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What is the probability that a randomly drawn card from a well-shuffled
standard deck would be a heart? What is the probability that the German
soccer team will win the next world championships?

These two questions are quite different. In the first, we can develop a
mathematical theory from the assumption that each card is equally likely. If
there are 13 cards each of hearts, diamonds, spades, and clubs, we calculate
that the probability of drawing a heart is 13/52, or 1/4. We test this theory
by repeating the experiment again and again. After a great deal of evidence
(that 25% of the draws are hearts), we have confidence in using this model
of past data to predict the future.

The second case (soccer) refers to a unique event that either will or will
not occur, and there is no way to calculate a proportion from the past that is
clearly relevant. One might examine records of the German team and those
of rivals, and ask if the Germans seem healthy — nevertheless players change,
conditions change, and it is never really the same experiment. This situation
is sometimes referred to as one of uncertainty, and the term subjective
probability is used to refer to psychological strengths of belief.

However, people are willing to use the same term, probability, to express
both types of ideas. People gamble on both types of predictions — on repeat-
able, mechanical games of chance (like dice, cards, and roulette) with known
risks, and on unique and uncertain events (like sports, races, and stock
markets). In fact, people even use the term “probability” after something has
happened (a murder, for example), to describe belief that an event occurred
(e.g., that this defendant committed the crime). To some philosophers, such
usage seemed meaningless. Nevertheless, Reverend Thomas Bayes (1702-
1761) derived a theorem for inference from the mathematics of probability.
Some philosophers conceeded that this theorem could be interpreted as a
calculus for rational formation and revision of beliefs in such cases (see also
Chapter 3 in this volume).
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BAYES’ THEOREM

The following example illustrates Bayes’ theorem. Suppose there is a disease
that infects one person in 1000, completely at random. Suppose there is a
blood test for this disease that yields a “positive” test resultin 99.5% of cases
of the disease and gives a false “positive” in only 0.5% of those without the
disease. If a person tests “positive”, what is the probability that he or she has
the disease? The solution, according to Bayes’ theorem, may seem surprising.

Consider two hypotheses, H and not-H (denoted H’). In this example,
they are the hypothesis that the person is sick with the disease (H) and the
complementary hypothesis (H’) that the person does not have the disease.
Let D refer to the datum that is relevant to the hypotheses. In this example,
D is a “positive” result and D’ is a “negative” result from the blood test.

The problem stated that 1 in 1000 have the disease, so P(H) = 0.001; that
is, the prior probability (before we test the blood) that a person has the
disease is 0.001, so P(H’) = 1 — P(H) = 0.999.

The conditional probability that a person will test “positive” given that
the person has the disease is written as P(“positive”| H) = 0.995, and the con-
ditional probability that a person will test “positive™ given he or she is not
sick is P(“positive”| H’) = 0.005. These conditional probabilities are called
the hit rate and the false alarm rate in signal detection, also known as power
and significance (a). We need to calculate P(HID), the probability that a
person is sick, given the test was “positive”. This calculation is known as an
inference.

The situation in the disease example above is as follows: we know P(H),

P(D\H) and P(DVH’), and we want to calculate P(H|D). The definition of
conditional probability:

P(HAD)

P(HID) = D) (1)

we can also write, (HND) = P(D|H) P(H). In addition, D can happen in
two mutually exclusive ways, either with H or without it, so P(D)=P(DN
H)+P(DNH’). Each of these conjunctions can be written in terms of
conditionals, therefore:

P(DIH)P(H) 2)
(DIH) P(H)+P(D\H") P(H")

P(HID) =

Equation 2 is Bayes’ theorem. Substituting the values for the blood test
problem yields the following result:

) (0.995)(0.001) _
~(0.995)(0.001) +(0.005)(0.999) "

P(sick|“positive™) 0.166.
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Does this result seem surprising? Think of it this way: Among 1000
people, only 1 is sick. If all 1000 were tested, the test will likely give a
“positive” test to the sick person, but it would also give a “positive” to
about 5 others (0.5% of 999 healthy people, about 5, should test positive).
Thus, of the six who test “positive,” only one is actually sick, so the prob-
ability of being sick, given a “positive” test, is only about one in six. Another
way to look at the answer is that it is 166 times greater than the probability
of being sick given no information (0.001), so there has indeed been
considerable revision of opinion given the positive test.

An on-line calculator is available at the following URL:

http://psych.fullerton.edu/mbirnbaum/bayes/bayescalc.htm

The calculator allows one to calculate Bayesian inference in either prob-
ability or odds, which are a transformation of probability, = p/(1 - p). For
example, if probability = 1/4 (drawing a heart from a deck of cards), then the
odds are 1/3 of drawing a heart. Expressed another way, the odds are 3 to 1
against drawing a heart.

In odds form, Bayes’ theorem can be written:

B P(D!H) ~
Q1= ( P(DIH’)) kY

where ©, and €, are the revised and prior odds, and the ratio of hit rate to

P(DIH)
false alarm rate, ——————~
P(DIH")
dence. For example, in the disease problem, the odds of being sick are 999:1
against, or approximately 0.001. The ratio of hit rate to false alarm rate is
0.995/.005 = 199. Multiplying prior odds by this ratio gives revised odds
of 0.199, about 5 to 1 against. Converting odds back to probability,
p=Qf(1+€)=0.166.
With a logarithmic transformation, Equation 3 becomes additive ~ prior
probabilities and evidence should combine independently; that is, the effect
of prior probabilities and evidence should contribute in the same way, at any

level of the other factor.

is also known as the likelihood ratio of the evi-

Are humans Bayesian?

Psychologists have wondered if Bayes’ theorem describes how people revise
their beliefs (Birnbaum, 1983; Birnbaum & Mellers, 1983; Edwards, 1968;
Fischhoff, Slovic, & Lichtenstein, 1979; Kahneman & Tversky, 1973;
Koehler, 1996; Lyon & Slovic, 1976; Pitz, 1975; Shanteau, 1975; Slovic &
Lichtenstein, 1971; Tversky & Kahneman, 1982; Wallsten, 1972). The
psychological literature can be divided into three periods. Early work sup-
ported Bayes’ theorem as a rough descriptive model of how humans
combine and update evidence, with the exception that people were described
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as conservative, or less influenced by either base rate or evidence than
Bayesian analysis of the objective evidence would warrant (Edwards, 1968;
‘Wallsten, 1972).

The second period was dominated by Kahneman and Tversky’s (1973)
assertions that people do not use base rates or respond to differences in
validity of sources of evidence. It emerged that their conclusions were viable
only with certain types of experiments (e.g., Hammerton, 1973), but those
experiments were easy to do, so many were done. Perhaps because Kahneman
and Tversky (1973) did not cite the body of previous work that contradicted
their conclusions, it took some time for those who followed in their foot-
steps to become aware of the contrary evidence and to rediscover how to
replicate it (Novemsky & Kronzon, 1999).

More recent literature supports the early research showing that people do
indeed utilize base rates and source credibility (Birnbaum, 2001; Birnbaum
& Mellers, 1983; Novemsky & Kronzon, 1999). However, people appear to
combine this information by an averaging model (Birnbaum, 1976, 2001;
Birnbaum & Mellers, 1983; Birnbaum & Stegner, 1979; Birnbaum, Wong,
& Wong, 1976; Troutman & Shanteaun, 1977). The Scale-Adjustment Aver-
aging Model of source credibility (Birnbaum & Mellers, 1983; Birnbaum &

Stegner, 1979), is not consistent with Bayes’ theorem and it also explains
“conservatism”.

Averaging model of source credibility

The averaging model of source credibility can be written as follows:

n
2 s,
i=0

R=

where R is the predicted response, w; the weights of the sources (which
depend on the source’s perceived credibility), and s, is the scale value of the
source’s testimony (which depends on what the source testified). The initial
impression reflects prior opinion (w, and s,). For more on averaging models
see Anderson (1981).

In problems such as the disease problem quoted earlier, there are three or
more sources of information; first, there is the prior belief, represented by sg;
second, base rate is a source of information; third, the test result is another
source of information. For example, suppose that weights of the initial
impression and of the base rate are both 1, and the weight of the diagnostic
test is 2. Suppose the prior belief is 0.50 (no opinion), scale value of the base
rate is 0.001, and the scale value of the “positive” test is 1. This model
predicts that the response in the disease problem is as follows:
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1x0.5+1%x0.001+2x1
1+1+2

=0.63

Thus, this model can predict neglect of the base rate, if people put more
weight on witnesses than on base rates.

Birnbaum and Stegner (1979) extended this model to describe how people
combine information from sources varying in both validity and bias. Their
model also involves configural weighting, in which the weight of a piece of
information depends on its relation to other information. For example,
when the judge is asked to identify with the buyer of a car, the judge appears
to place more weight on lower estimates of the value of a car, whereas people
asked to identify with the seller put more weight on higher estimates.

The most important distinction between Bayesian and averaging models is
that in the Bayesian model, each piece of independent information has the
same effect no matter what the current state of evidence. In the averaging
models, however, the effect of any piece of information is inversely related to
the number and total weight of other sources of information. In the aver-
aging model, unlike the Bayesian model, the directional impact of informa-
tion depends on the relation between the new evidence and the current
opinion.

Although the full story is beyond the scope of this chapter, three aspects of
the literature can be illustrated by data from a single experiment, which can
be done two ways — as a within-subjects or a between-subjects study. The
next section describes a between-subjects experiment, like the one in
Kahneman and Tversky (1973); the section following it will describe how to
conduct and analyze a within-subjects design, like that of Birnbaum and
Mellers (1983).

EXPERIMENTS: THE CAB PROBLEM

Consider the following question, known as the cab problem (Tversky &
Kahneman, 1982, pp. 156-157):

A cab was involved in a hit and run accident at night. There are two cab
companies in the city, with 85% of cabs being Green and the other 15%
Blue cabs. A witness testified that the cab in the accident was “Blue.”
The witness was tested for ability to discriminate Green from Blue cabs
and was found to be correct 80% of the time. What is the probability
that the cab in the accident was Blue as the witness testified?

Between-subjects vs within-subjects designs

If we present a single problem like this to a group of students, the results
show a strange distribution of responses. The majority of students (about
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three out of five) say that the answer is “80%”, apparently because the
witness was correct 80% of the time. However, there are two other modes:
about one in five responds “15%”, the base rate; a small group of students
give the answer of 12%, apparently the result of multiplying the base rate by
the witness’s accuracy, and a few people give a scattering of other answers.
Supposedly, the “right” answer is 41%, and few people give this answer.

Kahneman and Tversky (1973) argued that people ignore base rate, based
on finding that the effect of base rate in such inference problems was not
significant. They asked participants to infer whether a person was a lawyer
or engineer, based on a description of personality given by a witness. The
supposed neglect of base rate found in this lawyer—engineer problem
and others came to be called the “base-rate fallacy” (see also Hammerton,
1973). However, evidence of a fallacy evaporates when one does the
experiment in a slightly different way using a within-subjects design, as we
see below (Birnbaum, 2001; Birnbaum & Mellers, 1983; Novemsky &
Kronzon, 1999).

There is also another issue with the cab problem and the lawyer-engineer
problem as they were formulated. Those problems were not stated clearly
enough that one can apply Bayes’ theorem without making extra assump-
tions (Birnbaum, 1983; Schum, 1981). One has to make arbitrary, unrealistic
assumptions in order to calculate the supposedly “correct” solution.

Tversky and Kahneman (1982) gave the “correct” answer to this cab
problem as 41% and argued that participants who responded “80%” were
mistaken. They assumed that the percentage correct of a witness divided by
percentage wrong equals the ratio of the hit rate to the false alarm rate. They
then took the percentage of cabs in the city as the prior probability for cabs
of each colour being in cab accidents at night. It is not clear, however, that
both cab companies even operate at night, so it is not clear that percentage
of cabs in a city is really an appropriate prior for being in an accident.

Furthermore, we know from signal-detection theory that the percentage
correct is not usually equal to hit rate, nor is the ratio of hit rate to false
alarm rate for human witnesses invariant when base rate varies. Birnbaum
(1983) showed that if one makes reasonable assumptions about the witness
in these problems, then the supposedly “wrong” answer of 80% is actually a
better solution than the one called “correct” by Tversky and Kahneman.

The problem is to infer how the ratio of hit rate to false alarm rate
(in Eq. 3) from the values given for the witness is affected by the base
rate. Tversky and Kahneman (1982) implicitly assumed that this ratio is
unaffected by base rate. However, experiments in signal detection show
that this ratio changes in response to changing base rates. Therefore this
complication must be taken into account when computing the solution
(Birnbaum, 1983).

Birnbaum’s (1983) solution treats the process of signal detection with
reference to normal distributions on a subjective continuum, one for the
signal and another for the noise. If the observer changes his or her “Green/
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Blue” response criterion to maximize percent correct, then the solution of
0.80 is not far from what one would expect if the witness was an ideal
observer (for details, see Birnbaum, 1983).

Fragile results in between-subjects research

But perhaps even more troubling to behavioural scientists was the fact that
the null results deemed evidence of a “base-rate fallacy” proved very fragile
to replication with different procedures (see Gigerenzer & Hoffrage, 1995,
and Chapter 3). In a within-subjects design, it is easy to show that people
attend to both base rates and source credibility.

Birnbaum and Mellers (1983) reported that within-subjects and between-
subjects studies give very different results (see also Fischhoff et al., 1979).
Whereas the observed effect of base rate may not be significant in a between-
subjects design, the effect is substantial in a within-subjects design. Whereas
the distribution of responses in the between-subjects design has three modes
(e.g., 80%, 15%, and 12% in the above cab problem), the distribution of
responses in within-subjects designs is closer to a bell shape. When the same
problem is embedded among others with varied base rates and witness char-
acteristics, Birnbaum and Mellers (1983, Fig. 2) found few responses at the
former peaks; the distributions instead appeared bell-shaped.

Birnbaum (1999a) showed that in a between-subjects design, the number
9 is judged to be significantly “bigger” than the number 221. Should we
infer from this that there is a “cognitive illusion” a “number fallacy”, a
“number heuristic”, or a “number bias” that makes 9 seem bigger than 2212

Birnbaum (1982, 1999a) argued that many confusing results will be
obtained by scientists who try to compare judgements between groups who
experience different contexts. When they are asked to judge both numbers,
people say 221 is greater than 9. It is only in the between-subjects study
that significant and opposite results are obtained. One should not compare
judgements between groups without taking the context into account
(Birnbaum, 1982).

In the complete between-subjects design, context is completely con-
founded with the stimulus. Presumably, people asked to judge (only) the
number 9 think of a context of small numbers, among which 9 seems
“medium”, and people judging (only) the number 221 think of a context of
larger numbers, among which 221 seems “smali”.

DEMONSTRATION EXPERIMENT

To illustrate findings within-subjects, a factorial experiment on the cab prob-
lem will be presented. This study is similar to one by Birnbaum (2001). It
varies the base rate of accidents in which Blue cabs were involved (15%,
30%, 70%, or 85%) and the credibility of a witness (medium or high). The
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participants’ task is to estimate the probability that the car in the accident
was a Blue cab. All methodological details are given in Text box 2.1. -

Text box 2.1 Method of demonstration experiment

Instructions make base rate relevant and give more precise information on the
witnesses. [nstructions for this version are as follows:

%

A cab was involved in a hit-and-run accident at night. There are two cab
companies in the city, the Blue and Green. Your task is to judge (or
estimate) the probability that the cab in the accident was a Blue cab.
You will be given information about the percentage of accidents at
night that were caused by Blue cabs, and the testimony of a witness who
saw the accident. The percentage of night-time cab accidents involving
Blue cabs is based on the previous 2 years in the city. In different cities,
this percentage was either 15%, 30%, 70%, or 85%. The rest of night-
time accidents involved Green cabs. Witnesses were tested for their abil-
ity to identify colours at night. They were tested in each city at night, with
different numbers of colours matching their proportions in the cities.
The MEDIUM witness correctly identified 60% of the cabs of each
colour, calling Green cabs “Blue” 40% of the time and calling Blue cabs
“Green” 40% of the time. :
The HIGH witness correctly identified 80% of each colour, callmg
Blue cabs “Green” or Green cabs “Blue” on 20% of the tests.
Both witnesses were found to give the same ratio of correct to false
identifications on each colour when tested in each of the cities.

_ Each participant received 20 situations, in random order, after a warmup of
7 trials. Each situation was composed of a base rate, plus testimony of a high-
credibility witness who said the cab was either “Blue” or “Green”, testimony
of a medium-credibility witness (either “Blue” or “Green”), or there was no
witness. A typical trial appeared as follows:

85% of accidents are Blue cabs & medium witness says “Green”.

The dependent variable was the judged probability that the cab in the acci-
dent was Blue, expressed as a percentage. The 20 experimental trials were
composed of the union of a 2 x 2 x 4, Source Credibility (Medium, High) by
Source Message (“Green”, “Blue”) by Base Rate (15%, 30%, 70%, 85%)
design, plus a one-way design with four levels of Base Rate and no witness.

*

Complete materials can be viewed at the following URL:

http://psych.fullerton.edu/mbirnbaum/bayes/CabProblem.htm

The following results are based on data from 103 undergraduates who
were recruited from the university “subject pool” and who participated via
the worldwide web.
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Results and discussion

Mean judgements of probability that the cab in the accident was Blue are
presented in Table 2.1. Rows show effects of Base Rate, and columns show
combinations of witnesses and their testimony. The first column shows that
if Blue cabs were involved in only 15% of cab accidents at night and the high-
credibility witness said the cab was “Green”, the average response was only
29.1%. When Blue cabs were involved in 85% of accidents, however, the
mean judgement was 49.9%. The last column of Table 2.1 shows that when
the high-credibility witness said that the cab was “Blue”, mean judgements
were 55.3% and 80.2% when base rates were 15% and 85%, respectively.

Analysis of variance tests the null hypotheses that people ignored base
rate or witness credibility. The ANOVA showed that the main effect of Base
Rate was significant, F(3, 306) = 106.2, as was Testimony, F(1, 102) =
158.9. Credibility of the witness has both significant main effects and inter-
actions with Testimony, F(1, 102) = 25.5, and F(1, 102) = 58.6, respectively.
As shown in Table 2.1, the more diagnostic the witness, the greater the effect
of that witness’s testimony. These results show that we can reject the
hypotheses that people ignored base rates and validity of evidence.

The critical value of F(1, 60) is 4.0, with a = 0.05, and the critical value of
F(1,14) is 4.6. Therefore, the observed F-values are more than 10 times their
critical values, Because F values are approximately proportional to # for true
effects, one should be able to reject the null hypotheses of Kahneman and
Tversky (1973) with only 15 participants. However, the purpose of this
research is to evaluate models of how people combine evidence, which
requires larger samples in order to provide clean results. Experiments con-
ducted via the worldwide web allow one to test large numbers of partici-
pants quickly at relatively low cost in time and effort (see Birnbaum, 2001).
Therefore, it is best to collect more data than are necessary just to show
statistical significance.

Table 2.2 shows Bayesian calculations, simply using Bayes’ theorem
to calculate with the numbers given. (Probabilities are converted to

Table 2.1 Mean judgements of probability that the cab was Blue (%)

Witness credibility and witness testimony

Baserate  High Medium No witness ~ Medium High
credibility credibility credibility  credibility
“Green” “Green” “Blue” “Blue”

15 . 29.1 313 25.1 41.1 553

30 34.1 37.1 36.3 47.4 56.3

70 46.0 50.3 58.5 60.9 73.2

85 49.9 53.8 67.0 71.0 80.2

Each entry is the mean inference judgement, expressed as a percentage.
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Table 2.2 Bayesian predictions (converted to percentages)

Witness credibility and witness testimony

Baserate  High Medium No witness ~ Medium High
credibility credibility credibility  credibility
“Green” “Green” “Blue” “Blue”

15 4.2 10.5 15.0 20.9 41.4

30 9.7 222 30.0 391 63.2

70 36.8 60.9 70.0 77.8 90.3

85 58.6 791 85.0 89.5 95.8

percentages.) Figure 2.1 shows a scatterplot of mean judgements against
Bayesian calculations. The correlation between Bayes’ theorem and the data
is 0.948, which might seem “high”. It is this way of graphing the data that
led to the conclusion of “conservatism”, as described in Edwards’ (1968)

review.

Conservatism described the fact that human judgements are less extreme
than Bayes’ theorem dictates. For example, when 85% of accidents at night
involved Blue cabs and the high-credibility witness said the cab was “Blue”,
Bayes’ theorem gives a probability of 95.8% that the cab was Blue; in con-
trast, the mean judgement was only 80.2%. Similarly, when base rate was
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Figure 2.1 Mean inference that the cab was Blue, expressed as a percentage, plotted
against the Bayesian solutions, also expressed as percentages (H
high-, M = medium-credibility witness).
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15% and the high-credibility witness said the cab was “Green”, Bayes’
theorem calculates 4.2% and the mean judgement was 29.1%.

A problem with this way of graphing the data is that it does not reveal
patterns of systematic deviation, apart from regression. People looking at
such scatterplots are often impressed by “high” correlations. Such correl-
ations of fit with such graphs easily lead researchers to wrong conclusions
(Birnbaum, 1973). The problem is that “high” correlations can coexist with
systematic violations of a theory. Correlations can even be higher for
worse models! See Birnbaum (1973) for examples showing how misleading
correlations of fit can be.

In order to see the data better, they should graphed as in Figure 2.2,
where they are drawn as a function of base rate, with a separate curve for
each type of witness and testimony. Notice the unfilled circles, which show
judgements for cases with no witness. The cross-over between this curve
and others contradicts the additive model, including Wallsten’s (1972) sub-
jective Bayesian (additive) model and the additive model rediscovered by
Novemsky and Kronzon (1999). The subjective Bayesian model utilizes
Bayesian formulas but allows the subjective values of probabilities to differ
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Figure 2.2 Fit of averaging model: Mean judgements of probability that the cab
was Blue, plotted as a function of the estimated scale value of the base
rate. Filled squares, triangles, diamonds, and circles show results when a
high-credibility witness said the cab was “Green”, a medium-credibility
witness said “Green”, a medium-credibility witness said “Blue”, or a
high-credibility witness said “Blue”, respectively. Solid lines show cor-
responding predictions of the averaging model. Open circles show mean
judgements when there was no witness, and the dashed line shows
corresponding predictions (H = high-, M = Medium-credibility witness,
p = predicted).
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from objective values stated in the problem. Instead, the crossover inter-
action indicates that people are averaging information from base rate with
the witness’s testimony. When subjects judge the probability that the car
was Blue given only a base rate of 15%, the mean judgement was 25.2%.
However, when a medium-credibility witness also said that the cab was
“Green”, which should exonerate the Blue cab and thus lower the inference
that the cab was Blue, the mean judgement actually increased from 25.1%
to 31.3%.

Troutman and Shanteau (1977) reported analogous results. They pre-
sented non-diagnostic evidence (which should have no effect) that caused
people to become less certain. Birnbaum and Mellers (1983) showed that
when people have a high opinion of a car, and a low credibility source says
the car is “good?, it actually makes people think the car is worse. Birnbaum
and Mellers (1983) also reported that the effect of base rate is reduced
when the source is higher in credibility. These findings are consistent with
averaging rather than additive models.

Model fitting

In the old days, one wrote special computer programs to fit models to data
(Birnbaum, 1976; Birnbaum & Mellers, 1983; Birnbaum & Stegner, 1979).
However, spreadsheet programs such as Excel can now be used to fit such
models without requiring programming. Methods for fitting models via the
Solver in Excel are described in detail for this type of study in Birnbaum
(2001, Ch. 19).

Each model has been fitted to the data in Table 2.1, by minimizing the sum
of squared deviations. Lines in Figure 2.2 show predictions of the averaging
model. Estimated parameters are as follows: weight of the initial impression,
wo, was fixed to 1; estimated weights of the base rate, medium-credibility
witness, and high-credibility witness were 1.11, 0.58, and 1.56 respectively.
The weight of base rate was intermediate between the two witnesses,
although it “should” have exceeded the high-credibility witness.

Estimated scale values of base rates of 15%, 30%, 70%, and 85% were
12.1, 28.0, 67.3, and 83.9 respectively, close to the objective values. Esti-
mated scale values for testimony (“Green” or “Blue”) were 31.1 and 92.1
respectively. The estimated scale value of the initial impression was 44.5.
This 10-parameter model correlated 0.99 with mean judgements. When the
scale values of base rate were fixed to their objective values (reducing the
model to only six free parameters), the correlation was still 0.99.

The sum of squared deviations (SSD) provides a more useful index of fit in
this case. For the null model, which assumes no effect of base rate or source
validity, SSD = 3027, which fits better than objective Bayes’ theorem (plug-
ging in the given values), with SSD = 5259. However, for the subjective
Bayesian (additive) model, SSD = 188, and for the averaging model, SSD =
84. For the simpler averaging model (with subjective base rates set to their
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objective values), SSD = 85. In summary, the assumption that people attend
only to the witness’s testimony does fit better than the objective version of
Bayes’ theorem; however, its fit is much worse than the subjective (additive)
version of Bayes’ theorem. The averaging model, however, provides the best
fit, even when simplified by the assumption that people take the base-rate
information at face (objective) value.

OVERVIEW AND CONCLUSIONS

The case of the “base-rate fallacy” illustrates a type of cognitive illusion to
which scientists are susceptible when they find non-significant results. The
temptation is to say that because I have found no significant effects (of
different base rates or source credibilities), there are therefore no effects.
However, when results fail to disprove the null hypothesis, they do not prove
the null hypothesis. This problem is particularly serious in between-subjects
research, where it is easy to get non-significant results, or significant but silly
results such as “9 seems bigger than 2217,

The conclusions by Kahneman and Tversky (1973) that people neglect
base rate and credibility of evidence are quite fragile. One must use a
between-subjects design and use only certain wordings. Because I can show
that the number 9 seems “bigger” than 221 with this type of design, I put
little weight on such fragile between-subjects findings. In within-subjects
designs, even the lawyer—engineer task shows effects of base rate (Novemsky
& Kronzon, 1999). Although Novemsky and Kronzon argued for an addi-
tive model, they did not include the comparisons needed to test the additive
" model against the averaging model of Birnbaum and Mellers (1983). 1
believe that had these authors included appropriate designs, they would
have been able to reject the additive model. They could have presented
additional cases in which there were witness descriptions but no base-rate
information, base-rate information but no witnesses (as in the dashed curve
of Figure 2.2), different numbers of witnesses, or witnesses with varying
amounts of information or different levels of expertise in describing people.
Any of these manipulations would have provided of tests between the
additive and averaging models. _

In any of these manipulations, the implication of the averaging model is
that the effect of any source {e.g., the base rate) would be inversely related to
the total weight of other sources of information. This type of analysis has
consistently favoured averaging over additive models in source credibility
studies (e.g., Birnbaum, 1976, Fig. 3; Birnbaum & Mellers, 1983, Fig. 4C;
Birnbaum & Stegner, 1979; Birnbaum, Wong, & Wong, 1976, Figs. 2B & 3).

Edwards (1968) noted that human inferences might differ from Bayesian
inferences for any of three basic reasons — misperception, misaggregation, or
response distortion. People might not absorb or utilize all of the evidence,
people might combine the evidence inappropriately, or they might express
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their subjective probabilities using a response scale that needs transform-
ation. Wallsten’s (1972) model was an additive model that allowed mispet-
ception and response distortion, but which retained the additive Bayesian
aggregation rule (recall that the Bayesian model is additive under monotonic
transformation). This additive model is the subjective Bayesian model that
appears to give a fairly good fit in Figure 2.1.

When proper analyses are conducted, however, it appears that the aggre-
gation rule violates the additive structure of Bayes’ theorem. Instead, the
effect of a piece of evidence is not independent of other information avail-
able, but instead is diminished by total weight of other information. This is
illustrated by the dashed curve in Figure 2.2, which crosses the other curves.

Birnbaum and Stegner (1979) decomposed source credibility into two
components, expertise and bias, and distinguished these from the judge’s
bias, or point of view. Expertise of a source of evidence affects its weight,
and is affected by the source’s ability to know the truth, reliability of the
source, cue correlation, or the source’s signal-detection d’. In the case of
gambles, weight of a branch is affected by the probability of a consequence.
In the experiment described here, witnesses differed in their abilities to
distinguish Green from Blue cabs.

In the averaging model, scale values are determined by what the witness
says. If the witness said it was a “Green” cab, it tends to exonerate the
Blue cab driver, whereas if the witness said the cab was “Blue”, it tends to
implicate the Blue cab driver. Scale values of base rates were nearly equal to
their objective values. In judgements of the value of cars, scale values are
determined by estimates provided by sources who drove the car and by the
“blue book” values. (The blue book lists the average sale price of a car of a
given make, model, and mileage, so it is like a base rate and does not reflect
any expert examination or test drive of an individual vehicle.)

Bias reflects a source’s tendency to over- as opposed to under-estimate
judged value, presumably because sources are differentially rewarded or
punished for giving values that are too high or too low. In a court trial, bias
would be affected by affiliation with defence or prosecution. In an economic
transaction, bias would be affected by association with buyer or seller.
Birnbaum and Stegner (1979) showed that source’s bias affected the scale
value of that source’s testimony,

In Birnbaum and Meller’s (1983) study, bias was manipulated by
changing the probability that the source would call a car “good” or “bad”
independent of the source’s diagnostic ability. Whereas expertise was
manipulated by varying the difference between hit rate and false alarm rate,
bias was manipulated by varying the sum of hit rate plus false alarm rate.
Their data were also consistent with the scale-adjustment model that bias
affects scale value.

The judge, who combines information, may also have a type of bias,
known as the judge’s point of view. The judge might be combining informa-
tion to determine buying price, selling price, or “fair price”. An example of a
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“fair” price is when one person damages another’s property and a judge is
asked to give a judgement of the value of damages so that her judgement is
equally fair to both people. Birnbaum and Stegner (1979) showed that the
source’s viewpoint affects the configural weight of higher- or lower-valued
branches. Buyers put more weight on the lower estimates of value and sellers
place higher weight on the higher-valued estimates. This model has also
proved quite successful in predicting judgements and choices between
gambles (Birnbaum, 1999b).

Birnbaum and Mellers (1983, Table 2) drew a table of analogies that can
be expanded to show that the same model appears to apply not only to
Bayesian inference, but also to numerical prediction, contingent valuation,
and a variety of other tasks. To expand the table to include judgements of
the values of gambles and decisions between them, let viewpoint depend on
the task to judge buying price, selling price, “fair” price, or to choose
between gambles. Each discrete probability (event) consequence branch has
a weight that depends on probability (or event). The scale value depends on
the consequence. Configural weighting of higher- or lower-valued branches
depends on identification with the buyer, seller, independent, or decider.

Much research has been developing a catalogue of cognitive illusions,
each to be explained by a “heuristic” or “bias” of human thinking. Each
time a “bias” is named, one has the cognitive illusion that it has been
explained. The notion of a “bias” suggests that if the bias could be avoided,
people would suffer no illusions. A better approach to the study of cognitive
illusions would be one more directly analogous to the study of visual illu-
sions in perception. Visual illusions can be seen as consequences of a mech-
anism that allows people to judge actual sizes of objects with different
retinal sizes at different distances. A robot that judged size by retinal size
only would not be susceptible to the Mueller-Lyer illusion. However, it
would also not satisfy size constancy. As an object moved away, it would
seem to shrink. So, rather than blame a “bias” of human reasoning, we
should seek the algebraic models of judgement that allow one to explain
both illusion and constancy with the same model.

SUMMARY

e Early research that compared intuitive judgements of probability and
Bayesian calculations concluded that people were “conservative”, in
that their judgements were closer to uncertainty than dictated by the
formula.

e Based on poor studies, it was later argued that people neglect or do not
attend to base rates or source validity when making Bayesian inferences.

e Evidence for the so-called “base-rate fallacy” and source neglect is
very fragile and does not replicate except in very restricted conditions.
When base rates, source, expertise, and testimony are manipulated



58 Birnbaum

within-subjects, judges do utilize the base rates and attend to source
expertise.

o The subjective Bayesian model provides a better fit than the objective
model, because it can account for “conservatism” and the nearly addi-
tive relationship between base rate and source’s opinion.

» However, the data show two phenomena that rule out additive or

subjective Bayesian formulations: The effect of the base rate is inversely

related to the number and credibility of other sources.

The data are better described by Birnbaum and Stegner’s (1979)

scale-adjustment averaging model than by the other models.

FURTHER READING

Reviews of this literature from different viewpoints are presented by
Edwards (1968), Tversky and Kahneman (1982), Koehler (1996), and in
Chapter 3 of this volume. Birnbaum (1983) showed that the so-called
“normative” Bayesian analysis presented by Tversky and Kahneman (1982)
made an implausible assumption that made their conclusions unwarranted.
Birnbaum and Mellers (1983) showed how to apply the model of Birnbaum
and Stegner (1979) to the Bayesian inference task. The model fit here is a

special case of that model, which also describes effects of the bias of sources
and the viewpoint of the judge.
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APPENDIX

The complete materials for this experiment, including HTML that collects
the data are available via the WWW from the following URL.:

http://psych.fullerton.edu/mbirnbaum/bayes/resources.htm
A sample listing of the trials, including warmup, is given below.

Warmup trials: Judge the probability that the cab was Blue.

Express your probability judgement as a percentage and type a number
from 0 to 100.

W1 15% of accidents are Blue Cabs & high witness says “Green”.  *

(There were six additional “warmup” trials that were representative of
the experimental trials.)

Please re-read the instructions, check your warmups, and then proceed to
the trials below.
Test trials: What is the probability that the cab was Blue?

Express your probability judgement as a percentage and type a number
from 0 to 100.

i

85% of accidents are Blue Cabs & medium witness says “Green”. -~
15% of accidents are Blue Cabs & medium witness says “Blue”.
15% of accidents are Blue Cabs & medium witness says “Green”.
15% of accidents are Blue Cabs & there was no witness.

30% of accidents are Blue Cabs & high witness says “Blue”.

15% of accidents are Blue Cabs & high witness says “Green”.
70% of accidents are Blue Cabs & there was no witness.

15% of accidents are Blue Cabs & high witness says “Blue”.

70% of accidents are Blue Cabs & high witness says “Blue”.

85% of accidents are Blue Cabs & high witness says “Green”.
70% of accidents are Blue Cabs & high witness says “Green”.
85% of accidents are Blue Cabs & medium witness says “Blue”.
30% of accidents are Blue Cabs & medium witness says “Blue”.
30% of accidents are Blue Cabs & high witness says “Green”.
70% of accidents are Blue Cabs & medium witness says “Blue”.
30% of accidents are Blue Cabs & there was no witness.

30% of accidents are Blue Cabs & medium witness says “Green”.
70% of accidents are Blue Cabs & medium witness says “Green”.
85% of accidents are Blue Cabs & high witness says “Blue”.

85% of accidents are Blue Cabs & there was no witness.
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