructed from the union of four subdesigns.

The first subdesign used 55 gambles composed of two equally-likely outcomes,
using all pairs of the following 11 values, -$96, -$72, -848, - $24, -$12, $0, $12, $24,
$48, §72, §96. The second subdesign used 150 gambles containing from 2 to 32
equally likely outcomes of exactly two different values (z,n,;y, ny); there were six
pairs of values (z,y): (—$96, —$48), (—$96, $0), (—3$96, $96), (—$48, $48), ($0, $96),
($48,$96); there were 5 different values of ny (n, = 1,2,4, 8, or 16 tickets) combined
with 5 different values of n; (ny = 1,2,4,8, or 16). The third subdesign contained
25 gambles of the form (z,1;896,n,) with one ticket having one of 5 values of
z (—$96, —$48, 80, $24, $48), factorially combined with 5 different values of ny for
y = $96 (n, = 1,2,4,8,16), producing probabilities, n/(n; + n,), of .5, .667, .8,
.889, or .941, to receive $96. The fourth subdesign combined 5 different values of n,
for x = §0, (n; = 1,2,4,8,16) with 5 single values of y = —$96, —$48, $24, $48, $96.

Birnbaum and McCormick fit the following model to the data:

Ur(a,naiy,my) = 242 2 BU) (12)
where Ur(z,ng;y,ny) is the utility of the gamble from the receipt “indifference”
point of view; u(z) and u(y) are the utilities of the outcomes; A and B are the
weights of the outcomes, which depend on the number of outcomes of each value
(ne and ny), the rank of the outcomes in the gamble (either lower or higher), and
the augmented sign of the outcomes (the three levels of augmented sign, s,, are +,
0, and —, for > 0, z = 0, and = < 0, respectively):

A=W(ng,rg,s;) (4b)
B =W(”y:"’y’ sy) (4c)
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where n; and n, are the number of outcomes; r; and r, are the ranks of the
outcomes (i.e., either least or most in the gamble); s; and s, are the augmented
signs of outcomes z and y, respectively. Because this experiment used five levels of
number of outcomes, two levels of rank, and three levels of augmented sign, there
are 30 weights to estimate (one of which can be fixed). Consistent with previous
results (Birnbaum & Beeghley, 1997; Birnbaum et al., 1992; Birnbaum & McIntosh,
1996), the data could be as well fit with u(z) = z as with a general power function,
and the relationship between overt judgments and subjective values of Equation 4a
could be approximated as linear.

The need to estimate the weight of the zero outcome separately from those
for nonzero outcomes can be seen in Figure 7. Figure 7 shows mean judged indif-
ference values for gambles with one ticket that is either $0 (open circles) or $24
(filled circles) and either 1, 2, 4, 8, or 16 tickets to win $96 [($0,1;$96,n,) and
($24,1;896,n,)]. Mean judgments are plotted as a function of the probability to
win $96 [i.e., ny/(1 + n,)]. Crossing of the curves in Figure 7 replicates the vio-
lation of monotonicity in Figure 1, using a yet another procedure for representing
probability. The crossover in Figure 7 can be described by Expressions 4 if the
weighting function depends on whether z is zero or positive.
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FIGURE 7. Mean judgment of receipt cash indifference value, as
a function of probability to win $96, with open and closed cir-
cles showing judgments when the lowest outcome was $0 and $24,
respectively. Probabilities were manipulated by including one out-
come of $0 or $24 with 1, 2, 4, 8, or 16 equally-likely outcomes of
$96. From Birnbaum and McCormick (1991).

The 30 weights of Expression 4 were estimated from the mean judgments of the
230 gambles used in the experiment. The estimated values of A (and B) in Equa-
tions 4b and 4c can be further simplified because they fit closely to the following
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multiplicative model:

W(nm; Tz 3:::) = f(nz)aV (re, sa:) (5)

where f(n;) is a function of number of outcomes, and ay (r, ;) are six weights for
two ranks and three augmented signs; these would be expected to depend on point
of view, V. Fit of this model to the estimated weights can be assessed in Figure 8,
which plots the estimated weights as a function of the estimated values of f(n),
with a separate curve for each level of rank and augmented sign. According to the
multiplicative model of Equation 5, estimated weights should be linearly related
to each other, with different slopes for different ranks and augmented signs, but
they should share a common point of intersection. The estimated weights, shown
as symbols, fall close to the bilinear fan predicted by the multiplicative model of
Equation 5, shown as straight lines that intersect at a common point.
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FIGURE 8. Estimated weights of n = 1, 2, 4, 8, or 16 equally likely
outcomes, fit to judgments of 230 gambles in the “indifference”
viewpoint, plotted as a function of the number of outcomes of a
type, with a separate symbol for each combination of rank (circles
= lower outcome, squares = higher outcome) and augmented sign
(small = negative, unfilled = zero, large = positive) of outcomes.
Lines show predictions of multiplicative model of f(n) by a function
?f rar;k and augmented sign. From Birnbaum and McCormick
1991).

For rank = 1 (lower outcome), the estimated configural parameters, ay in
Equation 5, are .172, .127, and .232, for negative, zero, and positive outcomes,
respectively. For rank = 2 (higher outcome), the parameters are .359, .216, and
.165, respectively. Thus, for two positive outcomes, the relative weights of the lower
and higher outcomes are .58 and .42, respectively, consistent with previous find-
ings of “risk aversion” (greater weight on lower positive outcomes) in the neutral
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viewpoint. The smallest weight (.127) is for zero outcomes when zero is the low-
est outcome; this reduced weight for zero accounts for violations of monotonicity.
When the highest outcome is negative, it has greater weight (.359) than the low-
est negative outcome (.172), consistent with previous findings of “risk seeking” for
purely negative gambles (e.g., Tversky & Kahneman, 1992).

Equation 5 simplifies the treatment of monotonicity violations. Instead of two
Sz(p) functions, there is only one f(ng) function, the analog of S(p), and the
effects of rank and augmented sign are assumed to be multiplicative changes only,
produced by different values of ay.

If the ay parameters were all equal, and if f(ng) = n,, then Equations 4 and 5
would reduce to expected utility theory. Instead, the estimated f(n) function can
be approximated as the square root of n,. The fact that f(n.) follows this function
implies that the relationship between relative weight [A/(A + B)] and probability
[averaged over different combinations with the same probability, n; /(ng +ny)], will
have an inverse-S relationship.

Varey, Mellers, and Birnbaum (1990) asked subjects to judge the proportion
of dots of one color as a function of the numbers of dots of each color, and found
a similar inverse-S relationship between average judged “proportion” and actual
proportion. This function was explained by Varey et al. (1990) in terms of the
psychophysical functions relating subjective number to actual number of dots in a
relative ratio model. The psychophysical functions in that study were constrained
to also account for judgments of “differences” and “ratios” of the numbers of dots
(using subtractive and ratio models), as well as “proportions.” A similar inverse-S
weighting function has also been postulated by Tversky and Kahneman (1992) in
their model of cumulative prospect theory, but it has a different interpretation in
that theory. The difference in interpretations will be taken up in the next sections.

Cumulative Prospect Model of Binary Gambles. Tversky and Kahne-
man (1992) presented a special case of rank- and sign-dependent utility theory in
which the weights of positive outcomes depend on the decumulative probability of
each outcome in the gamble. For binary gambles of the form, (2,1 — p,z), where
0 < z < z and p is the probability to receive the higher outcome, the cumulative
prospect model represents the value of the gamble as follows:

V(z,1~p,2) = (1 — n(z))u(2) + 7(z)u(z) (6a)
where w(z) = W(p) is the weight of the higher outcome; the values of the two
outcomes are u(z) and u(z).

Tversky and Kahneman (1992) approximated the value function with u(z) =

2P, where § = .88. In their model, the weight of the higher outcome, z, in a two
outcome gamble is given by the following expression,

~ _ P’
7!'(.'17) - W(p) - [p7 + (1 __p)r\/]]_/ty (Gb)
where the estimate of v = .61 for positive outcomes. The certainty equivalent of a
gamble is calculated from the inverse of the value function in Expression 6a,

CE(z,1 - p,z) = V(2,1 - p,z)"/~. (6¢c)
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Tversky and Kahneman (1992) fit their model to transformed certainty equiv-
alents, as shown in Figure 9. Each symbol represents a median certainty equivalent
from Tversky and Kahneman (1992, Table 3), subtracting 2, and divided by z — z
Unﬁlled squares, large circles, triangles, and small circles show adjusted certaint};
eql}lvalents for (80, p,z), where z = $50, $100, $200, and $400, respectively. The
§olld squares show results for gambles of the form ($50,1—p, $150). The solid .curve
in the figure shows Equation 6b, transformed by Equation 6c.
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FIGURE 9. Median adjusted certainty equivalents of binary gam-
bles plotted against the probability to win the larger outcome
(pata from Tversky & Kahneman, 1992). Two weighting func-
tions are compared. The solid line is the curve fit by Tversky and
Kahneman (1992). The dashed curve shows that the configural
weight model makes nearly identical predictions.

. T_he experiment of Tversky and Kahneman (1992) was not designed to test for
violations of monotonicity. Because of the confound between expected value and
the set of comparisons offered for each gamble, and because of the use of relatively
large lower positive outcomes ($50), their experiment is not well-suited for this
purpose. prever, if u(z) = x, for $0 < = < $150, if the solid squares fall on the
same function, then there is no evidence of a different weighting function for zero
outcomes for these data. If u(zx) = 2%, as suggested by Tversky and Kahneman
il}(l)wevgr, t%len the ﬁlled and unfilled circles in Figure 9 should not coincide unless,
thgszveiaﬁzz;nritfautrilgzlsc?n differs for these cases. That experiment cannot distinguish

Tl_le dashed curve plots the configural weight equations, Equations 4a and 5
assuming that the weight of the lower and higher outcomes are A4 = ay f(p) a,nd’
B = (1 ~av)f(1 — p), where f(p) = p°® and ay = .63 for the lower outcome
Ec.lu‘atlloys 4a and 5 can be derived from the theory that subjects act as if they are:
minimizing an asymmetric squared loss function (weighted by ay and 1 — ay for
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squared overestimation and underestimation, respectively), by substituting f(p) for
p, and f(1 — p) for 1 — p in Equation 6 of Birnbaum et al. (1992). The solid and
dashed curves are virtually identical, but the implications are quite different, as
becomes apparent for three-outcome gambles.

It is interesting that the value of ay = .63, which fits the data of Tversky
and Kahneman (1992) under the configural weighting interpretation, has also been
obtained in two other experiments. It agrees with the weight of the lower positive
outcome estimated in the neutral (“fair price”) point of view by Birnbaum et al.
(1992). The same value of ay was also estimated from experiments testing interval
independence (Birnbaum, Thompson, & Bean, in press). In one experiment, sub-
jects judged the amount they would pay to receive one gamble rather than another.
Subjects offered to pay an average of $44 to play (374, $100) rather than ($8,$100)
but they offered to pay only $24 to play ($6,$74) rather than ($6,$8). Ratings
of strength of preference also showed that the judged strength of preference was
greater when the common outcome was the highest than when it was the lowest
outcome. Such violations of interval independence can be explained by greater
weight on the lower outcome, and this experiment led to the value of .63 for that
relative weight.

For two outcome gambles, the cumulative prospect model and the configural
weight model (Equations 4a-4c and 5) make virtually identical predictions, as shown
in Figure 9. However, for three outcome gambles, the theories make very different
predictions for violations of branch independence, as will be shown in the next
section.

When there are more than two outcomes, cumulative prospect theory postu-
lates that the weights can be represented as differences in the W(p) function for
decumulative probability,

w(x;) = W(P;) — W(Qs) (7

where 7(z;) is the weight of outcome «; in the gamble, P; is the decumulative
probability that the outcome in the gamble is > z;; Q; is the probability that
the outcome exceeds z;. For three, equally likely positive outcomes, the middle
outcome would have the least weight, because w(z) = W(2/3) — W(1/3) is the
smallest of the three vertical differences (weights) in an inverse-S function, such as
Figure 9.

7. VIOLATIONS OF BRANCH INDEPENDENCE

Savage’s sure thing principle states that if two alternatives yield the same conse-
quence for some state of the world, the value of that consequence should not make
a difference for the preference due to other aspects of the alternatives. Branch
independence corresponds to the “weak independence” condition that Cohen and
Jaffray (1988) find more plausible than Savage’s axiom. It states that if two gam-
bles have the same outcome produced by the same event with a known probability,
the value of that outcome should have no effect on the preference order. For three-
outcome gambles (z,p;y, g; 2), in which the outcome is x with probability p, y with
probability ¢ and z otherwise (1 — p — ¢), branch independence can be written as
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follows:

(=,p;y,4,2) = (&', 'y, ¢s 2) .

if and only if (8)

(@.py,¢7) - (2,094, 2)
where 0 < p+q = p' +¢ < 1, and > is the preference relation. Changing the
common branch of z (with probability 1 — p — ¢) to 2’ (at the same probability)
should not affect the preference order produced by the other components of the
gamble.

Branch independence is required by Savage’s (1954) SEU theory, and is also
implied by Edwards’ (1954) psychological version of SEU that uses a weighting
function of probability. It would also be observed if subjects were to edit the
gambles being compared by canceling common branches, as discussed by Tversky
(1969, 1972a), Kahneman and Tversky (1979), and Tversky and Kahneman (1992).

However, rank dependent utility theories allow violations of branch indepen-
dence. For example, suppose that the rank-dependent utility of a gamble com-
posed of three equally-likely outcomes (z,z,y), with outcomes chosen such that
0<z<z' <z <y<y <2, isgiven by the following expression,

RDU(z,z,y) = wru(z) + wpu(z) + wruly) (9a)
where RDU(2, z,y) is the rank-dependent utility of gamble (2, z,y); wr, war, and
wy are the weights of the lowest, medium, and highest of three equally likely
positive outcomes, respectively. When the common outcome is changed from lowest

to highest (z to z’), then the weights of the low, medium, and highest outcomes are
associated with z, y and 2, respectively, as follows:

RDU(z,y,2') = wru(z) + wyu(y) + wrgu(z'). (9b)

Violations of Branch Independence in Choice. Birnbaum and Mclntosh
(1996) showed that Expressions 9a-9b imply that branch independence can be vio-
lated in two opposite ways. In the first case,

wr uly)—uly) _wm
wy  ulz) —u(z') " wy
if and only if (10)
(z’ x’ y) >- (Z’xl,y’) a'nd (m, y! z') < (x,, yl’z,)'
In the other case,
wr _u(y)—uly) | wm
wy  u(z) —u(z') T wgy
if and only if (11)
(z,7,9) < (2,7',y') and (z,y,2") > (', 2').
Experimentally, the tactic is to systematically vary z, y, ', and ¥’ to find an inter-
mediate value for the ratio of differences in utility, which should produce a reversal
of preferences due to the change from z to z' (a violation of branch independence).

Birnbaum and Mclntosh (1996) found systematic violations of branch indepen-
dence in choices between gambles composed of three equally likely outcomes. They

]
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found that most people prefer ($2, $40, $44) to ($2, $10, $98); however, most people
also prefer (810, $98, $136) to ($40, $44, $136). This pattern was replicated with
many different combinations of values. This pattern of preferences is consistent
with Expression 10 but it is opposite that implied by Expression 11, which follows
from the inverse-S weighting function of the cumulative prospect model of Tversky
and Kahneman (1992).

According to the inverse-S (Equations 6b and 7), the middle of three equally
likely outcomes should have the least weight. If the middle outcome had the least
weight, then Expression 11 would follow because wr/wp > 1 and 1 > wpr/wgy.
These systematic violations are also not consistent with the theory that subjects
edit and cancel common components when making choices, which implies that any
violations of branch independence would be due to error (and should therefore be
unsystematic).

Violations of Branch Independence in Judgment. Birnbaum and Beegh-
ley (1997) found similar (but distinct) violations for buyer’s and seller’s prices.
The violations of branch independence were again opposite those predicted by the
inverse-S weighting function in both points of view. For example, ($4, $39, $45)
was judged higher than ($4, $12, $96) yet ($39, $45, $148) was judged lower than
(812, $96, $148) in both viewpoints. However, judgments in the buyer’s point of
view of (z,y, 2) decrease as |z —y| is increased, holding z +y constant, for all values
of z; whereas, in the seller’s point of view, these judgments increase as a function
of |z — y| when z is the highest outcome, but decrease when 2 is not highest. These
changing violations and preference orders are consistent with the theory that the
utility function of money is independent of the task, but that configural weights
depend on the judge’s point of view (Birnbaum et al., 1992; Birnbaum & Stegner,
1979; Birnbaum & Sutton, 1992).

Weights estimated from these three studies are presented in Table 1. In all
three experiments, the different rank orders of the data could be well fit with
the same utility function, u(z) = z for $0 < z < $150. Although the weights
differ in different tasks and viewpoints, all three sets of weights satisfy Expression
11. Weights from the choice task are intermediate between those obtained from
judgments of buyer’s prices and seller’s prices, apparently closer to the buyer’s
' viewpoint. The finding that all three experiments share the same utility function
and weights that satisfy Expression 10 suggests that the pattern of violations is not
due to something peculiar to either choice or judgment.

8. TESTING AMONG CONFIGURAL WEIGHT MODELS

Until recently, most empirical work has been designed to distinguish configu-
ral weight theories from simpler, nonconfigural theories, rather than to test among
alternative configural weight models. This section describes several properties that
can be tested to distinguish among various models that have been suggested. These
empirical properties are stochastic dominance, comonotonic independence, distri-
bution independence, cumulative independence, and asymptotic independence.

Stochastic Dominance. Cumulative prospect theory implies stochastic dom-
inance, whereas original prospect theory violates stochastic dominance (Kahneman
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Experiment Lowest Middle Highest
Buyer’s Prices .56 .36 .08
Seller’s Prices 27 .52 21
Preferences .51 .33 .16

TABLE 1. Estimated relative weights of three equally likely out-
comes as a function of rank. Relative weights are normalized to
sum to one by dividing by the sum of weights in each case. Weights
for Preferences were estimated by Birnbaum and McIntosh (1996);
Weights for Buyer’s and Seller’s Prices are from Birnbaum and
Beeghley (in press). All three studies were fit with the same util-
ity function u(z) =z for 0 < z < $150.

& Tversky, 1979; Tversky & Kahneman, 1986, 1992). The configural weight model
presented here violates monotonicity, therefore, it violates stochastic dominance.
As shown below, this model also implies other violations of stochastic dominance
that have not yet been tested. :
According to the configural weight model presented here, for example, using
the parameters of Birnbaum and McIntosh (1996), U($12,.05; $14, .05; $96) = 53.6,
which is less than U($12,.10;890,.05;$96) = 61.1, so the latter gamble should
be judged better, even though the former stochastically dominates it. It seems
worthwhile to test such predictions for violations of dominance using judged prices,
using indirect comparisons in which each of the above gambles would be compared
against a third gamble such as (855, .5; $59, .5), and using direct comparisons
between the two gambles. Note that this prediction of a violation of dominance
does not rely on the presumed lower weighting for zero-valued outcomes, but follows
instead from the configural weight model’s weighting scheme for positive outcomes.
Although there have been occasional demonstrations of violations of stochastic
dominance (e.g., Tversky & Kahneman, 1986), aside from the program of research
reviewed here on violations of monotonicity, we do not yet have an adequate em-
pirical description of more general types of violations of stochastic dominance.

Comonotonic Independence. Comonotonic independence is a special case
of branch independence in which the preference order is assumed invariant when
the common branch does not change rank order in the gambles to be compared.

For example, for three outcomes, comonotonic independence is the special case
of Expression 8 where z and z' maintain the same rank in all four gambles (i-e.,
z and 2’ are either lowest in all four, middle in all four, or highest in all four
gambles). A related property, ordinal (or “tail”) independence, was tested by Wu
(1994), who reported systematic violations that he attributed to a cancellation
process specific to choice. Comonotonic independence has been tested in pure form
(keeping the number of distinct outcomes equal in both gambles compared) in only
a few papers (Birnbaum & Beeghley, 1997; Birnbaum & McIntosh, 1996; Wakker,
Erev, & Weber, 1994; Weber & Kirsner, 1996), and it has not yet been reported to
be systematically violated.

As noted by Birnbaum and McIntosh (1996), however, comonotonic indepen-
dence has not yet received a strenuous test. Testing comonotonic independence
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evaluates the class of rank- and sign-dependent utility theories (Luce & Fishburn,
1991, 1995). This class includes cumulative prospect theory (Tversky & Ka.hneman,
1992) and the model presented here, both of which satisfy comonotonic indepen-
dence when the probability distribution is fixed.

Chew and Wakker (1996) discuss the comonotonic sure thing principle as char-
acterizing “all existing rank-dependent forms,” but it is important to note that
their treatment does not include all configural forms. If configural weights depend
on the spacing of the outcomes as well as their ranks, as they would according to
the minimum loss theory presented by Birnbaum et al. (1992), then comonotonic
independence can be violated (Birnbaum & McIntosh, 1996, Appendix A).

Distribution Independence. Distribution independence assumes that pref-
erences should be independent of the (common) probability distribution of common
branches. For four outcome gambles, with outcomes chosen such that 0 < z < z' <
z <y < ¥y' < v, and nonzero probabilities, p, g, r, and s = 1—p-g~—r, distribution
independence requires:

(z,r2, 00, ¢ v, 8) = (2,752, 9y, 45 v, 8)
if and only if (12)

(z,8%,0:9,¢v,7) > (2,82, 09, ¢;0,7)

Distribution independence asserts that the trade-off between (z,p;y,q) and (z,p;
v',q) should be independent of the probability distribution of the common branches
(r and s vs. s and r), holding (p, ¢) fixed. Note that in Expression 12, the common
outcomes are the same, but their probabilities differ; whereas, in branch indepen-
dence the probabilities of the common branches are the same and their outcomes
differ.

The configural weight model presented in this chapter can violate branch ir}de-
pendence but must satisfy distribution independence. The revised configural weight
model of Birnbaum and Stegner (1979, Equation 10), however, violates distribu-
tion independence. This model will be discussed further in the section below on
asymptotic independence. '

Cumulative prospect theory implies systematic violations of distribution in-
dependence, with the pattern of violations dependent on the W(p) func:tion of
Equation 7. For example, the model of Tversky and Kahneman (1992) implies that

($2,.59; $10, .2; $98, .2; $108, .01) > ($2,.59; 850, .2; $54, .2; $108, .01);
however,
($2,.01; $10, .2; $98, .2; $108, .59) < ($2,.01; $50, .2; $54, .2; $108, .59),

violating distribution independence.

Birnbaum and Chavez (1996) tested distribution independence, and found small
but systematic violations in the opposite direction from those predicted by cu-
mulative prospect model. For example, they found that the percentage choosing
(2,.59;z,.2;y,.2;v,.01) over (z,.59; 2, .2; ¥', .2; v, .01) is greater than the .pergentage
choosing (z,.01;z,.2;y,.2;v,.59) over (z,.01;2,.2;¢',.2;v,.59) for all six different
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c_ontrasts: of (z, y? vs. (z',y') used, contrary to the prediction of the inverse-S func-
tion, whlc'h predicts the opposite pattern of shifting preferences. Similar results
were obtained when (r, s) = (.55,.05).

. Cumulative Independence. If the weights depend entirely on the cumula-
tive (or decumulative) distribution of outcomes, as in Equation 7, then the weights
of o_utcpmes should be independent of how that cumulative (decumulative) distri-
butlc.)n is produced. Cumulative independence holds for cumulative prospect theor
and is systematically violated by configural weight model ' ' Y

Cumulative prospect theory makes the following predictions for two and three-

outcome gambles, with nonzero probabilities
y D and r that
0<z<a'<z<y<y <2 v 4 sum to one, and

If (2,752,p,9,9) = (2,752, p;9/,0), then (z',r;y,p+q) > (&', r+py',q). (13)
Similarly,

! . .
If (z',p9,4:2',r) > (2,939, 4, ', 7), then (', p;o/, q + r) > (z,p+qy,r). (14)

These tests of cumulative independence do not assume a, particular form of W (p)
such as the inverse-S, but hold for any cumulative (or decumulative) weightin’
fgnctlon. These tests are not “pure” tests of a single axiom, as they ean bi
.vxewed as a combination of comonotonic independence, monotonicity, transitiv-
ity, .and the “accounting equivalence” that equal outcomes can be C(;alesced b

adding their probabilities. [For example, one can deduce Expression 13 as fol}-’
lows: If (2,m;2,0;9,q) > (2,7;2',p;9/,q) then (2',r; ,09,9) = (&', r;7, 39, q)
by comonotonic independence; by monotonicity, (¢',r;y,p;y,q) > (:z:', , 12':1:, p', Y ,q)'
ther.efore, ‘t.>y transitivity, (z',7;9,p;9,q9) = (2',r;2',p;y ,q); finally, b;r t,h:e (;oa-,
}escmg equivalence, (z',r;y,p+ q) = (z',7 + p; ¢/, g).] The key idea of cumulative
independence is that increasing the probability of an outcome should have the same
effect on weights as adding another distinct outcome with the same probability, if
that outcome preserves comonotonicity. :

_ .Conﬁgura,l weight theory, on the other hand, distinguishes increasing the prob-
ability of an outcome from adding a new outcome. If S(p) is negatively accelerated
then a new outcome will have greater weight than the marginal increase in weighiz
duse to the same increase in probability of an existing outcome. The configural
welgl.xt model presented here implies violations of the cumulative independence
conditions described above. For example, with p =g =7 = 1/3, using parameters

b} h

U(82,1/3;$40,1/3; $44, 1/3) =21.3 > U($2,1/3; $10, 1/3;$98,1/3) = 20.0;
however,
U(810,1/3;844,2/3) = 25.9 < U($10,2/3;$98,1/3) = 35.4,

in contradiction to Expression 13.
Similarly,

U(810,1/3;$98,1/3;8108,1/3) = 55.7 > U(340,1/3; $44,1/3; $108, 1/3) = 52.2;
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however,
U($10,1/3;$98,2/3) = 51.2 < U($40,2/3; $98,1/3) = 56.7,

contradicting Expression 14.

This property appears to give a sharp distinction between cumulative prospect
theory and the configural weight model presented here. Although the property has
not yet been tested in a single experiment with the same subjects, data by Wu and
Gonzalez (1996) combined with data of Birnbaum and McIntosh (1996) suggest
indirectly that the property might be violated.

Asymptotic Independence. Birnbaum and Stegner (1979, Equation 10) pre-
sented a revised configural weight model in which the transfer of weights among
outcomes of different ranks depends on the point of view of the judge and is also
proportional to the weight of the outcome losing weight. This revised model differs
from the previous rank-dependent configural weight model of Birnbaum (1974),
extended by Birnbaum et al. (1992), and presented here. The revised configural
weight model of Birnbaum and Stegner (1979) violates both distribution indepen-
dence and asymptotic independence.

For two outcome gambles, asymptotic lower independence can be defined as
follows: as p - 0, U(z,p,y) — u(y), for all z. Asymptotic upper independence is
defined as follows: as 1 —p — 0, U(z,p,y) — u(z), for all y. Thus, the value of an
improbable outcome should become less and less relevant as the probability of the
other outcome approaches 1.

For moral judgment (Birnbaum, 1973; Riskey & Birnbaum, 1974), likeableness
judgments (Birnbaum & Rose, 1973), and buying prices (Birnbaum & Stegner,
1979), however, the value of the worst deed, trait, or estimate appears to set an
upper limit on a person’s morality, likeableness, or buying price. Given a person
has done a single very immoral deed, for example, it appears that the person’s
judged morality is bounded to be low, no matter how many good deeds that person
does. However, a single good deed appears to set no such limit on the lower bound
of judged morality.

For gambles, asymptotic independence says that no matter how bad an outcome
is, it should approach irrelevance as it becomes less and less probable. A contrary
notion, for example, is that some outcomes are so bad that no matter how small
their probabilities, the utility of a gamble with such a possible outcome is bounded
to a lower value unless its probability is zero. Discussions of insurance and risk of
accidental nuclear war, for example, often seem to express this notion. The aversion
that people have toward probabilistic insurance (a less than half-priced policy in
which the insurance agent flips a coin to decide if the company will pay off in the
event of a fire) suggests that asymptotic independence may be violated. People
often express the idea that the purpose of insurance is to eliminate the possibility
of bad outcomes, rather than to merely reduce their probabilities.

The revised configural weight model presented by Birnbaum and Stegner (1979,
Equation 10) allows an outcome of near zero probability to place an upper (or lower)
bound on the response as the probability of that outcome approaches (but does not
equal) zero. For buying prices of two outcome gambles, (z,p,y), £ <y,0<p <1,
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%ssum.ing that the. lower outcome receives greater weight, this revised model retains
quation la, but it replaces Equations 1b and 1c with the following:

A= S:(p)+avS(1-p) (15a)
B= (1-ay)S;(1-p) (15b)

where A and B are the absolute configural weights of the lower and higher outcomes
regpectlvely, as in Equation la; and ay is the configural weight parameter that in,
E?;s rglod.el rep'resents the proportion of weight taken from the higher valued outcome
(e gnetéyilrrlxgE 1}){1;:::8)1 :Irllsdlg.wen to the lower valued outcome. The other terms are as
For example, if S(p) = p, and ay > 0, Equations 15 imply that U (%,p,9) = [p+
ay (1-p)lu(z)+[(1-ay)(1-p)u(y). Asp =0, U(z,p,y) - avu(w)+(’1—,av)U( )
which indicates that as long as the lower outcome is possible, it limits the utilityyo%
the gamb}e. Howt.aver, as1-p— 0, U(z,p,y) = u(z). Thus, this model violates
asymptotic loyver independence, but satisfies asymptotic upper independence
_ When Welght is transferred from the lower to the higher value, as for exa.um le
in selling prices, then the weight transferred is proportional to t};e weight of &e

lower value, as follows: ’
A= (1-av)S,(p) (16a)
B = 5:(1 - p) + av S:(p). (16b)

In this case, a possible good out imi i i
it case, a possible (i o o ion?f sets a lower limit on the selling price, but a
The models in Equations 15-16 violate asymptotic independence, implying that
the worst outcome places an upper bound on the buying price and th:e best outgcome
sets a lower bqund on the selling price of a gamble. This revised model gave a better
fit (than the simple configural model) to judgments of buying and selling prices of
.used cars based on estimates given by sources (Birnbaum & Stegner, 1979), and
it can describe judgments of likeableness and morality. However, im;licatio,ns of

asymptotic independe j i
A p nce have not been tested for judgments or choices among

9. DISCUSSION AND CONCLUSIONS

k}/’iol.a,tions of monotonicity add to a growing literature in judgment and decision
making 9f phenomena that trouble the theoretician. Taking the results from differ-
E?t stufdtles. to}gether,lwhat might be considered a single empirical effect, the pattern
results in Figure 1, might show up as violations of th ioms: m ici
transitivity, and consistency. o} FHee sxioms: monotomety,
' 1])311'_nb::xu¥n zjmd Sutton (1992) noted that because the monotonicity violation
is <l) t.alned in judgment but not direct choice, there is a reversal of preference
;ﬁi astn:gt corflswtsnclir. aet A = (30,.05,896) and B = ($24,.05,$96). Birnbaum,
utton tound that A is judged higher than B, but in a di i

vast majority choose B over A. ’ ® direct comparison, the

Birnbaum and fI‘h'ompson (1996) found evidence suggesting that there is a
value of cash that is intermediate between A and B, such that P(A,c) > 1/2
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and P(c, B) > 1/2. However, from Birnbaum and Sutton, P(B,A) > 1/2, which
might be taken as a violation of transitivity. It is unclear if such cross-experiment
comparisons predict what a single individual would do when faced with all three
comparisons, but it should be clear that the theoretician has a problem accounting
for all of the choices in terms of a single, transitive preference order.

The axioms of monotonicity, transitivity, and consistency appear quite rea-
sonable from a normative standpoint. Luce and von Winterfeldt (1994) regard
transitivity as “nonnegotiable” from the normative perspective. In judgment ex-
periments, where the subject assigns a number to each gamble, transitivity is auto-
matically satisfied (because the numbers are transitive). However, Tversky (1969)
concluded that there are situations in which transitivity is systematically violated
in choice. If choices can be made to violate transitivity, therefore, one might ar-
gue that judgment should be preferred as a mode of response because it satisfies
transitivity.

On the other hand, this chapter reviews evidence that monotonicity can be vio-
lated in judgment, but has not been violated systematically in transparent choices.
Because monotonicity is an axiom that seems compelling to both theoreticians and
subjects, who rarely try to defend their violations, choice might seem a preferred
method because it seems to obey the axiom of monotonicity.

Thus, if we try to enforce the most cherished of normative axioms by our se-
lection of procedure, we are torn between choice, which presumably satisfies mono-
tonicity but might violate transitivity, and judgment, which automatically satisfies
transitivity but may systematically violate monotonicity. *

The intermediate method of choice-based certainty equivalents might therefore
seem a good compromise between choice and judgment. Certainty equivalents sat-
isfy transitivity. Some evidence suggests that certainty equivalents based on PEST
may reduce violations of monotonicity (von Winterfeldt et al., 1997). However,
violations of scalability (Birnbaum & Thompson, 1996) indicate that violations of
monotonicity depend on the value of cash against which the gambles are compared.
Furthermore, contextual effects in choices (Birnbaum, 1992b) suggest that we need
more data and better theory on this procedure before we can know how to dis-
tinguish the value of a gamble from the context of cash values presented in the
procedure.

The classic form of preference reversals (Bostic et al., 1990; Lichtenstein &
Slovic, 1971; Lindman, 1971; Slovic, Lichtenstein, & Fischhoff, 1988) are but a
small portion of the reversals of preference that have now been demonstrated. The
problems at hand are to explain how and why the apparent rank order of gambles
changes depending on the task (choice vs. judgment), the judge’s point of view

(buyer’s vs. neutral’s, vs. seller’s), the common outcome (branch independence),
the context, and whether outcomes are negative, positive, or zero.

Because so many factors appear to affect preferences, Tversky and Kahneman
(1992) concluded with the “pessimistic” assessment that no decision theory will
successfully account for all of the phenomena. Indeed, this chapter has reviewed
results that go beyond even the list of problems discussed by Tversky and Kahne-
man. Nevertheless, analogies from the history of science give us room for hope of
devising a single theory that can account for all of the phenomena.
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What can at first appear to be many exceptions and complications in one the-
ory can suddenly fall into place when a better theory is devised. For example,
planetary positions calculated from Ptolemy’s geocentric model with uniform cir-
cular motion required many “fudge” factors of offset epicycles to fit the data. The
heliocentric model of Copernicus was simpler, but still required “fudge” factors to
account for departures from uniform circular motion. Kepler’s elliptical models
(Kepler’s “laws”) produced a more accurate description with a simpler unifying set
of equations.

In decision research, changes in preference order due to the subject’s viewpoint,
for example, would be interpreted as evidence of changing u(z) functions in the
framework of nonconfigural models. However, configural weight models allow one
to retain the premise that the u(z) function is invariant with respect to viewpoint
(Birnbaum et al., 1992; Birnbaum & Sutton, 1992). Furthermore, configural weight
models can account for violations of branch independence in different viewpoints,
again using a single u(z) function. Evidence so far does not yet require the rejection
of a single S(p) function, if configural weights are allowed to depend on the number
of outcomes, their augmented signs, and ranks.

The configural weight models, on the other hand, contain these configural
weighting parameters, which until they can be explained by deeper primitives, seem
to have the character of the epicycles used early in Astronomy. Different ideas about
the origin of the configural weights — that they depend on asymmetric costs of over-
or under-estimation (Birnbaum et al., 1992; Birnbaum & McIntosh, 1996; Weber,
1994), that they depend on subject’s conformance to the comonotonic “sure thing”
principle (e.g., Chew & Wakker, 1996), or properties of joint receipt (Luce, 1995b;
Cho et al., 1994) — lead to distinct testable implications. These implications, some
of which are described in Section 8, have the potential to make the world seem even
more complicated, and hopefully, they may also lead to new theory that will make
it seem simpler.





