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Probability learning is a classic paradigm that was
heavily studied in the 1950s and 1960s. In those days,
such research was conducted in the lab by means of a
special apparatus that was labor intensive, which made it
diff icult to investigate issues that required extensive
data. For example, Nies (1962) asked people to predict,
on each trial, the color of the next marble that would roll
out of an urn containing70 red marbles and 30 blue ones.
Edwards (1956) used a slot machine, into which the par-
ticipant would feed chips and then push one of two but-
tons. An experimenter concealed in another room con-
trolled the machine’s payoffs. Such early methods were
costly and time consuming, which may be one of the rea-
sons that research on this topic declined in popularity be-
fore fundamental questions had been resolved.

This paper will describe methods for conducting this
type of research by means of a browser-based, JavaScript-
powered Web experiment that can be used to test partici-
pants either in the lab or via the World-Wide Web (WWW).
These innovations allow studies to be conducted effi-
ciently with large numbers of participants, permitting ex-
perimental designs with many conditions. Such research
would have been impractical with older lab methods that
used dedicated equipment to test people individually.

Among the advantagesof Web-based research are that no
dedicated lab is needed, no experimenter need be present,
the study runs day and night, and large numbers of partic-
ipants can be recruited from a vast worldwide population.

Another distinct advantage of Internet-based research
is its promise for facilitating scientific communication
and progress. Via the WWW, scientists can now examine
and experience the exact conditions that were used in an-
other lab. When experimenters include JavaScript in the
Web page that runs the study, they make it possible for
other scientists to examine, modify, and adapt the exper-
iment to new purposes without introducing confounds of
procedure that might take years of laboratory work to re-
solve. At the core of the set of programs we used in this
study was a JavaScript routine developed by Birnbaum
(2002), which we expanded and improved upon to make
the 21 Web pages that executed the experiments that will
be reported here. A tutorial on JavaScript will be pre-
sented in a later section to show how each part of these
programs works. Before studying the programming,
however, it is important first to understand the paradigm
of probability learning.

Probability Learning
Birnbaum (2002) compared performance on the clas-

sical probability-learning paradigm in experiments con-
ducted in the lab with those conducted via the Web. In
Birnbaum’s (2002) study, learners predicted which of
two abstract events (R1 or R2) would happen next by
clicking buttons; they were given feedback as to whether
they were right or wrong on each trial. Whereas the typ-
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ical study of probability learning in the 1950s used just
one or two levels of probability, counterbalanced for po-
sition, Birnbaum (2002) was able to test 101 levels of
probability from 0 to 1 in steps of .01. This was made
possible by the availability of large samples via the
WWW. Once a study is running via the Internet, it is an
easy matter to bring a sample of the usual “subject pool”
participants to the lab, to allow a comparison of these
two ways of conducting the research.

Consistent with other lab-versus-Web comparisons
(Birnbaum, 1999, 2000, 2001; Krantz & Dalal, 2000),
Birnbaum’s (2002) lab and Web data gave quite compa-
rable results for this experiment. Birnbaum’s (2002) re-
sults also fit well with the classic finding of the early lab
research—namely, that people perform in a less than op-
timal fashion in this task.

In this paradigm, the learner’s task is to push one of
two buttons to predict which of two events will occur on
the next trial. After each prediction, the learner is given
the correct event. If the sequence of events is truly ran-
dom and if learners do not possess paranormal abilities,
the optimal strategy is to figure out which event is more
likely and then consistently predict that same event on
every trial.

However, the typical generalization from these studies
has been that people tend to match the proportions of
their predictions of events to the probabilities of those
events (Bower, 1994; Erev & Barron, 2001; Estes, 2002;
Nies, 1962; Tversky & Edwards, 1966). Such behavior is
called probability matching, and it leads to suboptimal
performance in the task.

To see why probability matching is suboptimal, con-
sider predicting the color of the next marble drawn at
random from an urn, with the marbles being replaced
and remixed before each draw. If there are 70% red mar-
bles and 30% blue marbles, a person should always pre-
dict that the next marble is “red,” which will result in
70% correct. However, if a person matches probabilities,
guessing “red” on 70% of the trials and guessing “blue”
30% of the time, the person will end up with only 58%
correct. This sum is the result of correctly guessing “red”
when red occurs (.7 3 .7 = .49) plus guessing “blue”
when blue occurs (.3 3 .3 = .09), for a total of .58. In
general, if p is the proportion of the more frequent out-
come of a Bernoulli trial, the probability correct for the
optimal strategy (always guess the more frequent event)
is p, whereas for the probability matching strategy it is
only p2 + (1 2 p)2.

In early research, probabilitymatching was seen as the
consequence of a probabilistic reinforcement model that
described how people and other animals learned (Bower,
1994; Estes, 1950, 1994). Probability matching, how-
ever, could also result from the learner’s attempts to learn
patterns or sequences that have been experienced. Per-
haps with enough experience, people might learn to op-
timize their behavior.

Edwards (1961) tested participants for 1,000 trials and
reported that when the study was long enough, asymp-

totic performance exceeded that predicted by probability
matching. Edwards’s reviews of the literature noted that
others had observed this same finding: Asymptotic be-
havior is better than probability matching, but only
slightly better (Edwards, 1956, 1961; Erev & Barron,
2001; Lindman & Edwards, 1961; Tversky & Edwards,
1966). Perhaps if people understood that the events are
truly random, rather than coming in some pattern, they
would not try to use strategies that result in suboptimal
performance (Gal & Baron, 1996; Nies, 1962).

Nies (1962) manipulated information presented to
learners to determine whether people could profit by in-
struction. Participants were assigned to one of f ive
groups, four of which were instructed to predict whether
a marble rolling out of a box would be red or blue, with
the goal of getting as many correct predictions as possi-
ble. The procedure for the control group corresponded to
that in the usual probability-learning study, in which
there is no explanation of the mechanism producing the
binary event. Three of the four experimental groups were
given additional instructions. One group was told that
there were 100 marbles in the box and that 70 were red
and 30 were blue; a second group received this informa-
tion plus the information that the random event had the
same probability on every trial and that there would,
therefore, be no patterns. A third group was misinformed
that marbles roll out “in a definite pattern.” The fourth
group received no additional instructions. Nies found
that both groups that were given the proportion of red
and blue marbles achieved higher percentages correct
than did the other two groups. However, only 4 of the 192
learners (all in the experimental group with probability
and no-pattern information) attained the optimal strat-
egy of always predicting the more likely event.

In this study, we attempted to construct a scenario and
advice that we thought would produce more optimal be-
havior than that observed by Nies (1962) or Edwards
(1961). First, we devised a horse race scenario, on the
basis of the notion that people might respond differently
with a familiar mechanism underlying the random series.
Horse racing, a familiar gambling scenario, might also
help people understand that the goal was to maximize the
number of correct predictions, rather than to try to be
correct with equal conditional probability on each event
(cf. Herrnstein, 1990).

Second, we used a within-subjects design in which
each participant would experience five replications of
the experiment with a different randomly chosen level of
probability in each. Within-subjectsand between-subjects
experiments have often yielded very different results.
For example, it has been reported that people appeared to
neglect base rate information when they were asked to
make Bayesian inferences (e.g., Tversky & Kahneman,
1982). However, studies that have reached this conclu-
sion have used between-subjects designs in which the
base rate was held constant for any participant; in con-
trast, studies with within-subjects designs have yielded
quite different results (Birnbaum, 1983; Birnbaum &
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Mellers, 1983). In the classic cab problem, a cab has
been involved in a hit-and-run accident at night, and a
witness testifies that the cab was “Blue.” There are two
cab companies in the city, the Green and the Blue. Given
information about the proportion of cabs that are Blue in
the city and information on the accuracy of the witness
in detecting Green and Blue cabs, the participant’s task
is to infer the probability that the cab in the accident was
in fact Blue, as the witness testified. Some studies were
interpreted to mean that people neglected base rate when
making inferences (see the review in Tversky & Kahne-
man, 1982).

In a design in which base rates, witness characteris-
tics, and witness testimony were all varied within sub-
jects, even the classic cab problem has shown that peo-
ple definitely attend to and utilize base rates (Birnbaum,
2001, chap. 16). The results fit earlier within-subjects
results with other inference problems, reviewed by Birn-
baum and Mellers (1983).

In a between-subjectsdesign, it is possible to show that
9 is significantly “bigger” than 221 (Birnbaum, 1999),
even though no single person would ever say so in a
within-subjects study. Because the results of studies that
have used within- and between-subjects designs have
often been quite different, it seems important to ascertain
whether more optimal behavior would be observed when
the probabilities of the events are varied within subjects.

Third, we created three pieces of advice that we
thought would improve performance. People were told
to imagine winning $100 for each correct prediction and
losing $100 for each incorrect prediction (cf. Erev &
Barron, 2001). We thought that this use of money in the
advice would make clearer the goal of maximizing the
number correct. We also manipulated a component of
advice: that the best strategy would be to determine as
quickly as possible which event is the more frequent and
then to stick with it. Finally, in some conditions, the extra
advice also included unbiased information about the un-
derlying probabilities of the events. There were eight
conditions of advice, resulting from a 2 3 2 3 2 factor-
ial design with presentation or omission of each of these
three components (money, strategy, and probability).

Programming Experiments in JavaScript
This study serves as an illustration of how to use

JavaScript to control an experiment that runs via the
WWW. A series of examples have been constructed as a
tutorial to accompany this article, along with links to
other useful JavaScript resources. These materials can be
found at the URL http://psych.fullerton.edu/mbirnbaum/
BRMIC/.

In reading this section, it will be helpful to follow along
with the on-line examples in Netscape Navigator (4.x is
best). The first examples are quite simple; they serve to in-
troduce the programming techniques gradually.

JavaScript is an object-based scripting language that
should not be confused with Java, an object-oriented lan-
guage that is also quite useful for programming psychol-

ogy experiments via the WWW (Francis, Neath, & Sur-
prenant, 2000). JavaScript can be sent as source code in-
side a Web page, whereas Java applets are precompiled
and delivered to the client’s browser in the form of byte
codes. There are differences between the languages, Java
being the more powerful language, especially for inheri-
tance of objects and for its control of graphics. Both Java
and JavaScript use the client’s (the participant’s) computer
to carry out computations, rather than burdening the
server. Like Java, JavaScript (in theory) runs equally on
Windows, Linux, and Mac systems with either Netscape
Navigator or Internet Explorer. Although this goal has yet
to be fully achieved in practice, it is usually possible to de-
vise scripts that work with most major browsers and sys-
tems (for further information on JavaScript, see Baron &
Siepmann, 2000; Birnbaum 2001, chaps. 17–19; Lange,
1999; Schwarz & Reips, 2001).

The first example is given in Listing 1 (as well as on
the Web site). This example shows how to insert a
JavaScript program in a Web page. Note that the HTML
constructs a table nested inside a FORM, named “ex-
panel”, which serves as the experimental panel. (More
on HTML FORMS and their use in conducting research
can be found in Birnbaum, 2000, 2001, chap. 5.) The
table contains two rows, and each row contains a different

Listing 1
Illustration of Web Page Containing a JavaScript Program

<HTML><HEAD>< TITLE>Probability Panel</TITLE></HEAD>
<BODY BGCOLOR="LIGHTBLUE">
<DIV ALIGN="Center">
<H3>Random Number Generator</H3>

<FORM NAME="expanel">
<TABLE BORDER=15>
<TR><TD ALIGN="center">
<INPUT TYPE="text" NAME="results" SIZE=25 VALUE="Try the
button"></TD></TR>
<TR><TD><INPUT TYPE="button" NAME="R1" VALUE="Push
Me" OnClick="check1( )"></TD>
</TR>
</TABLE>
</FORM>

</DIV>

<SCRIPT language="JavaScript">
<!— hides the script from older browsers

var x=0 // x is a random number from 0 to 1.

// check1( ) is executed when the person clicks the button

function check1( ){
x=Math.random( )
with (window.document){
expanel.results.value=x
return}}

// hides the end of HTML comment —>
</SCRIPT>

</BODY>
</HTML>
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INPUT device. The “text” input device is a rectangular
box, holding 25 characters in this case. It initially says,
“Try the button,” in reference to the button inserted in
the second row of the table. Pushing the button creates the
Click event that is detected by the OnClick=“check1( )”
part of the button tag. Clicking the button causes the func-
tion check1( ) in the JavaScript program to be executed.

The JavaScript program is nested inside an HTML
comment, <! Comment>, which is customary in order to
hide it from older browsers. In JavaScript, anything on a
line following the double slash (// comment) is a
JavaScript comment, which has no effect on the pro-
gram. JavaScript is case sensitive, so variables x and X
are different. Variables are loosely typed; the statement,
var x=0, gives x the initial value of 0 and simultaneously
establishes x as a numeric variable.

Within the expression, function check1( ) {state-
ments}, defined by all statements nested in the braces, is
the statement, x = Math.random( ), which sets the vari-
able, x, equal to a random number that is uniformly dis-
tributed between 0 and 1. The statement, window.docu-
ment.expanel.results.value=x, causes the value of x to be
put in the FORM, expanel, where it is displayed in the
text input box called results. Each button click calls the
function, which obtains another instance of the random
number and inserts the new value in the experimental
panel. The expression, with (window.document) {state-
ments}, allows us to abbreviate reference to the fields in
the experimental panel to only the last part, expanel.re-
sults.value. This construction is quite useful when there
are many references to elements in one or more forms.

The second example, which one can examine by se-
lecting View Page Source while viewing the Web file in
Netscape Navigator, illustrates two new ideas. First, it
demonstrates how to use two variables in order to create
a binary random event. Second, it shows how to use the
prompt statement in JavaScript to elicit a response from
the participant. The statement, p = prompt(“Enter the
probability that Horse A wins a race (between 0 and
1)”,.5), creates a box with the message, in quotes, asking
for a value (initially displayed as .5, which is selected),
so the participant can enter a probability value. Each in-
stance of the random number, x, is now compared with
the value p. Because x is uniformly distributed between
0 and 1, the probability that x is less than p is p, and the
probability that x > p is 1 2 p.

The statements

if (x > p) {expanel.results.value="Horse B wins"}
else {expanel.results.value="Horse A wins"}

cause the message “Horse B wins” to be displayed in the
results box when x > p, which happens with probability
1 2 p ; otherwise, it displays “Horse A wins.” This tech-
nique (use of conditional) is very useful in programming.

The third example (available from the Web site) intro-
duces a second button and a second function, check2( ),
that responds to clicks of the second button. This im-

provement allows the participant to try to predict the
next horse race by pushing a button for Horse A or Horse
B. In this example, the program still asks the user to
specify the probability that Horse A or B will win, which
makes the task less interesting than if the participant
were required to learn which horse is more likely to win;
that improvement is added in the fourth example.

The fourth example selects the probability that Horse A
will win uniformly, by the statement p=Math.random( ).
The participant must now try to learn which horse is
more likely to win. A new variable, n, is added, which
keeps track of the trial number, and the total number of
trials in a game, nt, is set to 20. The variable, nC, keeps
track of the number correct. The statement, n++, in-
creases n by 1 each time the participant pushes a button,
and nC++ is executed (updating the number correct by 1)
when the participant correctly predicts the horse that
wins. In addition, a third function, done( ), is added to
provide the participant with an alert box with feedback
on the number correct after 20 trials. This function is
called from either check1( ) or check2( ) by means of the
statement, if (n>=nt) {done( )}. The alert box is created
by the statement alert (“message”). In addition to provid-
ing feedback in the alert box, the done( ) function resets
the probability that Horse A will win for a new game,
and it announces the new game in the results box.

So far, the examples do not save any data. The fifth ex-
ample illustrates how one can transfer data or calculated
results from one FORM to another FORM that submits
the data to a CGI script, which saves the data on the server.
The new form is named DataForm, and its ACTION is
the URL of a CGI script that saves the data in order of the
leading digits in the NAMEs of the elements. More on
this type of CGI can be found in Birnbaum (2000, 2001,
chap. 5 and Appendix); the element values pf Date and
pf Time are replaced with the date and time on the server’s
clock at which the experiment was completed. This par-
ticular CGI sends the data to the f ile at the address
http://psych.fullerton.edu/mbirnbaum/generic3.csv.
After completing the fifth example, one can visit the link
above to examine the data, which are saved as a comma
separated value (CSV) file that can be easily imported to
Excel, SPSS, and other such programs for data analysis.

In the fifth example, the done( ) function now trans-
fers data from the experimental panel (expanel) form to
DataForm. Each element (input field) of DataForm can
be defined as in the following example, DataForm.ele-
ments[4].value=Math.round(1000*nB/n)/10. The vari-
able, nB, keeps track of the number of times that Horse
B won. To convert it to a percentage, it is divided by the
number of trials, n, multipliedby 1,000, rounded off, and
then divided by 10, giving a result rounded to the nearest
0.1%. This value is passed to the fifth element in DataForm
(i.e., the one numbered 4; recall that the first element is
numbered 0). This elementwas created in HTML by the tag
<INPUT TYPE="hidden" NAME="04pB" VALUE="">.
This tag creates a variable named 04pB with an (initially)
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empty value. In the done( ) function, this value is up-
dated, as are the other variables in the DataForm. The
done( ) function also submits the data by means of the
command DataForm.submit( ).

Example 5 also illustrates how a judgment can be
elicited from the participant, using the prompt, and sent
to the data form. This technique, not employed by Birn-
baum (2002), was used in the present study to collect
three judgments after each of five games. Example 5 illus-
trates how the trial number can be displayed in the panel.

The sixth example lists a simplified version in English
of the Birnbaum (2002) study that makes it easier to see
the transition from the first five examples in the Web site
to the program of Birnbaum (2002). This sixth example
illustrates how the timing of displays can be controlled,
by means of the statement, timeOutName= setTime-
out(“clear3( )”,450) , which calls the function, clear3( ),
which erases the displays after a delay of 450 msec.

The seventh example gives the German version of the
experiment described in Birnbaum (2002), and the
eighth example in the Web site gives the English trans-
lation of that experiment. These versions make conve-
nient, effective, and eff icient demonstrations that one
can use in a lab course to teach students about this para-
digm, since each person can complete a game in 5 min
or less. Being able to experience an effect helps scien-
tists and students understand better exactly how an ex-
periment feels to the participant.

For the present study, there were 21 new files created
to execute the 10 warm-up and 10 experimental condi-
tions. A subset of these are illustrated by Examples 9–13
on the Web site, which convey the programming of the
five-game experiments, the collection of the judgments
after each game, and the displays of advice in instruc-
tions and before each new game.

METHOD

The participants were asked to predict either a series of horse
races or a series of abstract events. Learners in the horse race sce-
nario were asked to predict outcomes in a series of horse races by
clicking on buttons labeled Horse A or Horse B. In the abstract sce-
nario, learners were asked to predict the occurrence of an event by
clicking on buttons labeled R1 or R2. In each scenario, each pre-
diction was followed by feedback showing the event that occurred.
Each learner completed one warm-up game and five experimental
games of 100 races/trials each. After each game, the participants
were asked to judge their performance and the probabilities of
events and to make one more event prediction.

The participants in the horse race scenario were assigned to one
of eight groups, constructed from a 2 3 2 3 2, between-subjects
factorial design in which each of three pieces of advice could be
present or absent. The participants in the abstract scenario were as-
signed to one of two groups, which received either all three pieces
of advice ( full advice) or no advice. The study thus also contains a
2 3 2, between-subjects factorial design of scenario (horse or ab-
stract) 3 advice (no advice or full advice).

Instructions and Conditions
Horse race scenario. The judges in this scenario were instructed

to try to predict which of two horses would win the next race by

clicking buttons labeled Horse A or Horse B on each trial. Infor-
mation was varied between groups, which received one of eight
combinations of strategy, money, and probability information.
Strategy advice was to “find the more likely horse and stick with it.”
Money advice was to “imagine you win or lose $100 for each race
you predict right or wrong.” The probability information in the
horse scenario was presented as the report of an odds-maker, who
said, for example, “Horse A should win 20%, and B should win
80%.” Learners were advised to pay close attention to the odds-
maker’s advice. The odds-maker information accurately presented
the true probabilities that Horses A and B would win, which varied
randomly from game to game and participant to participant but was
fixed within each game.

Abstract scenario. The judges were instructed to try to predict
whether R1 or R2 would occur on each trial. One group received the
corresponding three components of additional advice, as in the full-
advice horse race condition (reworded for the abstract events), and
a second group served as control, with no added advice. This no-
advice, abstract group is similar to the group in Birnbaum’s (2002)
experiment, except that, in the present study, each participant com-
pleted one warm-up game and five experimental games and each
participant made three judgments after each game, which were not
features of Birnbaum’s (2002) study.

Design
The between-subjects variables were scenario and advice pre-

sented to judges. The between-subjects design was the union of a
2 3 2 scenario (horse race scenario or abstract scenario) 3 advice
(no advice or full advice), factorial design and a 2 3 2 3 2 factorial
design of money, strategy, and probability advice components in the
horse scenario. The judges were assigned to 1 of these 10 conditions.

The within-subjects variables were probability and games. Each
judge participated in five games of 100 trials each. For each game,
the probability of an event (Horse B or R2) was chosen randomly
(and uniformly) from the set .1, .2, .3, .4, .5, .6, .7, .8, or .9. Proba-
bilities were independent from game to game and from participant
to participant. Because the events were also randomly sampled, the
realized proportions differed slightly from the actual probabilities
from game to game.

Materials and Procedure
To view complete materials, visit the URL http://psych.fullerton.

edu/mbirnbaum/psych466/ sw/Prob_Learn/ and click on different
months to experience different conditions.

Each condition of the experiment consisted of a start-up page, a
warm-up page, and an experimental page. Learners entered the
start-up page at the URL listed above. The start-up page had a brief
description of the study and instructed the judges to click on their
birth month, which directed them to one of the warm-up pages. The
association of birth months to the between-subjects variables was
counterbalanced during the course of the study; this association was
also selected to produce larger samples in the four cells of the 2 3 2,
scenario 3 advice, design.

Each warm-up page represented one of the 10 advice and sce-
nario conditions and was linked to its corresponding experimental
page. Each warm-up page contained detailed instructions (which
might include the advice) and an experimental panel, as is shown in
Figure 1. In addition, an abbreviated version of the instructions and
advice appeared in an alert box when the “Start Warmup” button
was pressed. In the no-advice condition, the only instruction in the
alert box was to “Try to predict the next 100 horse races,” which
was also included in all advice conditions. After playing a warm-up
game of 100 races/trials, the participants were asked to respond to
three prompt boxes containing the following questions: (1) How
many times (out of 100) did Horse B win (0 to 100)? (2) How many
races (out of 100) did you get right? (3) If you had to predict one
more race, which horse do you think would win? The wording was
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altered appropriately in the abstract scenario. After answering these
questions, the participants clicked the link to the experimental page.

The experimental page contained the same experimental panel
(except without a “Start Warmup” button). The alert box automat-
ically appeared as soon as a participant entered this page. The alert
box contained the same abbreviated instructions and advice as
those presented in the warm-up, along with the new probability for
the first game if the condition included probability information.
Each person participated in five games of 100 races/trials each. Fol-
lowing each game, the participants answered the same three judgment
questions as in the warm-up. After these questions were answered,
an alert box with the same instructions and advice (including the

new probability information) appeared, initiating the new game.
Although strategy and money advice remained the same for each
subject, the probability of events (and the odds-maker’s advice) var-
ied randomly, from game to game, within subjects.

When five games were completed, a message was presented that
the experiment was ending and that the participants should now com-
plete four demographic questions (age, gender, education, and na-
tion of birth) and one question asking about the participant’s gam-
bling experience. Finally, each learner wrote a brief essay to explain
his or her strategy for making predictions during the experiment. The
JavaScript program that controlled the experiment sent results from
experimental pages to the CGI script that saved data on the server.

Figure 1. Experimental panel in the warm-up page for the horse scenario. Judges made predictions by clicking
on buttons, Horse A or Horse B. The box above the correct button displayed the correct event on each trial, and
the panel in the center displayed “Right” or “Wrong” for 450 msec. In the abstract scenario, R1 and R2 replaced
Horse A and Horse B.

Table 1
Mean Percentage Correct, Standard Error, and Sample Size in Each of the 10

Conditions of Scenario and Advice, Averaged Over Five Games per Person

Scenario Advice Condition Mean
Condition Strategy Money Probability Correct SE N

Abstract-000 no no no 61.3 0.84 87
Horse-000 no no no 62.8 0.88 78
Horse-001 no no yes 63.8 1.56 25
Horse-010 no yes no 58.5* 1.47 28
Horse-011 no yes yes 65.7 1.42 30
Horse-100 yes no no 66.6† 1.24 39
Horse-101 yes no yes 66.3† 1.33 34
Horse-110 yes yes no 64.1 1.42 30
Horse-111 yes yes yes 68.1† 0.81 92
Abstract-111 yes yes yes 68.1† 0.86 83

Note—Performance in all conditions is significantly lower than that expected from op-
timal strategy (72.2%). *Significantly below ( p < .01) the performance expected
from probability matching (63.3%). †Significantly above the performance expected
from probability matching.
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Participants
The participants were directed to the Web site by the usual “sub-

ject pool” procedures at California State University, Fullerton, or
they were recruited by other links on the WWW. About half of the
526 participants were students who had the option of participating
as an assignment in lower division psychology, and the rest were
volunteers from the Web. There were 340 participants who were as-
signed to the 2 3 2, advice 3 scenario conditions. In addition, 186
participants were assigned to partial-advice conditions in the horse
scenario; the numbers of participants in each condition are listed in
the rightmost column of Table 1.

RESULTS

Table 1 shows the mean percentage correct in each of
the 10 conditions, averaged over five games within each
condition.Standard errors are also shown for these mean
percentages in each condition. Had the participants
guessed randomly without learning from the feedback,
the percentage correct would have been 50%. Had the
participants followed probability matching, the expected
percentage correct in this design would have been (pre-
dicted to be) 63.3%. If the participants had followed the
optimal strategy of always choosing the more likely
event, they would have had an expected percentage cor-
rect of 72.2%.

Performance in the no-advice conditions (61.3% and
62.8%) was close to but slightly below that expected by
probability matching. Performance in the two full-advice
conditions (abstract-111, 68.1%, and horse-111, 68.1%)
significantly exceeded performance predicted by proba-
bility matching but fell significantly below that predicted
by the optimal strategy. Two other conditionswith strategy
information (horse-100 and horse-101) also producedper-
formance significantlyabove that expectedby probability
matching [t (38) = 2.64 and t (33) = 2.46, respectively].

An analysis of variance of the 2 3 2 3 5, scenario 3 ad-
vice 3 games, factorial design revealed a significant main
effect of advice [F(1,336)= 51.5]. The main effects of sce-
nario and the scenario 3 advice interactions were not sig-
nificant (Fs < 1). Main effects of games and all interac-
tions with games were also not significant. Apparently,
once the participant completed one warm-up game, there
was no detectable improvement over the next five games.

An analysis of variance of percentage correct in the 2 3
2 3 2 3 5, strategy 3 money 3 probability 3 games,
design in the horse condition found significant main ef-
fects of strategy [F(1,348) = 15.6] and probability infor-
mation [F(1,348) = 10.4], but the main effect of money
was not significant (F < 1). There was, however, a sig-
nificant interaction between money and probability in-
formation [F(1,348) = 8.4]. Money information alone
(horse-010) produced the worst performance [58.5% was
significantly lower than 62.8% for no advice, t (105) =
22.48, and significantly lower than expectation based
on probabilitymatching, t (27) = 23.29]. However, when
probability information was present, money had either
no effect or a slightly beneficial effect. This result was

not anticipated, but it may fit the review of Camerer and
Hogarth (1999), who concluded that financial incentives
by themselves do not teach people how to be rational, al-
though they might help motivate people to follow ratio-
nal advice.

Figure 2 shows how mean percentage of Horse B
(event R2) prediction varied with the underlying proba-
bility of the events. This f igure and others reported
below were constructed separately for the horse and ab-
stract scenarios; however, since they showed no system-
atic differences, results for the two scenarios are com-
bined in the f igures presented. Filled squares and
unfilled circles show the mean percentage of predictions
of Horse B or R2 as a function of the underlying proba-
bility that Horse B would win or that event R2 occurred
in the full-advice and no-advice conditions, respectively.
Probability matching implies that data should fall on the
identity line (dot-dashed straight line in Figure 2). The
optimal strategy (to always choose the more frequent
event) is shown as the dashed, discontinuous curve in
Figure 2. Data from the no-advice conditions appeared
to form an S-shaped curve that straddles the probability
matching line; however, data from the full-advice condi-
tion appeared to fall intermediate between the predic-
tions of probability matching and those of the optimal

Figure 2. Mean percentage of Horse B (or R2) predictions as a
function of the probability of Horse B wins (or R2 occurrences),
with open circles and filled squares for no-adviceand advice con-
ditions, respectively. Probability matching is shown as a straight
line; optimal strategy is shown as a dashed curve.
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strategy. The other advice conditions (not shown) were
also plotted in this fashion and were found to fall be-
tween these two (full advice and no advice) curves.

Figure 3 shows the percentage correct as a function of
probability, with unfilled circles and filled squares for
no-advice and full-advice conditions, respectively. The
data for no advice resemble the quadratic, U-shaped pre-
dictions of probabilitymatching. Data for the full-advice
condition means fall intermediate between predictions
of the optimal strategy, shown as the V-shaped dashed
curve, and those of probability matching. Data for the
partial-advice conditions (not shown) again fell between
these two curves, when plotted on the same graph.

If a person had paranormal ability to predict the events,
his or her data might fall above the predictions of the
simple but optimal policy of always choosing the more
likely event. We did not find evidence of people’s sys-
tematically outperforming the optimal policy; in fact,
fewer people exceed performance expected by following
optimal policy than would be expected by chance (pro-
duced by the random mechanism underlying the se-
quence of events). See also Figures 2 and 3 of Birnbaum
(2002, p. 147) for a plot of individual performance of
856 people who participated via the Web and 71 students
tested in the lab. It is curious that many people sustain
confidence in their ability to predict events. Perhaps such

feelings of confidence in precognition are produced by a
self-comparison against a 50% standard of “chance.” By
matching probabilities (or matching sequences), one can
easily outperform 50%.

Figure 4 shows the percentage of participants who
chose Horse B (or R2) when asked to make one final pre-
diction at the end of each game, plotted as a function of
the probability of the events. These data appear much
closer to the optimal policy (as compared with Figure 2),
with less of a difference between advice and no-advice
groups than that observed in Figure 2.

To count individualswho appeared to approximate the
optimal policy, we tracked those who selected the more
frequent event on 95% or more of the trials in each game.
In Figure 5, the percentages of learners who used this
(nearly) optimal strategy are plotted against the proba-
bility of events, with unfilled circles and filled squares
for no-advice and full-advice conditions, respectively.At
each level of probability, more participants selected this
(nearly) optimal strategy with full-advice conditions than
with no-advice conditions. In both conditions, there was
also a strong effect of probability, where participants
were more likely to adopt or sustain the strategy when the
base percentage was near 0% or 100% than when it was
closer to 50%.

One might conjecture that learners in the advice con-
dition who were told the probabilities may have had

Figure 3. Mean percentage of correct predictions as a function
of the probability of Horse B wins (or R2 occurrences). Mean
percentages correct in full-advice conditions (both scenarios) are
shown as filled squares; unfilled circles show means for no-advice
conditions. Prediction of probability matching is shown as a
U-shaped curve; optimal strategy is shown as dashed V-shaped
lines.

Figure 4. Percentage who predicted Horse B (or R2) at the end
of each game, as a function of the probability of Horse B wins (or
R2 occurrences), with open circles for no-advice conditions and
filled squares for full-advice conditions.
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more information about them, as compared with those in
the no-advice group, who were given no information
about the probabilities and had to learn them from trial-
to-trial experience in the task. Figure 6 shows the judged
probability of Horse B (Event R2) as a function of actual
probability, with filled and unfilled circles for full-advice
and no-advice conditions, respectively. The mean judg-
ments show regression in both groups, as compared with
the identity line. To the extent that the groups differ,
there was less regression in the no-advice groups than in
the full-advice groups. Figure 6 suggests that both groups
appeared to be accurate in judging the probability of the
events, so any difference in performance was apparently
not due to differential estimation of the probabilities but,
rather, in how to use this information. This conclusion is
also supported by an analysis of correlation coefficients
between judged and actual probabilities.

The coefficients of correlation between individual
judged and actual percentages in the no-advice condi-
tions, pooled over scenario, were .72, .78, .84, .78, and
.75 in games 1, 2, 3, 4, and 5, respectively. All of these
coefficients exceeded the corresponding values in the
full-advice conditions, which were .70, .70, .77, .72, and
.70, respectively. Although the differences are not great,
the probability that all five of these would be smaller in
the no-advice conditionby chance is p = (1/2)5 < .05. De-

spite the fact that the participants in the advice condition
were informed of the probabilities, the participants in the
no-advice condition appeared to know the probabilities
by the end of each game at least as well as those in the
advice conditions, and perhaps better.

The group with the lowest correlation coefficients
(between actual and judged probability) in all five games
was the money only instruction condition (horse-010);
that condition’s values were only .64, .64, .30, .43, and
.62, respectively. Perhaps this instruction inspired people
to attempt to learn complex patterns of sequences in
some way that interfered with learning the simple prob-
abilities of the events.

DISCUSSION

Performance can be improved by explicit instructions
concerning optimal strategy, accompanied by informa-
tion about the probability of events, and presented with a
clear mechanism that explains the concept of maximizing
percentage correct. What is perhaps more surprising than
the fact that our manipulations produced better perfor-
mance than that observed by Edwards (1961) in his
1,000-trial experiment or by Nies (1962) in his study of
information is our f inding that performance still falls
well short of optimal behavior. Contrary to our intuitions,

Figure 5. Percentage of participants who followed the nearly
optimal strategy of choosing the more frequent event on 95% or
more of the trials. Open circles and filled squares show results for
no-advice and full-advice conditions, respectively.

Figure 6. Mean judged percentage of Horse B wins (or R2 oc-
currences) as a function of the probability of Horse B wins (or R2
occurrences). Open circles show that mean judgments for the no-
advice conditions were nearly equal to those for the full-advice
conditions (solid squares). Correlations between judged percent-
age and actual percentage of Horse B wins (or R2 occurrences)
were actually higher in the no-advice conditions.
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we found no evidence that the horse scenario produced
better performance than the abstract scenario. We were a
bit surprised that the money instruction (alone) produced
performance that was significantly lower than that pre-
dicted by probability matching. Perhaps the money in-
struction, by itself, motivates people to pursue complex
hypotheses about sequences (such as the gambler’s fal-
lacy) that produce worse performance than that obtained
by people given no advice. We had conjectured that per-
formance would improve with repeated games, but the re-
sults provided no statistical support for that conjecture.

When our judges were asked what strategies they had
used during the experiment, many wrote they had started
each game by “looking for a pattern.” Others commented
that “the pattern” was hard to find, suggesting that they
had expected to find one. Attempts to mimic sequences
produces performance comparable or equal to that of
probability matching, although the underlying mecha-
nisms are different. For example, if the probability that
Horse B wins is .6, a prediction based on a sequence
such as ABBAB will produce the same number correct
as probability matching. Many participants wrote that
they had based their predictions on intuitive “feelings”
of what was going to happen next.

Gal and Baron (1996) asked people to indicate the
“best strategy” for a binary learning task in which prob-
ability of events was known. Most of their participants
responded that it is best to choose the more likely event
on “almost all” trials. Some went on to comment that fol-
lowing a “streak” of one event, the other alternative is
bound to happen, so one should then switch (i.e., gam-
bler’s fallacy). Gal and Baron found that when occur-
rences of events were scattered by design (and not in
“streaks”), participants perceived the events as random
and would be less likely to make such switches. Lind-
man and Edwards (1961) reported that when the se-
quence was truly random (like marbles drawn from an
urn with replacement, rather than without), participants
learned to overcome the gambler’s fallacy.

Chau, Phillips, and Von Baggo (2000) found that se-
quences were important, especiallywhen a recommended
strategy did not “work” on the first few trials. People
who were told the “best” strategy to use during a game
of blackjack were less likely to follow that strategy if
they lost on the first few trials. Therefore, sequence of
events, especially failures on the first few trials, might
affect judges’ willingness to adhere to good advice.

Previous studies found that losing money led to more
optimal decision-makingstrategies (Denes-Raj & Epstein,
1994; Erev, Bereby-Meyer, & Roth, 1999). Arkes and
Dawes (1986) found that judges who were not given in-
centives for correct judgments performed better than
those who were offered incentives for correct ones, so
perhaps the positive components of our money instruc-
tion (especially when it was the only piece of advice)
stimulated attempts to outdo chance.

Assuming that people want to maximize success, they
should use available information to achieve this end. Our
results show that telling people the best strategy helps

significantly but does not suffice to produce optimal per-
formance in all participants, even when each participant
gets to experience different levels of probability in suc-
cessive games.

Although our instructions and advice were only par-
tially effective in improving performance, we considerour
methods for executing the experiment a complete success.
By means of a Web-based study, we were able to collect
extensive data for 526 people in 10 between-subjects con-
ditions (who completed 3,156 games of 100 trials) in a
matter of weeks, which would have taken months, if not
years, to collect by older, laboratory methods.

When materials are made available on line, they can
be examined by other scientists. One scientist who ex-
amined our materials suggested that it might have taken
more effort to move the mouse pointer from one event’s
button to another, so our procedure might have produced
less switching of predictions than other methods. The par-
ticular interface we used, like that of Birnbaum (2002),
wherein the participant moves a pointer to a button by
means of a mouse or touch pad and clicks a button to
choose a prediction, differs from response methods used
in earlier lab research. Staying on a single event would
produce more optimal behavior, whereas our no-advice
conditions produced slightly worse performance than
was predicted by probability (or pattern) matching. Our
results in the no-advice conditions,however, showed that
people were switching too often; if anything, they were
switching slightly more often in our no-advice condi-
tions than had been observed in previous lab research
with other response procedures. The transparency of on-
line studies and the facilitation of communication and
cooperation among scientists is a very valuable feature
of on-line research. We hope that others will be able to
adapt our methods and put them to good use.

The effect of the interface device and instructions on
behavior might be considered as problems of design and
training for human–machine systems. Certainly, control
devices and displays have been developed for automo-
biles, aircraft, and video games, which humans can (with
repeated practice) learn to operate with performance that
improves strongly with practice. Because the probability-
matching task seems similar to a video game (where peo-
ple seem to improve strongly with practice), it seems sur-
prising that performance did not improve more across
the five experimental games.

When we teach a student driver, we teach rules such as
“one must always stop at a red light, even when no other
vehicles are seen approaching the intersection.” Student
drivers are given supervised training, in which the in-
structor repeats such rules and reinforces behaviors. We
suspect that applying lessons learned from driver’s train-
ing to instruction in this task might produce more opti-
mal performance in the probability-learning paradigm.
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