
181© Springer International Publishing AG, part of Springer Nature 2018 
M. Raue et al. (eds.), Psychological Perspectives on Risk and Risk Analysis, 
https://doi.org/10.1007/978-3-319-92478-6_8

Chapter 8
Behavioral Models of Decision Making  
Under Risk

Michael H. Birnbaum

Abstract This chapter reviews experiments testing theories of how people 
make choices between risky prospects, gambles in which the consequences and 
their probabilities are specified. When people prefer a small amount of cash to 
the expected value of a gamble, they are said to be risk averse. The St. Petersburg 
paradox is an extreme case of risk aversion in which people prefer a small cash 
payment rather than one chance to play a gamble of infinite expected value. 
Expected utility theory was proposed to explain this paradox by allowing that 
the utility of money is not a linear function of its cash value but instead shows 
diminishing marginal returns. Allais proposed two paradoxes that contradicted 
expected utility theory, and a number of modern theories have been proposed to 
explain the Allais paradoxes. Among these are original and cumulative prospect 
theory, configural weighting theory, the priority heuristic, and others. The chap-
ter notes that some decisions are based on experience, where consequences and 
their probabilities are learned. The chapter also considers models of the vari-
ability in decision behavior. New critical tests and their results are reviewed that 
conclude that neither version of prospect theory can be retained as accurate 
descriptions of choice behavior and that tests of the heuristic models have 
yielded data that systematically violate the predictions of those models. The 
configural weight models remain the best description of the evidence so far 
accumulated.
Some decisions are based on vague ideas or beliefs of the exact consequences of 
one’s actions given imprecise, uncertain, or ambiguous information concerning 
the probabilities of consequences contingent on one’s alternative courses of 
actions. For whom should I vote? What job should I take? Should I marry this 
person? Should I undergo the medical operation my doctor recommended? 
Such decisions are made in the face of uncertainty. The term, decision making 
under risk, in contrast, refers to situations in which a decision-maker has valid 
information concerning the exact consequences and the probabilities of conse-
quences of the alternative courses of action. For example, should I buy a lottery 
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ticket for $1 that has one chance in a million of paying $1 million dollars? 
Researchers studying decisions under risk are attracted to such questions 
because gambles defined on events with known probabilities (such as tosses of 
fair coins or rolls of dice) allow one to manipulate important ingredients in the 
decision process itself, separated from the mechanisms by which beliefs about 
probability are formed.

Behavioral models of risky decision making are theories that attempt to give 
empirically accurate descriptions of what people do when confronted with risky 
decision making problems. Whereas a normative model specifies what a person 
ought to do to stay consistent with certain principles of rationality, a behavioral 
model seeks to explain the empirical choices that people actually make, whether 
these actual choices are deemed rational or not.

In the simplest paradigm for study of decision making, researchers ask partici-
pants to make decisions among gambles stated in terms of probabilities to receive 
monetary consequences. For example, would you rather have $45 for sure, or would 
you prefer instead to play a risky gamble in which you have a 50–50 chance to win 
$100 or $0, based on the toss of a fair coin? Because the coin has a probability of ½ 
to be called correctly, you have a probability of ½ to win $100 and a probability of 
½ to win $0. Most people prefer $45 for sure to the risky gamble, even though the 
gamble would pay $50 on average. This systematic preference for the sure thing 
contradicts a rule called expected value, which was once thought to be a rational 
principle a person should follow.

 Expected Value

The expected value (EV) of a gamble is the mean value of the consequences of a 
gamble, weighted by their probabilities. Suppose a random process has n possible 
mutually exclusive and exhaustive outcomes, and let gamble G = (x1, p1; x2, p2; x3, 
p3; …; xi, pi; …; xn, pn) represent a gamble with probability pi to receive conse-
quence xi, where xi is the monetary consequence if outcome i occurs. Because the 
outcomes are mutually exclusive and exhaustive, ∑pi = 1. We can define the EV of 
gamble G as follows:

 
EV G p xi i( ) = ∑

 

The gamble based on a coin flip is denoted G = ($100, ½; $0, ½), and G has an EV 
of $50 = (0.5)($100) + (0.5)($0). So, on average, a person who could play G infi-
nitely many times would expect to win $50 per play, but on any single play of the 
gamble, the person would win either $0 or $100.
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 Risk Aversion and St. Petersburg Paradox

EV seemed a reasonable objective measure to many scholars in the eighteenth cen-
tury, so they considered it paradoxical that when given a choice, people did not 
always prefer the option with the higher EV. For example, many people prefer $45 
for sure to G = ($100, ½; $0, ½), even though the sure thing has a lower EV ($45) 
than the gamble ($50). When people prefer a sure thing to a gamble with the same 
or higher EV, they are said to be “risk averse.”

Risk aversion seemed puzzling, especially when scholars realized that one could 
construct gambles with infinite value, and people preferred quite small amounts of 
cash to such gambles. For example, suppose we toss a coin, and if it is heads, you 
win $2, but if it is tails, we toss again. On the next toss, if it is heads, the payoff is 
$4, and if tails, we toss again. Each time that tails occurs, the prize for heads on the 
next toss doubles. The expected value of this gamble is as follows:

 
EV $ $ $ $= ( ) + ( ) + ( ) + ( ) +…= ∞2 1 2 4 1 4 8 1 8 16 1 16/ / / /

 

If a person conformed to EV, she should prefer this gamble to any finite amount of 
money one might offer; indeed, a person should prefer playing this gamble once to 
all of the money in the world. Yet, most people say they would choose $20 for sure 
to one chance to play this gamble, even though the gamble has infinite expected 
value.

This preference for the sure thing over such gambles (with infinite EV) is now 
called the St. Petersburg paradox, which was discussed in a classic paper by 
Bernoulli (1738/1954), who presented his paper in St. Petersburg. Bernoulli said it 
was not necessarily rational to follow EV, but instead to choose the option with the 
best expected utility.

 Expected Utility

Bernoulli (1738/1954) provided a theory of risk aversion that addressed the original 
versions of the St. Petersburg paradox. This theory proposed that the utility of 
money is not necessarily equal to its objective value, but might, instead, be a non-
linear function of money. Let u(x) represent the utility (subjective value) of a certain 
amount of wealth, x. Define expected utility (EU) as follows:

 
EU G p u xi i( ) = ∑ ( )  

(8.1)

where u(xi) is the utility of objective value xi.
Bernoulli theorized that utility of money might be a logarithmic function of 

wealth, but he acknowledged that other functions, such as the square root function, 
might also work. Both of these functions are negatively accelerated; that is, there is 
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a diminishing marginal increment in utility of each additional dollar to the overall 
utility of wealth; that is, u(W + x) – u(W) decreases as W (wealth) increases for a 
given increment in wealth, x. For example, if a person had a total wealth of W = $50, 
an increase of x = $100  in wealth would have a much greater impact than if the 
person had a total wealth of $1 million. Figure 8.1 illustrates a hypothetical utility 
function: u(x) = x0.5 (a power function with exponent of 0.5 is also known as the 
square root function). In this negatively accelerated function (Fig. 8.1), the subjec-
tive increase in utility from $0 to $25 is the same as the subjective increase in utility 
from $25 to $100. Thus, it takes a bigger increase of money as one moves up the 
wealth scale to produce the same increase in utility.

Expected utility theory is the theory that people prefer A over B if and only if 
EU(A) > EU(B); that is, A will be preferred to B whenever the expected utility of 
option A exceeds that of B. EU theory could explain not only risk aversion and the 
original St. Petersburg paradox, but it could also explain why a pauper who was 
given a lottery ticket should be happy to sell it for less than EV and why a rich per-
son should be happy to buy it at the same price.

For example, imagine a pauper whose total wealth is just $50 and who is given a 
choice between S = $45 for sure and G = 50–50 gamble to win $100 or $0. Suppose 
u(x) = x0.5, as in Fig. 8.1. EU theory then implies that the utility of choosing the sure 
thing, S, is u($50 + $45) = u($95) = 9.75. In contrast, the EU of choosing gamble G 
is u($50 + $100)(0.5) + u($50) = 9.66. Because EU(S) > EU(G), the theory says the 
pauper would prefer $45 for sure over gamble G. Thus, the pauper who was given a 
lottery ticket (a chance to play gamble G) would be happy to sell it for $45.

Now consider a richer person whose total wealth is $1000, who is deciding 
whether to buy gamble G from the pauper. The utility of Q, the status quo (to not 
buy) is u($1000) = 31.62, assuming again that u(x) = x0.5. The utility of B, the option 
to buy the gamble for $45 from the pauper, has expected utility of 
u($1000 + $100 − $45)(0.5) + u($1000 − $45)(0.5) = 31.69. Because EU(B) > EU(Q), 

Fig. 8.1 Negatively accelerated utility function. In this example, the value of x whose utility is 
halfway between $0 and $100 is $25, because u(x) = x0.5
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this person should prefer to buy the gamble for $45. This example shows that even 
if both people have the same utility function (but different levels of wealth), they 
can both improve their individual utilities by trading.

It is also reasonable that some people have different utility functions from others, 
reflecting different attitudes toward risk. For example, if a venturesome person had 
u(x) = x2, then that person would prefer the risky gamble to a sure thing with the 
same EV and would be called “risk-seeking.” Such a risk-seeking person would 
even be willing to buy this gamble at a price exceeding $50 and would outbid the 
wealthy but risk averse person to buy gamble G.

Von Neumann and Morgenstern (1947) showed that expected utility theory could 
be deduced from four basic axioms of preference and proved that if these axioms are 
assumed, utility could in principle be measured on an interval scale. The four axi-
oms are completeness (for any two lotteries, A and B, a person either prefers A to B, 
B to A, or is indifferent), transitivity [for any three lotteries, A, B, and C, if a person 
prefers A to B and B to C, then the person prefers A to C], independence [for any 
three lotteries A, B, and C, where A is preferred to B, and for any probability between 
0 and 1, pA + (1 – p)C is preferred to pB + (1 – p)C], and continuity [for any three 
lotteries, such that A preferred to B preferred to C, there exists a probability p such 
that B is indifferent to pA + (1 – p)C]. This axiomatic theory was accepted by many 
as the definition of what a rational person should do when confronted with decisions 
under risk.

Much of economic theory had been deduced from the assumptions that people 
are rational but may differ in their utilities or tastes and that EU theory was rational. 
For a time, it was also believed that people behave according to this rational theory; 
therefore, it was thought that classic economic theory not only prescribed what a 
rational economic actor should do but was also descriptive of actual behavior of 
individuals. However, both the assumption of rationality of EU and the assumption 
that people are rational came into question when Allais proposed his paradoxes.

 Allais Paradoxes

Allais (1953) criticized EU theory from both descriptive and normative perspec-
tives. He developed paradoxes that have generated continued discussion in the sci-
entific literature that continue to this day, because they revealed contradictions 
between what seemingly rational people did and what EU theory requires. For 
example, consider the following two choice problems:

Problem 1: A: ($1 million, 0.11; $0, 0.89)

B: ($2 million, 0.10; $0, 0.90)

Problem 2: C: ($1 million, with certainty)

D: ($2 million, 0.10; $1 million, 0.89; $0, 0.01)
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According to EU theory, a person should prefer C over D if and only if she pre-
fers A over B; however, many people prefer C over D and B over A, contrary to the 
theory. This paradox is known as the “constant consequence” paradox because 0.89 
probability to win $0 is common to both A and B, whereas this common conse-
quence of $0 was changed to a common value of $1 million in C and D (in B, the 
common consequence of 0.89 to win $0 is included in the branch of 0.90 to win $0). 
To understand why these preferences violate EU, note that EU(C) preferred to 
EU(D) means u(1 M) > 0.10u(2 M) + 0.89u(1 M) + 0.01u(0), which is the same as 
0.11u(1 M) > 0.10u(2 M) + 0.01u(0). However, if EU(B) is preferred to EU(A), it 
means 0.11u(1 M) + 0.89u(0) < 0.10u(2 M) + 0.90u(0), which leads to the contra-
diction that 0.11u(1 M) < 0.10u(2 M) + 0.01u(0). If a theory leads to contradiction, 
it cannot be true.

A “constant ratio” paradox was also developed, which can be illustrated by the 
following choices:

Problem 3: E: $3000 for sure

F: ($4000, 0.8; $0, 0.2)

Problem 4: G: ($3000, 0.25; $0, 0.75)

H: ($4000, 0.20; $0, 0.80)

According to EU theory, a person should prefer E to F if and only if she prefers 
G to H; however, many people prefer E to F and prefer H to G. The “constant ratio” 
refers to the fact that the probabilities to win in G and H of Problem 4 are a constant 
ratio (one fourth) of those in E and F of Problem 3. These paradoxes refuted EU as 
a descriptive model of how people choose between risky gambles. In the views of 
Allais (1979), these paradoxes reflected shortcomings of EU as a rational model as 
well.

 Subjectively Weighted Utility and Prospect Theory

Edwards (1954) used a subjectively weighted utility model to account for the Allais 
paradoxes. According to the model of Edwards, the value of a gamble is given by 
the following:

 
PV( )G w p u xi i= ∑ ( ) ( )  

(8.2)

where PV(G) is the prospect value of a gamble and w(pi) is the weight of the prob-
ability. Whereas EU theory allowed a nonlinear transformation between objective 
wealth and utility, this new theory theorized in addition to a nonlinear transforma-
tion between objective probability and the (subjective) decision weight assigned to 
that probability. An example of an inverse S-shaped probability weighting function 
is shown in Fig. 8.2. In such a function, the weight given to small probabilities is 
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relatively greater than the objective probability value, and the weight given to large 
probabilities is lower than the objective probability.

If people placed greater relative weight on small probabilities, as in Fig. 8.2, it 
could explain why a person who is otherwise risk averse (e.g., for 50–50 gambles) 
might be willing to buy a lottery ticket that provides only a tiny chance to win a 
large prize. Edwards also incorporated another revision of EU theory that had been 
proposed by Markowitz (1952). The utility function in Eq. (8.2) was defined in 
terms of changes from a reference level rather than absolute wealth. With this revi-
sion, x might be either a gain or a loss relative to the status quo, and Edwards (1962) 
further theorized that different functions might be required for gambles composed 
strictly of gains, strictly of losses, or combinations of gains and losses.

Tversky, a former student of Edwards, and Kahneman published a variant of this 
model in Econometrica under the name “prospect theory” (Kahneman & Tversky, 
1979). As Kahneman (2003) later noted, there was not much new in this paper com-
pared to the literature in psychology, but the paper had a tremendous impact in the 
field of economics, where it helped inspire the field of behavioral economics, the 
study of how people actually behave in experiments on economics.

Although “prospect theory” could account for the Allais paradoxes, it made 
some strange predictions that seemed unrealistic. For example, it predicts that peo-
ple should prefer gamble I = ($100, 0.01; $99, 0.01; $98, 0.098) to J = ($102; 0.5; 
$101, 0.5), even though every outcome of J is better than any outcome of I. If the 
weighting function is nonlinear, and if small probabilities get greater weight, then 
splitting a certain amount of probability into smaller pieces could increase weight 
enough to make worse gambles seem better. Because it seemed unlikely that people 
would violate stochastic dominance (e.g., choose I) in such cases, Kahneman and 
Tversky (1979) postulated “editing rules” that people supposedly used to avoid such 
implications of this model, and they postulated other restrictions and exceptions to 

Fig. 8.2 An inverse S-shaped probability weighting function. Note that small probabilities receive 
weights greater than their probabilities
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Eq. (8.2). Edwards (1954) model (Eq. 8.2) is now sometimes called “stripped” pros-
pect theory, when it is applied without the restrictions and editing rules that were 
added to prospect theory by Kahneman and Tversky (1979).

Rank-dependent weighting was proposed (Quiggin, 1985, 1993) as a way to 
account for the Allais paradoxes without violating stochastic dominance. Luce and 
Fishburn (1991, 1995) developed a generalized version called rank- and sign- 
dependent utility (RSDU) that allowed different rank-dependent weighting func-
tions for gains and losses (Luce, 2000). Tversky and Kahneman (1992) adopted a 
version of this model and called it cumulative prospect theory (CPT). According to 
RSDU or CPT, the value of a gamble on strictly nonnegative consequences is given 
by the following:

 
CPV( )G W P W Q u xi i i= ∑ ( )− ( )  ( )

 
(8.3)

where W is a strictly monotonic function from W(0) = 0 to W(1) = 1 that assigns 
decumulative weight to decumulative probability, Pi is the decumulative probability 
to win xi or more, and Qi is the probability to win strictly more than xi.

This CPT model (Eq. 8.3) always satisfies stochastic dominance, and it also sat-
isfies other principles that had required editing rules in original prospect theory. 
CPT could account for the Allais paradoxes by means of an inverse S-shaped decu-
mulative weighting function, like that in Fig. 8.2 (except that the x-axis now repre-
sents decumulative probability). This function assigns more weight to branches 
leading to smallest and largest consequences of a gamble than to branches leading 
to intermediate ones.

For a time, CPT appeared a better description than EU theory, but it had not been 
tested against an earlier approach called “configural weighting” that had been pro-
posed in the 1970s that shared some features of rank-dependent weighting but 
which differed in important ways.

 Configural Weighting Models

Birnbaum (1974; Birnbaum & Stegner, 1979) proposed configural weight models in 
which the rank of a stimulus affects its weight. Those aspects of a stimulus that are 
more unfavorable often seem to receive greater weight—a person who is described 
as “phony and understanding” or “sincere and mean” is not rated as neutral in like-
ableness, but instead is given a low rating, closer in value to the lower-evaluated 
information than to the higher. Similarly, a 50–50 gamble to receive either $0 or 
$100 is evaluated closer in value to $0 than to $100, as if $0 gets a greater weight 
than $100. Although these rank-affected, configural weight models had much in 
common with the models later developed independently as “rank-dependent utility,” 
the configural weight models can be distinguished from rank-dependent ones 
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because they make different predictions in certain cases; for example, they do not 
always imply stochastic dominance.

Configural weighting provides a different interpretation of risk aversion than 
found in EU theory: according to EU theory, risk aversion is produced by curvature 
of the utility function (Fig. 8.1); according to configural weighting theory, however, 
risk aversion or risk-seeking is mainly produced by over- or under-weighting of the 
lower-valued consequences or aspects of a gamble or stimulus. For example, sup-
pose the utility function is linear, u(x) = x, and people give twice as much weight to 
the lower consequence in a 50–50 gamble as to the higher one. Then the value of a 
50–50 gamble to win $100 or $0 is $33. The intuition is that people give extra atten-
tion to lower-valued consequences, leaving less weight for higher-valued conse-
quences. A configural weight model that captures this intuition is the transfer of 
attention exchange (TAX) model, which postulates that attention is diverted 
(“taxed”) from higher-valued outcomes and transferred to lower-valued 
consequences.

Consider the simple case of a 50–50 gamble to win either x or y, where x > y ≥ 0. 
The TAX model for this gamble can be written as follows:

 
TAX G u x u y( ) = +( ) ( ) + −( ) ( )0 5 0 5. .ω ω

 

where ω is the configural weight transferred from the lower-valued to the higher- 
valued consequence or aspect of the gamble or stimulus (−0.5 ≤ ω ≤ 0.5). If ω = 0, 
TAX reduces to EU; if ω = 0.5, it becomes a maximum model, and with ω = −0.5, 
it becomes a minimum model. For gambles on small amounts of cash (x < $150), 
with college students, one can approximate u(x) = x, and ω = −1/6, so the lowest 
consequence would get a weight of 2/3 and the highest a weight of 1/3. If a person 
had these parameters, that person would prefer $45 for sure to the 50–50 gamble to 
win $100, would prefer the gamble to $20, and would be indifferent between the 
gamble and $33 for sure.

For gambles with two possible consequences of the form, G = (x, p; y), x > y ≥ 0, 
the TAX model can be written as follows:

 
TAX G au x bu y a b( ) = ( ) + ( )  +( )/

 

where a and b are the weights of the higher and lower consequences, which have 
utilities of u(x) and u(y), respectively. For a risk-averse person, weights in a Special 
Case TAX model are given as follows:

 a t p t p= −( ) ( ) /δ 3  

 
b t p t p= −( ) +1 3δ ( ) /

 

where t(p) is a function of p, usually approximated as a power function, and δ > 0 is 
a constant reflecting the transfer of weight (attention) from the higher-valued 
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consequence to the lower-valued consequence. When the transfer goes the other 
direction, δ < 0, one replaces t(p) with t(1 – p) in the above equations.1

With three-branch gambles of the form, G = (x, p; y, q; z, 1 – p – q), x > y > z ≥ 0, 
the model is again a weighted average, TAX(G)  =  [Au(x)  +  Bu(y)  +  Cu(z)]/
(A + B + C), where the weights (for branches with highest, middle, and lowest con-
sequences) are as follows (in the Special TAX model)  for a person who places 
greater weight on lower-valued consequences:

 
A t p t p= ( ) ( )– /2 4δ

 

 
B t q t p t q= ( ) + ( ) − ( )δ δ/ /4 4

 

 
C t p q t p t q= − −( ) + +1 4 4δ δ( ) / ( ) /

 

Previous research has shown that modal choices by undergraduates for gambles 
involving small positive values can be roughly approximated by t(p) = p0.7, u(x) = x, 
and δ = 1. Although these “prior” parameters (which were not “best-fit” but were 
roughly based on previous data) have done fairly well in predicting new group data 
for the last 20 years, data fitting also shows that the estimated utility function should 
be negatively accelerated, especially when consequences cover a large range of 
values.

There are two aspects of the weights that deserve emphasis: First, the transfer of 
weights has the implication that risk aversion or risk-seeking can be explained by 
greater or reduced weight on the lower-valued consequence.

Second, the weighting of branches need not satisfy the property of coalescing, 
which is the assumption that splitting a branch of a gamble would not affect its 
utility. For example, coalescing implies that A = ($96, 0.85; $96, 0.05; $12, 0.10) 
should have the same utility as B = ($98, 0.90; $12, 0.10). Note that A and B are 
(objectively) the same; B is called the coalesced form of the gamble, and A is one 
of many possible split forms of the same gamble. Instead, splitting a branch in this 
model increases the weight given to the consequences of the split branch. This 
implication follows from the fact that t(p) is negatively accelerated, like many 
other psychophysical functions. In this averaging model, splitting the branch lead-
ing to the highest consequences tends to make a gamble A better than B (subjec-
tively). Splitting the branch leading to the lowest consequence would tend to 
make a gamble seem worse.

Differences in the properties and predictions between the configural weight 
models and RSDU models including CPT were identified and tested by Birnbaum 

1 As noted in Birnbaum (2008b, p. 471), the convention for ranking consequences was changed 
from lowest to highest, used in early papers on configural weighting, to highest to lowest, to agree 
with the conventions used in CPT; therefore, δ < 0 in Birnbaum & Navarrete (1998) corresponds 
to δ > 0 here and in papers after 2008.
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in a series of experiments that refuted this class of models as descriptive of deci-
sion making (Birnbaum, 2004a, 2004b, 2006; Marley & Luce, 2005). The config-
ural weight models, based on previous data, correctly predicted where to find new 
violations, which Birnbaum (2008b) called “new paradoxes” because these criti-
cal properties refuted CPT in the same way that Allais paradoxes refuted EU; that 
is, they lead to contradictions in the model that cannot be explained by revising 
parameters or functions in the model. More than a dozen critical tests have been 
devised that reveal that CPT is systematically violated (reviewed in Birnbaum, 
2008b, 2008c). Two of these critical tests among these models are reviewed in the 
next sections.

 Violations of Stochastic Dominance

If the probability to win a prize of x or greater in gamble F is always at least as high 
and sometimes higher than the corresponding probability in gamble G, we say that 
gamble F dominates gamble G by first-order stochastic dominance. According to 
rank- and sign-dependent utility theories, including CPT and EU, first-order sto-
chastic dominance must be satisfied. The configural weight models, however, imply 
that special choice problems can be constructed in which people will violate sto-
chastic dominance.

Birnbaum and Navarrete (1998) tested choice problems such as the following 
that were predicted by configural weight models (such as TAX) to violate stochastic 
dominance:

Problem 5: K: ($96; 0.90; $14, 0.05; $12, 0.05)

L: ($96, 0.85; $90, 0.05; $12, 0.10)

Birnbaum and Navarrete (1998) found that about 70% of undergraduates 
choose L over K, even though K dominates L. Note that the probability to win 
$96 is higher in K than L, the probability to win $90 or more is the same, the 
probability to win $14 or more is higher in K than L, and the probability to win 
$12 or more is the same. There have now been dozens of studies reporting simi-
lar, substantial violations of stochastic dominance in choice problems of this 
type, using different types of participants, different types of monetary incen-
tives, different types of probability mechanisms, different formats for present-
ing choice problems, and different types of event framing (Birnbaum, 2004a, 
2004b, 2006, 2007, 2008b; Birnbaum & Bahra, 2012a). These robust violations 
indicate that no form of rank- and sign-dependent utility function, including 
CPT, can be considered as a descriptive model of risky decision making, but 
they were predicted by the configural weight models that were used to design 
the experiment.
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 Dissection of the Allais Paradox

Birnbaum (2004a) noted that constant consequence paradigm of Allais can be 
decomposed into three simpler properties: transitivity, coalescing, and restricted 
branch independence. Transitivity is the assumption that if one prefers A to B and 
prefers B to C, then one should prefer A to C. Coalescing is the assumption that if 
two branches of a gamble lead to the same consequence, they can be combined by 
adding their probabilities, without changing utility. For example, in Problem 1, 
coalescing implies that the gamble, A = ($1 million, 0.11; $0, 0.89), is identical in 
utility to As = ($1 million, 0.10; $1 million, 0.01; $0, 0.89), because As is one of the 
“split” forms of A, which is the “coalesced” form of As.

Restricted branch independence is the assumption that if two gambles with the 
same number of branches and same probability distribution over those branches 
have a common consequence on a branch, the common consequence can be changed 
to another value without altering the preference. For example, As  =  ($1 million, 
0.10; $1 million, 0.01; $0, 0.89) is preferred to Bs = ($2 million, 0.10; $0, 0.01; $0, 
0.89) if and only if Cs =  ($1 million, 0.10; $1 million, 0.01; $1 million, 0.89) is 
preferred to Ds = ($2 million, 0.10; $0, 0.01; $1 million, 0.89), where the common 
branch of 0.89 to win $0 in the first choice has been changed to a common branch 
of 0.89 to win $1 million in the second.

If a person satisfied transitivity, coalescing, and restricted branch independence 
(all implied by EU), that person would not display the constant consequence para-
dox of Allais (Birnbaum, 2004a).

Consider the choice problems in Table 8.1. According to EU theory, the prefer-
ence should be the same in all six choice problems, in the sense that A preferred to 
B if and only if (iff) As preferred to Bs, iff Cs preferred to Ds, iff C preferred to D, iff 
Es preferred to Fs, and iff E preferred to F.

Original prospect theory (OPT), CPT, TAX, and EU all make different predic-
tions for such a dissection of this Allais paradox, so one can compare all four theo-
ries by testing this “dissection” of the Allais paradox (Birnbaum, 2004a, 2007). 
Implications of the theories are shown in Table 8.2. As shown in Table 8.2, in EU 
theory, both restricted branch independence (columns in Table 8.2) and coalescing 
(rows in Table 8.2) are satisfied. OPT implies restricted branch independence and 
violates coalescing, to account for the Allais paradox. That is, OPT implies As is 
preferred to Bs, iff Cs is preferred to Ds and iff Es is preferred to Fs. To explain an 
Allais paradox such as a reversal between the choice between A and B and between 
E and F, there must be a reversal either between choices of A versus B and As versus 
Bs or between the choices of Es versus Fs and E versus F. OPT also had editing rules 
of combination and cancellation that imply coalescing and restricted branch inde-
pendence, respectively, so OPT could mimic EU by invoking these editing rules, in 
which case the model does not predict Allais paradoxes.

Table 8.2 shows that, in contrast, CPT assumes coalescing and attributes the 
Allais paradox to violations of restricted branch independence; thus, A is preferred 
to B iff As is preferred to Bs, and Es is preferred to Fs, iff E is preferred to F. If cancel-
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lation was invoked, CPT could also mimic EU and would not predict Allais 
paradoxes.

Configural weight models such as TAX violate coalescing and with typical 
parameters, they often imply opposite violations of restricted branch independence 
from those required by CPT to account for the Allais paradoxes. According to this 
model, it should be possible to construct choice problems in which the Allais para-
dox would be reversed when the choices are presented in canonical split form. 
Canonical split form means that probabilities on ranked branches are equal, and the 
number of branches is minimal, as in choices As versus Bs and in Es versus Fs.

Empirically, there are strong violations of both coalescing and of restricted 
branch independence, and the violations of restricted branch independence are 
indeed opposite the direction required by CPT to account for the Allais paradox 
(Birnbaum, 2004a, 2007, 2008b). Thus, EU and both versions of prospect theory 
can be rejected because they both cannot account for violations of both coalescing 
and restricted branch independence in the dissection of the Allais paradox.

A number of studies have now been completed testing between configural weight 
models and CPT investigating these and other critical behavioral properties that can 
be used to distinguish between these models. The results strongly refute both ver-
sions of prospect theory in favor of the predictions made by the configural models 
(Birnbaum, 2004a, 2004b, 2006, 2008b; Birnbaum & Bahra, 2012a).

Table 8.1 Six choice problems dissecting Allais paradox into tests of coalescing and restricted 
branch independence

No. “Safe” “Risky”

1 A: ($1 M, 0.11; $0, 0.89) B: ($2 M, 0.10; $0, 0.90)
1s As: ($1 M, 0.10; $1 M, 0.01; $0, 0.89) Bs: ($2 M, 0.10; $0, 0.01; $0, 0.89)
2s Cs: ($1 M, 0.10; $1 M, 0.01; $1 M, 0.89) Ds: ($2 M, 0.10; $0, 0.01; $1 M, 0.89)
2 C: $1 M for sure D: ($2 M, 0.10; $1 M, 0.89; $0, 0.01)
3s Es: ($1 M, 0.10; $1 M, 0.01; $2 M, 0.89) Fs: ($2 M, 0.10; $0, 0.01; $2 M, 0.89)
3 E: ($2 M, 0.89; $1 M, 0.11) F: ($2 M, 0.99; $0, 0.01)

According to coalescing, Choices No. 1 and 1s, 2 and 2s, and 3 and 3s are equivalent choice prob-
lems. According to restricted branch independence, Choices No. 1s, 2s, and 3s should all be either 
“safe” or they should all be “risky,” but one should not switch systematically

Table 8.2 Comparison of 
decision theories

Restricted branch independence
Coalescing Satisfied Violated

Satisfied EUT CPT
Violated OPT CWT

Notes: EUTexpected utility theory, CPT cumulative 
prospect theory, OPT original prospect theory, CWT con-
figural weight theory (TAX). The editing rules of combi-
nation and cancellation produce satisfaction of coalescing 
and restricted branch independence, respectively
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Another criticism of CPT was developed, based on the idea that other process 
assumptions could be made to emulate its predictions for certain cases where the 
model had some success; the priority heuristic was constructed to fit previously 
published data.

 Priority Heuristic and Relative Arguments

Brandstätter, Gigerenzer, and Hertwig (2006) based their priority heuristic model 
on the lexicographic semiorder that had been used by Tversky (1969) to describe 
intransitive preferences that Tversky believed he found in a small number of selected 
individuals.

According to the priority heuristic (PH), a person first compares lowest conse-
quences of a gamble and chooses the gamble with the higher lowest consequence if 
they differ by more than 10% of the largest consequence in either gamble, rounded 
to the nearest prominent number. When the lowest consequences are not sufficiently 
different, the person chooses the gamble with the smaller probability to get the low-
est consequence, if these differ by 0.1 or more. If the probabilities of the lowest 
consequences differed by less than 0.1, the person is theorized to next compare the 
highest prizes and choose by that criterion, if they differ sufficiently. When there are 
more than two branches and the first three comparisons yield no decision, the per-
son next compares the probabilities to win the highest prize and decides on that 
basis alone, if there is any difference. And if all four criteria yield no decision, the 
person chooses randomly, without examining anything else. At each stage, the deci-
sion is based on only one reason, which is a contrast on one dimension. For exam-
ple, comparing A =  ($5.00, 0.29; $0, 0.71) versus C =  ($4.50, 0.38; $0, 0.62), a 
person first compares the lowest outcomes, and since they are $0 in both alterna-
tives; next, she examines the probability to receive the lowest outcome, but since the 
difference is less than 0.10, she compares the highest consequences and decides that 
A is better than C.

A claim was made that the PH fit certain published choice data as well or better 
than EU, CPT, or TAX, but this claim was challenged and shown to hold only with 
selected data and only when certain assumptions are forced onto theories that do not 
make those assumptions (Birnbaum, 2008a); when other data sets were analyzed, 
the model performed very poorly, and when best-fit parameters are estimated from 
the data for all models, the PH with its best-fit parameters did not outperform CPT 
or TAX with their best-fit parameters.

The PH model had been constructed to account for the Allais paradoxes in 
original form, but it could not account for new examples such as the dissection 
of the Allais paradoxes (Birnbaum, 2004a), nor for violations of stochastic domi-
nance (Birnbaum, 1999), nor for violations of restricted branch independence 
(Birnbaum & Navarrete, 1998). Although these phenomena had been published 
in the literature, they had not been included in the contest of fit that claimed high 
accuracy for the PH.
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The PH implies systematic violations of transitivity that do not appear empiri-
cally. For example, with gambles A = ($5.00, 0.29; $0, 0.71), C = ($4.50, 0.38; $0, 
0.62), and E  =  ($4.00, 0.46; $0, 0.54), the PH predicts that the majority should 
prefer A to C, and prefer C to E, and yet prefer E to A. But new studies by Birnbaum 
and Gutierrez (2007), Regenwetter, Dana, and Davis-Stober (2011), and Birnbaum 
and Bahra (2012b), among others, designed to test the predictions of the PH found 
that majority preferences did not show the predicted patterns of PH. In fact, the PH 
predicted only 30% of the modal choices correctly in Birnbaum and Gutierrez (a 
random coin toss would have correctly predicted 50%). PH model also does signifi-
cantly worse than chance in predicting violations of restricted branch independence, 
because it predicts the opposite pattern of violations from what is observed in both 
group data and the majority of individuals analyzed separately (Birnbaum & Bahra, 
2012a).

The PH implies that attributes or dimensions of a stimulus do not combine, nor 
do they interact, but experimental tests of combination and interaction showed evi-
dence that people integrate information between dimensions and that the dimen-
sions interact. For example, consider the following two choice problems:

Problem 6: X = ($100, 0.9; $5, 0.1)

Y = ($50, 0.9; $20, 0.1)

Problem 7: X’ = ($100, 0.1; $5, 0.9)

Y’ = ($50, 0.1; $20, 0.9)

According to the PH, a person should choose Y and Y’ because the probabilities 
are the same and the lowest consequences are better by the same amount in both 
gambles. According to another lexicographic semiorder, a person might choose X 
and X’, if they examined the highest consequences first. Because the probabilities 
are the same in both gambles within each choice, probability should not make any 
difference in these models. However, most people choose X over Y in Problem 6 and 
choose Y’ over X’ in Problem 7, contrary to any lexicographic semiorder model. 
These violations also contradict other similarity models that decide by comparing 
contrasts between components but do not postulate that components interact 
(Birnbaum, 2008c, 2010).

The perceived relative arguments model (Loomes, 2010), like the priority heuris-
tic and regret theory (Loomes, Starmer, & Sugden, 1991; Loomes & Sugden, 1982), 
can also violate transitivity. The Loomes (2010) model assumes that people make 
choices by combining contrasts between the components, so it differs from the 
PH. However, empirical studies of predicted intransitivity by regret theory and per-
ceived relative arguments model have not confirmed its predictions, and this model 
also fails to account for violations of restricted branch independence (Birnbaum & 
Diecidue, 2015).

In principle, violations of transitivity, if substantial and systematic, would rule 
out a large class of models that includes EV, EU, CPT, and TAX. Therefore, it would 
be extremely important to know if stimuli can be found that produce predictable, 
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systematic violations of transitivity. But Birnbaum and Diecidue (2015) noted that 
specific tests for intransitivity have not shown convincing evidence favoring either 
the PH, regret theory, or similarity models over the family of transitive models.

 Decisions from Description and from Experience

Much of the research and theory presented to this point has been based on cases 
where a decision-maker makes a decision based on descriptions of the consequences 
and their likelihoods. This paradigm matches many real-life situations where people 
make decisions without previous experience. However, in some cases, people make 
repeated decisions and can use their experience to revise beliefs about the likeli-
hoods and utilities of the consequences.

Hertwig, Barron, Weber, and Erev (2004) contrast two paradigms for decision 
making research. The first method asks people to make a single decision based on 
descriptions of the relevant chances and consequences, and the second method 
involves learning of probabilities based on experience with a sequence of events 
representing some unknown stochastic process. A sick person deciding which of 
two medical treatments to choose seems to match the first method, whereas an expe-
rienced person deciding what to order from a frequently visited restaurant seems to 
illustrate the second. With description, many people say they prefer a small chance 
at a large prize to a sure thing with the same expected value. For example, many 
people prefer M  =  ($100, 0.01; $0, 0.99) over N  =  $1 for sure, based on a 
description.

Such risk-seeking behavior for small probabilities to win positive consequences 
is consistent with OPT, CPT, and TAX, given typical parameters. However, when 
people are asked to sample from the two options, and then asked to make a choice, 
they often choose the safe option over the risky gamble. Hertwig et al. (2004) argued 
that perhaps different theories of decision making might be required for these two 
types of situation. They note that learning and perception of probabilities might be 
overly influenced by the particular sequence of events.

However, Fox and Hadar (2006) noted that from the perspective of experience, 
some people who drew small samples might experience M as “$0 always occurs” 
(since the unlikely event of $100 might never occur in a small sample); in contrast, 
they experience N as “always pays $1”; they never experience the population, so 
subjectively, the choice was between always $0 and always $1. In many studies 
done in this field, sampling is left to the participant and to chance, so the experience 
has not been constrained to match the description.

Glöckner, Hilbig, Henninger, and Fiedler (2016) present a current review of the 
literature on description versus experience, a reanalysis of earlier studies, and new 
experiments designed to disentangle different interpretations. They conclude that 
sampling and regression effects are important components of the previous studies, 
but they argue that other factors (such as uncertainty) play roles as well. For exam-
ple, how does one learn from a brief experience that something is a “sure thing?” 
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When one hears the description, “you win $50 no matter what color you draw from 
the urn,” it denotes a sure thing. This case is different from the situation of 15 trials 
that yield only $50 prizes. There is still the chance that other prizes might occur that 
have not yet been experienced. One factor that has not yet been addressed in this 
literature on experience versus description that has been considered by some in the 
description literature is the role of error or variability of response to producing 
choice behavior.

 Models of Error or Variability

When a person is presented the same choice problem on two occasions, the same 
person will often make a different choice responses on the two trials. For example, 
consider the next two choice problems:

Problem 8: R = ($98, 0.10; $2, 0.90)

S = ($40, 0.20; $2, 0.80)

Problem 9: R’ = ($98, 0.90; $2, 0.10)

S’ = ($98, 0.80; $40, 0.20)

Problems 8 and 9 were included, separated by a number of intervening trials, among 
a list of 31 choice problems. Following a brief intervening task of about 10 min, the 
same people were asked to respond to the same choice problems a second time. It 
was found that the same people made different responses 20% of the time on 
Problem 9, and 31% reversed preferences on two presentations of Problem 8. 
According to EU, a person should prefer R over S if and only if she prefers R’ over 
S’. But if the same person can change responses when Problem 8 is presented twice, 
should we be surprised if that same person made different responses on Problems 8 
and 9?

In the past, researchers argued that if significantly more people chose R in 
Problem 8 and S’ in Problem 9 than the number who made the opposite pattern of 
reversal (S and R’), then the “significant” difference meant one should reject 
EU. However, it has recently been shown that if different choice problems have dif-
ferent rates of error, then such asymmetry of reversals could occur even if EU held 
true. The idea that inherent variability or errors in choice might produce some or all 
of the apparent violations in tests of the Allais paradoxes (or of other behavioral 
properties such as transitivity) has been an important focus of recent research 
(Birnbaum, 2013; Birnbaum & Bahra, 2012a; Carbone & Hey, 2000; Loomes, 
2005; Regenwetter et al., 2011; Wilcox, 2008).

A family of models known as “true and error” models has been developed, based 
on the idea that one can estimate the error component from preference reversals by 
the same person to the same choice problems within a brief session. These models 
allow that a person’s “true” preferences may have variability between sessions 
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(blocks of trials), due to such factors as changing parameters or changing models, 
and they allow separation of such variability due to a mixture of models from vari-
ability produced by “error” that produces reversals within a session. They allow 
each choice problem to have a different rate of error, and they allow different people 
to have differing amounts of noise or unreliability in their responses.

When these models have been applied to repeated judgments, it has been found 
that the violations of EU, as in the Allais paradoxes; violations of CPT, as in the 
“new paradoxes”; and violations of the priority heuristic, as in the tests of interac-
tive independence, cannot be attributed to this type of error (Birnbaum, 2008b, 
2008c, 2010). On the other hand, violations of transitivity have been found to be of 
low frequency when the inherent variability of the data is fit by the true and error 
model.

 Concluding Comments

The field of risky decision making is one of the oldest topics in behavioral science 
and has influenced both psychology and economics. Over the years, new models 
have been developed, and new evidence has accumulated to refute some theories in 
favor of others. When new evidence violates a currently popular model, the findings 
are often called “paradoxes” or “anomalies.” Data have shown that EV, EU, SWU, 
OPT, and CPT can be rejected based on violations of critical properties. Intransitive 
models such as regret theory, lexicographic semiorders, and the priority heuristic 
have not yet been able to show where to find the predicted intransitive preference 
cycles nor have they been successful in predicting results of new experiments 
designed to test them. Configural weight models, such as TAX, remain the best 
account of the major phenomena, but as new research is conducted, it seems likely 
that more accurate and elegant models can be developed. As new theories are devel-
oped, new tests are designed, and new information is gained about how people deal 
with risk in making decisions.
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