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Abstract Recently proposed models of risky choice imply systematic violations
of transitivity of preference. This study explored whether people show the predicted
intransitivity of the two models proposed to account for the certainty effect in Allais
paradoxes. In order to distinguish “true” violations from those produced by “error,”
a model was fit in which each choice can have a different error rate and each person
can have a different pattern of preferences that need not be transitive. Error rate for a
choice is estimated from preference reversals between repeated presentations of the
same choice. Results showed that few people repeated intransitive patterns. We can
retain the hypothesis that all participants were transitive.

Keywords Transitivity · Errors · Gambling effect · Reference points

1 Introduction

The most popular theories of risky decision making assume that the decider computes
a value (or “utility”) for each alternative and chooses (or at least, tends to choose)
the alternative with the highest value. This class of models includes expected utility
theory (EU), cumulative prospect theory (CPT), prospective reference theory (PRT),
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transfer of attention exchange (TAX), gains decomposition utility (GDU), and many
others (Luce 2000; Marley and Luce 2005; Starmer 2000; Tversky and Kahneman
1992; Wu et al. 2004; Viscusi 1989). Although these models can be compared by
means of special experiments testing properties that distinguish them (Birnbaum 1999,
2004, 2005a, c), they all share, in common, the property of transitivity.

Transitivity is the property that if a person prefers alternative A to B, and B to C ,
then that person should prefer A to C . If a person systematically violates this property,
it should be possible to turn that person into a “money pump” if the person were willing
to pay a little to get A rather than B, something to get B rather than C , something to
get C rather than A and so on, ad infinitum. Most theoreticians, but not all (Fishburn
1991, 1992; Bordley and Hazen 1991), conclude that it would not be rational to violate
transitivity.

Despite such seemingly “irrational” implications of violating transitivity, some
descriptive theories imply that people can in certain circumstances be induced to vio-
late it. Models that violate transitivity include the lexicographic semi-order (Tversky
1969; see also Leland 1994), the additive difference model [including regret theory
of Loomes and Sugden (1982) and Fishburn (1982) Skew-symmetric bilinear util-
ity], Bordley (1992) expectations-based Bayesian variant of Viscusi’s PRT model, the
priority heuristic model (Brandstaetter et al. 2006), context-dependent model of the
gambling effect (CDG, Bleichrodt and Schmidt 2002) and context- and reference-
dependent utility (CRU, Bleichrodt and Schmidt 2007).

If one could show that people systematically violate transitivity, then it means that
the first class of models must be either rejected or modified to allow such effects.
Models that can violate transitivity provide a basis for designing experiments to test
transitivity. This study will explore violations predicted by models of Bleichrodt and
Schmidt (2002, 2007).

A number of previous studies attempted to test transitivity (Birnbaum et al. 1999;
Loomes et al. 1989, 1991; Loomes and Taylor 1992; Humphrey 2001; Starmer 1999;
Starmer and Sugden 1998; Tversky 1969). However, these studies remain contro-
versial; there is not yet consensus that there are situations that produce systematic
violations of transitivity (Luce 2000; Iverson and Falmagne 1985; Iverson et al. 2006;
Regenwetter and Stober 2006; Sopher and Gigliotti 1993; Stevenson et al. 1991). A
problem that has frustrated previous research has been the issue of deciding whether
an observed pattern represents “true violations” of transitivity or might be due instead
to “random errors.”

The purpose of this article is to empirically test patterns of intransitivity that are
predicted by CDG and CRU, using an “error” model that has the promise to be neutral
with respect to the issue of transitivity and which seems plausible as a descriptive
model of the variability of repeated choices. The lotteries we employ are similar to
those used in previous studies; however we present them only in terms of probabili-
ties with no reference to states of the worlds. For our lotteries, CDG and CRU models
make the same pattern of predicted violation given parameters chosen to describe well-
known phenomena in risky decision making. Interestingly, the direction of violations
is opposite to that implied by regret theory.

The remainder of this article is organized as follows. The next section describes
CDG and CRU models and shows their predicted pattern of violation of transitivity;
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Testing transitivity in choice under risk 601

the third section describes the error model; the fourth section describes the experi-
ments; the fifth section presents the results, which show that transitive models can be
retained for our data, and the sixth section discusses the implications.

2 Theoretical predictions

Our experimental design involves variations of the three lotteries presented in Table 1
where p and q are probabilities, and a > b > c are monetary consequences. Related
to the literature on preference reversals, A can be regarded as “$-bet,” B as “p-bet,”
and C is cash.

It will be shown below that CDG and CRU models both imply the intransitive
pattern, A � B, B � C , and C � A. Bordley’s (1992, p. 135) intransitive variant of
PRT implies the opposite intransitive pattern, B � A, A � C , and C � B. Regret the-
ory also implies this opposite pattern if probabilities in Table 1 denoted events (states
of the world), as shown by Loomes et al. (1991).

Before presenting the models, let us introduce some notation. Lotteries are denoted
by capital letters A, B, C ; X is the set of all the pure consequences with elements
of X being denoted by a, b, c. Formally, an element of X is a lottery that yields one
consequence with a probability of one. Probabilities are denoted by p and q, so p(a)

is the probability of consequence a in lottery A.

2.1 The context-dependent model of the gambling effect (CDG)

The CDG presupposes that the decision maker employs a different cognitive process
when choosing between two risky lotteries from that used when choosing between a
risky lottery and a sure consequence. In the latter case, it is assumed that people are
more risk averse because the sure outcome makes the risk involved in the risky lottery
more salient. The CDG postulates two distinct utility functions, u and v, such that

A � B ⇔
{∑n

i=1 p(ai )u(ai ) >
∑n

i=1 p(bi )u(bi ) A ∧ B /∈ X∑n
i=1 p(ai )v(ai ) >

∑n
i=1 p(bi )v(bi ) A ∨ B ∈ X

(1)

The hypothesis that subjects are more risk averse when choosing between a risky and
a riskless lottery implies that v is a concave transformation of u. In contrast with other
models of the gambling effect by Fishburn (1980), Schmidt (1998) and Diecidue et al.
(2004), CDG does not imply violations of first-order stochastic dominance but it does
allow violations of transitivity.

Table 1 Design of lotteries
used to test transitivity

Note: a > b > c > 0

Lottery p q 1 − p − q

A a 0 0

B b b 0

C c c c
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The lotteries in Table 1 can violate transitivity under CDG. When choosing between
A and B the utility function u is employed while the choices between A and C and B
and C are determined by the utility function v. Suppose B � A according to the utility
function u. Assuming v is more concave than u, we cannot have A � C and C � B
under v. This means the cycle implied by regret theory is ruled out under CDG. Now
suppose instead that A � B according to utility function u. Again, v is more concave
than u so we can have B � C and C � A which shows that the opposite cycle is
admissible under CDG.

2.2 Context- and reference-dependent utility (CRU)

The CRU is based upon Sugden (2003) model of subjective expected utility with
state-dependent reference point. Reference points had been discussed by Markowitz
(1952), Edwards (1954), and used by Kahneman and Tversky (1979) prospect theory
to accommodate evidence that behavior of subjects is driven by gains and losses rela-
tive to a reference point and not by final wealth positions as in expected utility theory.
Suppose there are n states of the world and let ai be the consequence of lottery (or act)
A in state i . The (subjective) probability of state i is denoted by pi . Moreover, there
is a reference point ri for every state i . The utility of lottery A in Sugden’s model is
now given by

V (A) =
n∑

i=1

pi u(ai , ri ), (2)

where V (A) represents the context- and reference-dependent utility of gamble A. The
reference point is often assumed to be equal to initial wealth. Sugden’s model general-
izes prospect theory by allowing the reference point to be state dependent. In contrast
to prospect theory, however, there is no probability weighting. This latter distinction
limits the descriptive power of Sugden’s model since it cannot explain the typical
Allais paradoxes.

The CRU generalizes Sugden’s model by allowing the reference point to be context
dependent, by which is meant that the reference point may differ in different choice
situations. More formally, we have

A � B ⇔
n∑

i=1

pi u[ai , ri (A, B)] >

n∑
i=1

pi u[bi , ri (A, B)] (3)

This is the most general expression of CRU, where ri (A, B) is the reference level for
state i in this choice. Special forms can be obtained by specific hypotheses on func-
tional forms of the utility function and on how reference point depends on the choice
situation. The hypothesis put forward by Bleichrodt and Schmidt (2007) and pursued
in this article is that when the initial endowment is zero, the reference point is the max-
imum of the lowest outcomes of the two gambles in a choice. Assuming that utility
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depends on the difference of outcome and reference point, we get u[ai , ri (A, B)] =
u[ai −max{mini (ai ), mini (bi )}]. Bleichrodt and Schmidt (2007) showed that with this
specification, CRU can explain many classic deviations from expected utility such as
Allais paradoxes, preference reversals, and the disparity between willingness-to-pay
and willingness-to-accept.

For the lotteries in Table 1, we have under CRU A � B as in expected utility theory
if pu(a) > (p + q)u(b). However, for the choices between B and C and A and C ,
the maximum of minimal outcomes is c such that B � C ⇔ (p + q)u(b − c) +
(1 − p − q)u(−c) > 0 and C � A ⇔ 0 > pu(a − c) + (1 − p)u(−c).

2.3 Numerical predictions

Our experiment is devised to test these predicted violations of transitivity in CDG and
CRU. In our first series, for example, A = ($100, 0.5; $0), B = ($50, 0.9; $0), and
C = $37 for sure. The cycle A � B, B � C , and C � A is implied by both CDG and
CRU, given plausible values of the parameters for these models.

For the special case of CDG given by u(a)= aα and v(a)= aβ , the cycle is im-
plied when α > 0.64, and 0.47 < β < 0.6, which are compatible with previously
published results. For instance, in the standard common ratio effect (Kahneman and
Tversky 1979), it has been found that ($3000, 1) � ($4000, 0.8; $0) and ($4000,
0.2; $0) � ($3000, 0.25; $0); this result is implied by CDG when β < 0.78 and
α > 0.78.

For CRU we approximate the utility function as follows:

u(x) =
{

xα x ≥ 0
−λ |x |α x < 0

(4)

Assuming λ = 2.2, the same intransitive cycle is implied if 0.64 < α < 1.04. These
parameters are also realistic given previous data (Tversky and Kahneman 1992);
the above-mentioned common ratio effect is predicted by CRU for λ = 2.2 when
α > 0.78.

3 Transitivity and error models

Testing transitivity with fallible data has been a controversial topic. One approach has
been to test weak stochastic transitivity (Tversky 1969). Weak stochastic transitivity
(WST) is the property that if P(A, B) > 1/2 and P(B, C) > 1/2, thenP(A, C) >

1/2. Tversky (1969) concluded that weak stochastic transitivity was systematically
violated by some, but not all, of his participants. Iverson and Falmagne (1985) criti-
cized the statistical test used by Tversky; they reanalyzed Tversky’s data and concluded
that WST could not be rejected if each participant were allowed to have a different
true preference order. However, Iverson et al. (2006) applied a neo-Bayesian anal-
ysis to the same data with the conclusion that some of Tversky’s participants were
indeed intransitive. Brandstaetter et al. (2006) proposed a priority heuristic model that
is intransitive, which they found gives a reasonably accurate account of previously
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published data, including the pattern observed by Tversky (1969). Regenwetter and
Stober (2006) argued that WST is not the way to test transitivity since it, however, can
be violated even if each “true” pattern is transitive. They tested instead the triangle
inequality and concluded that transitivity can be retained for Tversky’s data.

In the economics literature, a similar debate has occurred concerning whether phe-
nomena predicted by regret theory, such as predicted violations of transitivity, are
“true” or can be attributed to noise or “error” (Birnbaum 2004, 2005b; Humphrey
2001; Loomes et al. 1991; Sopher and Gigliotti 1993; Starmer and Sugden 1998;
Starmer 1999). Models of error have been discussed by Carbone and Hey (2000),
Harless and Camerer (1994), Hey (2005), Hey and Orme (1994), Luce (1994), Sopher
and Gigliotti (1993), Thurstone (1927), and others.

Because we plan to test transitivity, we think it best to use a model of error that
is neutral with respect to transitivity. Models of Thurstone (1927), Busemeyer and
Townsend (1993), Hey and Orme (1994) implicitly assume or imply transitivity in
the absence of error. Our approach is described by Birnbaum (2005b), and is simi-
lar to that of Harless and Camerer (1994) and Sopher and Gigliotti (1993). Whereas
Harless and Camerer (1994) assumed that matched choices have the same error prob-
ability, Sopher and Gigliotti allowed the error rates in different choices to be unequal.
Birnbaum (2005b) improvement over those articles is to use repeated presentations of
the same choice in order to unambiguously estimate error rates for different choices.

Consider a choice between A and B that is presented twice to the same partici-
pants. Some people will choose A both times, some will choose B both times, some
will switch from A to B, and some switch from B to A. The model assumes that the
probability of switching from A to B is given as follows:

P(AB) = p(1 − e)e + (1 − p)(1 − e)e = e(1 − e) (5)

where p is the probability that a person “truly” prefers A over B and e is the error
rate for this choice. Those people who truly prefer A over B have correctly reported
their preference the first time and made an error the second time, whereas those who
“truly” prefer B have also made one error and one correct response. Notice that this
model implies that the probability of switching from A to B equals the probability of
switching from B to A, and this value is independent of p.

When there are three gambles A, B, and C , there are eight possible response pat-
terns for paired choices, shown in Table 2. We assume that each person can have a
different “true” preference pattern, which may or may not be transitive; these are
listed in Table 2.

The probability of showing the intransitive pattern 000 is as follows:

P(000) = p000(1 − e1)(1 − e2)(1 − e3) + p001(1 − e1)(1 − e2)e3

+ p010(1 − e1)e2(1 − e3) + p011(1 − e1)e2e3

+ p100e1(1 − e2)(1 − e3) + p101e1(1 − e2)e3

+ p110e1e2(1 − e3) + p111e1e2e3 (6)

where P(000) is the probability of showing the observed intransitive pattern in the
data; p000 is the probability that a person has 000 as her “true” pattern; and e1, e2,
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Table 2 Patterns of choice

The pattern predicted by CRU
and CDU is 000

Notation Preference pattern Preference order

000 A � B; B � C ; C � A Intransitive

001 A � B; B � C ; C ≺ A A � B � C

010 A � B; B ≺ C ; C � A C � A � B

011 A � B; B ≺ C ; C ≺ A A � C � B

100 A ≺ B; B � C ; C � A B � C � A

101 A ≺ B; B � C ; C ≺ A B � C � A

110 A ≺ B; B ≺ C ; C � A C � B � A

111 A ≺ B; B ≺ C ; C ≺ A Intransitive

and e3 are the probabilities of making an “error” in expressing preference on the three
choices. There are seven other equations like the above for the other seven observed
patterns.

This study uses two types of replications: the same choice can be presented exactly
the same way, or it can be presented with the positions of the two gambles counter-
balanced. These features permit the estimation of error terms. With two replications,
there are 64 possible response patterns (8×8), and the equations (as in Expression 6)
can be expanded to allow for up to six errors or correct reports.

This “true and error” model with replications is neutral with respect to the issue of
transitivity. The transitive model is a special case of this model in which parameters
representing true probabilities of intransitivity are fixed to zero; i.e., p000 = p111 = 0.
We can test transitivity by comparing the fit of the transitive model to the general model
in which all the parameters are free.

4 Method

Participants chose between gambles by viewing the choices via the Internet and click-
ing a button beside the gamble in each choice they would rather play. Gambles were
described in terms of containers holding 100 tickets from which one would be chosen
at random to determine the prize. They were displayed as in the following example:

Which do you choose?
A: 50 tickets to win $100

50 tickets to win $0
OR
B: win $45 for sure

There were 20 choices. The first two assessed risk aversion. The other 18 were com-
posed of three series of six choices each, each designed to test predictions of CRU
and CDG. Each series was composed of three choices testing transitivity with each
choice counterbalanced for position (first or second gamble). The 18 were intermixed
with order restricted so that no two trials from the same group of three would appear
on successive trials.

Table 3 shows the lotteries of Series I, II, and III. The difference between Trials 5
and 20 Trials 8 and 17, and Trials 11 and 14 is just the (first or second) positioning
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Table 3 Tests of transitivity, showing trial numbers for Series I

Code Trial Choice % Second gamble

First gamble Second gamble Series I
(b = 50,
c = 37)

Series II
(b = 53,
c = 33)

Series III
(b = 55,
c = 30)

AB 5 A : 50 to win $100 B : 90 to win $b 67 70 70

50 to win $0 10 to win $0

BC 8 B : 90 to win $b C : $c for sure 33 28 23

10 to win $0

CA 11 C : $c for sure A : 50 to win $100 48 58 57

50 to win $0

BA 20 B : 90 to win $b A : 50 to win $100 33 31 27

10 to win $0 50 to win $0

CB 17 C : $c for sure B : 90 to win $b 70 79 76

10 to win $0

AC 14 A : 50 to win $100 C : $c for sure 51 44 39

50 to win $0

Note that Trials 5, 8, and 11 are the same as 20, 17, and 14, respectively, but counterbalanced for position.
Predicted pattern of intransitivity is A � B � C � A for CRU and CDU

of lotteries. Consider Series I: Trial 5 was a choice between A = ($100, 0.5; $0) and
B = ($50, 0.9; $0), in Trial 8, B is compared with C = $37 for sure, and Trial 11 is a
choice between C and A. In the notation of Table 1, a = $100, b = $50, and c = $37.
Series II and III were the same as Series I, except that b = $53, and c = $33 in Series
II; and b = $55 and c = $30 in Series III.

Two groups of participants were tested. A group of college undergraduates per-
formed the 20 choices twice, separated by four other intervening tasks that required
about 20 min. The 127 college students were tested in labs containing Internet-con-
nected computers. They participated as one option to fulfill an assignment in lower
division psychology. Of these, 54% were female; 87% were 20 years or younger, and
no one was older than 26.

A second group of 162 participants was recruited via the Web, who participated
with the understanding that one would be chosen to receive the prize of one of their 20
chosen gambles. Out of the 162 Web recruits, 66% were female; 35% were 20 years
or less, and 15% were over 40.

Complete materials can be examined at the following URLs: http://psych.fullerton.
edu/mbirnbaum/decisions/Schmidt_Ulli.htm; http://psych.fullerton.edu/mbirnbaum/
decisions/Schmidt_Ulli_1.htm.

5 Results

The percentages of people who chose the second gamble in each pair are shown in
Table 3 for all the three series. If most people followed the predictions of CRU or CDG
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Table 4 Response patterns for Series I

Pattern First rep Second rep First and second

#5, 8, 11 #20, 17, 14 Both #5, 8, 11 #20, 17, 14 Both Combined

000 2 4 1 2 2 0 0

001 20 20 10 35 26 23 8

010 6 7 5 7 10 6 4

011 8 9 5 4 6 3 3

100 35 35 25 30 36 26 15

101 27 30 16 19 24 14 7

110 22 18 13 28 18 15 7

111 7 4 1 2 5 2 1

Total 127 127 76 127 127 89 45

Responses to trials #20, 17, and 14 have been reflected to correct for the counterbalancing of position. Only
one person showed the predicted pattern of intransitivity on both sets of Choices 5, 8, and 11, and 20, 17,
and 14 in the First replicate. However, 25 repeated the transitive pattern B � C � A

model, with the parameters we assumed, the choice proportions should be less than
0.5 in the first three rows of Table 3 (Choices 5, 8, and 11) and greater than 0.5 in the
second three rows (Choices 20, 17, and 14) of the same table. Instead, we see that the
majority prefers ($50, 0.9; $0) over ($100, 0.5; $0) in Choices 5 and 20, so the modal
choices are transitive; similar results were obtained for b = $53 and $55 in Series II
and III, respectively.

Table 4 shows the number of people who showed each pattern of preference on
Choices 5, 8, and 11, on (reflected) Choices 20, 17, and 14, and on both of these
sets of trials on Replicates 1 and 2 of Series I. Patterns 000 and 111 are intransitive;
the other six patterns are transitive. The pattern of violations predicted by CRU and
CDG is 000, and the 111 pattern would be consistent with Bordley (1992). Only one
person repeated the predicted pattern 000 of intransitivity in the first replicate and no
one repeated this same pattern on the second replicate of Series I. Only one person
repeated the opposite intransitive pattern, 111, in both replicates of Series I.

Tables 5 and 6 show the same analysis of response patterns as Table 4 for Series
II and III, respectively. Data from the sample recruited via the Web are shown in
Table 7 for all the three series. Results in Tables 5, 6, and 7 are all quite similar to those
in Table 4: very few people showed intransitive orders, and almost no one repeated
intransitive patterns (only two in Table 5, two in Table 6, and four in Table 7).

Table 8 shows how the data of Series I are partitioned for the fit of the true and
error model. Data are partitioned into the number of people who showed each pattern
repeatedly (both), and the average number who showed each pattern on either the
first three choices of Table 3 or the second three choices of Table 3 (with positions
reversed), but not both. By construction, these 16 frequencies are mutually exclusive
and sum to the number of participants (127).

When the true and error model is fit to the data of each replicate of each series
separately, it is found that intransitive patterns are estimated to be low in probability,
as one might expect from the small numbers who exhibited these patterns repeatedly.
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Table 5 Response patterns for Series II

Pattern First rep Second rep First and second

#10, 4, 7 #19, 15, 13 Both #10, 4, 7 #19, 15, 13 Both Combined

000 2 1 0 3 1 1 0

001 24 23 16 31 32 26 11

010 5 5 4 5 7 4 3

011 5 9 3 2 2 0 0

100 27 36 20 21 32 20 15

101 41 39 29 35 36 28 17

110 17 13 9 26 16 15 5

111 6 1 1 4 1 0 0

Total 127 127 82 127 127 94 51

Each entry is the number of participants who showed each choice combination

Table 6 Response patterns in Series III

Pattern First rep Second rep First and second

#6, 3, 12 #18, 9, 15 Both #6, 3, 12 #18, 9, 15 Both Combined

000 2 0 0 2 1 1 0

001 25 24 15 33 27 23 12

010 5 5 3 5 5 4 3

011 4 7 2 1 3 1 1

100 34 26 24 24 25 20 14

101 39 44 30 37 46 33 21

110 14 19 13 23 19 17 9

111 4 2 1 2 1 0 0

Total 127 127 88 127 127 99 60

Table 7 Response patterns in Web participants

Pattern Series I Series II Series III

#5, 8, 11 #20, 17, 14 Both #10, 4, 7 #19, 15, 13 Both #6, 3, 12 #18, 9, 15 Both

000 2 4 0 1 2 0 4 0 0

001 20 25 14 30 30 21 22 24 18

010 11 8 5 9 7 4 6 8 3

011 8 7 4 8 5 0 5 5 2

100 44 37 31 36 37 25 37 36 28

101 37 36 24 46 50 35 59 59 48

110 31 35 24 23 21 14 19 19 13

111 7 8 3 7 8 1 7 8 1

Total 160 160 105 160 160 100 159 159 113

Notes: Each choice was repeated only with position counterbalanced. Totals do not sum to number of
participants (162) due to occasional skipped items
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Table 8 Data partitioned into
conjunction and union excluding
conjunction (Series I)

These are the data to which the
model is fit, to minimize the
chi-square between predicted
and obtained frequencies. The 16
entries must sum to the number
of participants, so there are 15
degrees of freedom in the data

Pattern First rep Second rep

Both Union-Conj Both Union-Conj

000 1 2 0 2

001 10 10 23 7.5

010 5 1.5 6 2.5

011 5 3.5 3 2

100 25 10 26 7

101 16 12.5 14 7.5

110 13 7 15 8

111 1 4.5 2 1.5

Total 76 51 89 38

Table 9 Parameters estimated from true and error model (Series I)

Pattern First rep #5, 8, 11 and #20, 17, 14 Second rep # 5, 8, 11 and 20, 17, 14

Full model Transitive Full model Transitive

000 0.006 (0) 0.000 (0)

001 0.154 0.170 0.265 0.264

010 0.055 0.057 0.063 0.069

011 0.064 0.063 0.029 0.021

100 0.313 0.315 0.288 0.285

101 0.239 0.214 0.163 0.203

110 0.160 0.181 0.173 0.158

111 0.009 (0) 0.020 (0)

χ2 6.51 7.60 3.15 8.57

Values are estimates of probability of each “true” preference pattern. Values in parentheses are fixed. Esti-
mated error terms are 0.09, 0.08, and 0.10 in the first repetition, and 0.10, 0.08, and 0 in the second repetition.
Although one or two participants may have been systematically intransitive in Series I, a good fit is still
obtained when we assume there were no intransitive participants

Parameter estimates for Replicates 1 and 2 of Series I are shown in Table 9. According
to the model, fewer than 2% of the participants were intransitive. Both the transitive
and full models provided satisfactory fits to the data. Similar results (not shown) were
obtained with Series II and III and for the Web data.

The Chi-Squares (indices of lack of fit) for unconstrained and transitive models are
shown in Table 10. None of these values is significant. The difference in fit between
the transitive and free (allowing intransitivity) models is not significant in any of the
nine tests (α = 0.05), indicating that we can retain the hypothesis that no one was truly
intransitive [P(000) = P(111) = 0] in Series I, II, and III of Lab or Web data.

The error terms (e1, e2, e3) can be estimated directly from the number of partici-
pants who reverse preferences between repetitions. This method may not be optimal
to minimize the test statistic, but it has the advantage that the estimated error terms
are independent of assumptions concerning transitivity. Between the first and second
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Table 10 Chi-squares indices
of (lack of) fit for transitive
model and unconstrained model

Notes: Critical values of
chi-square with 7, 5, and 2
degrees of freedom are 14.1,
11.1, and 6.0 for α = 0.05,
respectively. None of the values
is significant, indicating that the
transitive model provides a
satisfactory description of the
data

Data set Model (degrees of freedom)

Transitive (7) All free (5) Difference (2)

Series I rep 1 7.60 6.51 1.08

Series I rep 2 8.57 3.15 5.42

Series II rep 1 4.42 4.13 0.30

Series II rep 2 5.05 2.16 2.88

Series III rep 1 6.45 5.16 1.30

Series III rep 2 4.84 2.87 1.97

Series I Web 8.50 2.58 5.92

Series II Web 3.72 3.72 0.00

Series III Web 3.45 3.30 0.15

repetitions, the average rate of agreement over all of the 20 choices was 85.6%. Within
replicates, the agreement between the same choices with the order reversed was 88.5%.
The correlation between these two estimates of “error” was 0.63, indicating individual
differences in the error rate; some people are less reliable than others. Assuming 87%
agreement, there are 13% preference reversals [2e(1 − e)], which corresponds to an
average error rate of e = 0.07.

For Series I Replicate 1, there were 24 who reversed preferences between Trial 5 and
20, 25 who reversed preferences between Trials 8 and 17, and only nine who reversed
preferences between Trials 11 and 14. These correspond to error rates of e1 = 0.11,
e2 = 0.11, and e3 = 0.04. These estimates assume nothing about transitivity. With the
error rates fixed to these values, χ2 = 7.09 for the model with probabilities of all the
sequences free, and χ2 = 8.71 for the transitive model. Results for the other series and
replicates yielded similar conclusions: the success of the transitive model does not
depend on its freedom to estimate error rates to optimize fit to transitivity.

We can illustrate the power of the statistical tests by adding hypothetical participants
who repeated the predicted 000 pattern. We again fit data of Replicate 1 of Series I,
holding the error rates fixed to the values estimated from observed preference reversals
between replicates, and we added 1, 2, 3, 4, or 5 hypothetical people who repeated the
predicted 000 pattern. The χ2 values are 13.44, 21.9, 33.03, 46.07, and 60.47 for 1, 2,
3, 4, and 5 added cases, respectively. Had there been just three people who repeatedly
showed the predicted pattern of CRU and CDG, we could have rejected the purely
transitive model in favor of the hypothesis that a small percentage of people are truly
intransitive. When people are relatively consistent in their preferences, as they were
in this study, estimated error rates are small, and the test statistic is very sensitive to
cases where people show a repeated pattern violating the model.

6 Discussion and conclusions

Our data provide no significant evidence that people are systematically intransitive for
the choices we tested, which were chosen based on predictions of CRU and CDG. We
found no significant violations of transitivity of the type predicted by CRU and CDG,
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nor did we find significant violations of the opposite type, as predicted by Bordley
(1992) model. Satisfaction of transitivity does not rule out CRU or CDG, however,
owing to those models allowing transitive preferences for this experiment with dif-
ferent parameters. In other words, our results do not rule out intransitivity for choices
not yet tested.

The success of transitivity in our data is compatible with findings of Birnbaum and
Gutierrez (2007) who tested transitivity using Tversky’s (1969) gambles. Brandstaetter
et al. (2006) noted that their priority heuristic model implies that people should sys-
tematically violate transitivity with Tversky’s choices. As we observed in the data of
this study, Birnbaum and Gutierrez also found no evidence of systematic intransitivity,
contrary to the conclusions of Tversky (1969) and Brandstaetter et al. (2006).1 With
the Tversky gambles, Birnbaum and Gutierrez found that the vast majority of data
that were internally consistent (where people agreed with their own choices between
repetitions) followed the transitive order matching expected value, transfer of atten-
tion exchange, and cumulative prospect theory, which all made the same predictions
in that study. Interestingly, this consensus among people occurred despite the fact that
Tversky’s gambles were designed to have nearly identical expected values.

The data of this study show greater individual differences among people for their
transitive orders than found by Birnbaum and Gutierrez. There are four popular tran-
sitive patterns in our data: 001, 100, 101, and 110. In this study, we have a sure thing,
a highly probable prize and a medium probability prize. The Tversky gambles, in con-
trast, included no sure thing; perhaps our larger individual differences arise because
of this feature of our study. Although people disagreed with each other more in this
study than others, people were fairly consistent with their own choices in this study.
Participants agreed with their own judgments 87% of the time on average. In Birnbaum
(1999), the lab sample agreed with their own judgments 82% of the time. Perhaps this
higher internal consistency was facilitated by many repetitions of the same or similar
choices in this study.

Other studies using similar structure for the set of gambles (Table 1) argued that
violations of transitivity were “real.” Loomes et al. (1989, 1991) and Starmer and
Sugden (1998) found that the pattern of intransitivity predicted by regret theory was
more frequent than the opposite pattern. They used choice problems similar to ours,
but presented them using states-of-the-world format. This format allows for statewise
comparisons of consequences between lotteries, which is necessary for regret effects
to occur. Interestingly, in a states-of-the-world format, regret theory implies exactly
the opposite cycles from those predicted by CRU and CDG.

As noted above, the conclusions of Loomes et al. remain controversial, because
the reported pattern of asymmetric intransitivities might have resulted from response
errors, event-splitting effects, or other complications, rather than from “real” intran-
sitivity (Humphrey 2001; Sopher and Gigliotti 1993; Starmer and Sugden 1998).
Nevertheless, our finding of transitivity does not contradict regret theory because that
theory does not predict the intransitivity when gambles are presented in the format

1 The models of Tversky (1969) and Brandstaetter et al. (2006) model do not imply intransitivity in this
study. They predict, instead, that majority choices should exhibit the transitive order C � B � A, whereas
the observed modal choices in Series II and III are B � A � C .
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that we used. Our method of using replications to estimate the errors could be applied
in that situation to determine if there are “true” violations of transitivity produced by
regret.

Blavatskyy (2003) reported a large incidence of violations of transitivity using lot-
teries that fit the structure of Table 1. He postulated a heuristic of relative probability
comparison (see also Blavatskyy 2006), which implies the same intransitive patterns
as do CRU and CDG. In his experiments, about 55% of subjects indeed exhibited
these cycles. However, his study is difficult to compare with ours because lotteries
were represented by natural frequencies in a sample of nine previous observations,
without any specified probability information. His form of presentation may well be
crucial to the effect he reported.

The CDG and CRU models, as described here, account for standard paradoxes but
they do not account for the “new paradoxes” described by Birnbaum (1999, 2004,
2005a, b, c). They have in common that “sure things” introduce additional consider-
ations to risky decision making that can create intransitivity. Had the predicted pattern
of intransitivity been observed, we would have been able to refute a large class of
transitive utility models, including Birnbaum’s transfer of attention exchange (TAX)
model, which accounts for the new paradoxes. This would have encouraged us to
revise CDG and CRU theories to explain those phenomena or to revise TAX to incor-
porate, for example, reference levels that depend on the best lowest consequence, and
therefore to account for intransitive preference.

In conclusion, we tested for violations of transitivity that were predicted by two
models with parameters chosen to explain common findings. When data are analyzed
using an error model in which different people can have different “true” preference
patterns, but vary in their responses to the same choices because of “errors,” we find
no evidence to reject the hypothesis that everyone had a transitive preference order.
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