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A B S T R A C T

This paper presents the results of two experiments that violate implications of expected utility (EU) and cu-
mulative prospect theories (CPT). First, some lotteries with three equally likely branches are valued more than
strictly better or objectively equivalent binary lotteries, while others are valued less than strictly worse or ob-
jectively equivalent binary lotteries. Second, experimental data provide evidence that lottery valuations strongly
depend on the value of the middle monetary outcome(s), whereas CPT as fit to binary lotteries implies that
middle outcomes are given lower weights relative to extreme ones. This leads to self-contradiction when CPT is
used to fit the data: the probability weighting function takes an inverse S-shape when estimated using binary
lotteries, and an S-shape when estimated using lotteries with three or four branches. Both effects are replicated
with four-branch lotteries, with different highest outcome values, and with subjects from both Poland and
California. It is argued that the violations of coalescing and stochastic dominance observed in the experiments
cannot be explained by any rank-dependent weighted utility model, including CPT, but can be described by other
rank-affected weighted utility models.

1. Introduction

Imagine you have to determine the certainty equivalents (CE) of two
lotteries: (0, ⅓; 300, ⅔) and (0, ⅓; 300, ⅓; 300, ⅓). The two lotteries
are objectively equivalent: both offer a ⅔ chance of winning 300 and a
⅓ chance of winning 0; the only difference is that the probability of
winning the prize of 300 is split into two equal parts in the latter case.
Normatively, the two lotteries should have the same CE. However, as
shown in this paper, the latter is valued about 15% more than the
former when presented separately in an experiment. Such effects are
called “event-splitting” effects (e.g., Starmer and Sugden, 1993).
Splitting effects violate the principle of coalescing, which assumes

that splitting or coalescing lottery branches that offer the same mone-
tary outcomes should not make any difference to the lottery valuation.
Coalescing is implied by expected utility (EU), and any rank-dependent
utility (including cumulative prospect theory, CPT, Tversky and
Kahneman, 1992). Violations of coalescing also contradict the original
prospect theory (OPT, Kahneman and Tversky, 1979), which postulated
that people would use the editing rule of combination to convert a
three-branch gamble such as (0, ⅓; 300, ⅓; 300, ⅓) to its equivalent,
two-branch form (0, ⅓; 300, ⅔), prior to evaluating it. Using OPT
without the editing phase, i.e. the model introduced by Edwards (1962)

and then reconsidered by Humphrey (2001), splitting can only increase
the lottery valuation (in the case of nonnegative monetary outcomes).
However, we also find that splitting the lower branch can make a
gamble worse: lottery (0, ⅓; 0, ⅓; 300, ⅓) is valued about 15% less
than the lottery (0, ⅔; 300, ⅓). That the lottery valuation may either
increase or decrease depending on which branch is split was predicted
by the class of configural weight models that had appeared in psy-
chology even before OPT (Birnbaum, 1974; Birnbaum and Stegner,
1979). Clearly, neither EU nor CPT can predict this pattern since they
do not violate coalescing at all.
We also find violations of stochastic dominance. For example, the

three-branch lottery (0, ⅓; 225, ⅓; 300, ⅓) is stochastically dominated
by the two-branch lottery (0, ⅓; 300, ⅔). Despite this, the dominated
gamble is given a higher CE value. On the other hand, the three-branch
lottery (0, ⅓; 30, ⅓; 300, ⅓) dominates the two-branch lottery (0, ⅔;
300, ⅓). However, the dominant gamble is given a lower CE value.
Testing stochastic dominance had been suggested by

Birnbaum (1997) as a way of comparing the class of rank- and sign-
dependent utility models (including CPT) that satisfy stochastic dom-
inance, against an older class of configural weight models, which pre-
dicts stochastic dominance violations in specially constructed choices.
Birnbaum and Navarrete (1998) found that about 70% of college
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undergraduates preferred ($12, 0.10; $90, 0.05; $96, 0.85) over ($12,
0.05; $14, 0.05; $96, 0.90), despite the former being stochastically
dominated by the latter.1 More than 40 studies have since documented
stochastic dominance violations in choice testing problems. These stu-
dies used different subjects, choice problems, and methods to display
the choices and methods used to describe and display probabilities
(Birnbaum, 2007, 2008; Birnbaum and Bahra, 2012). Luce (2010) noted
that, despite such strong evidence of the core assumptions of CPT being
violated, “aficionados of CPT simply dismiss or ignore Birnbaum's
findings” (page 21).
Birnbaum and his colleagues have also observed patterns of beha-

vior that refute the inverse-S probability weighting function assumed in
CPT. This shape is required to account for the classic Allais paradoxes
and standard findings, such as that many people are risk seeking for
small probabilities of winning a positive prize, and risk averse for large
probabilities. The inverse-S shaped probability weighting function as-
sumed in CPT, when applied to lotteries involving more than two
equally likely outcomes, implies that middle ranked outcomes (of a
given probability) are given lower weights than extreme ones (given the
same probability). Birnbaum and Beeghley (1997) studied lotteries with
three equally likely branches (x, y, z). The authors observed that lottery
(z, $39, $45) is valued more than (z, $12, $96) when z=$4, but when
the “common” branch of z=$4 is replaced by z=$136, the lottery
($39, $45, $136) is valued less than ($12, $96, $136). This result
cannot be explained by middle branches being given lower weights than
both extreme branches, but could be reconciled with CPT with the
opposite pattern, that is an S-shaped probability weighting function.
Birnbaum and Veira (1998) found similar results for four-branch
gambles. Similar results have also been observed in many studies of
choice (Birnbaum and McIntosh, 1996; Birnbaum and Navarrete, 1998;
Birnbaum and Bahra, 2012).
This paper reports new examples of violation of coalescing and

stochastic dominance, as well as evidence that middle outcomes ap-
parently being overweighted (relative to extreme ones) in judgments of
certainty equivalents. The idea behind the experiment (Section 2) is
loosely based on Birnbaum's method of manipulating one or two out-
come values while holding the others constant. There are, however,
differences in experimental method and design. First, in the present
experiments, only the middle outcome(s) are manipulated. This ensures
that the range of lottery outcomes remains unchanged, which helps
avoid possible range effects (Kontek and Lewandowski, 2018) that
could have an impact on valuations. Second, the experiments con-
currently involve two-, three-, and four-outcome lotteries, allowing
direct comparisons of valuations of lotteries with different numbers of
outcomes. We use CPT as an analytic device to show that CPT and the
data lead to self-contradiction: the probability weighting function ob-
tained using binary lotteries takes an inverse S-shape, as postulated by
CPT; that estimated using multi-outcome lotteries takes an S-shape,
which assigns higher weights to middle outcomes relative to extreme
ones. Third, the violations and patterns previously reported in dedi-
cated studies are now captured in a single experiment using judged
certainty equivalents instead of choices between lotteries.
Section 3 describes Experiment 1, which was conducted with sub-

jects from Poland, and Section 4 describes Experiment 2, conducted
with subjects from California and Poland. The results are discussed in
Section 5. It is argued that the data are not consistent with CPT or EU
models, which cannot describe violations of coalescing or stochastic
dominance, and whose estimated weights lead to self-contradiction.
Possible ways of describing the data are presented in the discussion.
Appendixes 1 and 2 include the aggregated CE values obtained in the
experiments. Appendixes 3 and 4 detail the instructions used in the two
experiments.

2. Experiment – the idea

Consider a lottery with three equally likely branches,
=L x x x( , 1/3; , 1/3; , 1/3)min max3 , where xmin≤ x≤ xmax. Note that

when =x xmin, the total probability of winning xmin is 2/3 and the
probability of winning xmax is 1/3. The lottery L3 is therefore objec-
tively equivalent to the binary lottery =L x x( , 2/3; , 1/3)L min max2 in
this case. When =x xmax , the total probability of winning xmax is 2/3,
and the probability of winning xmin is 1/3; in this case the lottery L3 is
objectively equivalent to the binary lottery =L x x( , 1/3; , 2/3)H min max2 .
In the experiment, the outcome x in L3varies in the range (xmin, xmax)
and the lottery CE is determined. According to CPT (and other models
assuming coalescing), the certainty equivalent of L3 should assume a
value between the CEs of L2L and L2H for each x in the range (xmin, xmax).
The same idea is applied to a four-branch lottery

=L x x x x( , 1/4; , 1/4; , 1/4; , 1/4)min max4 2 3 , where xmin≤ x2≤ x3
≤ xmax. When = =x x xmin2 3 , the probability of winning xmin is 3/4 and
the probability of winning xmax is /1 4. The lottery L4 is objectively
equivalent to the binary lottery =L x x( , 3/4; , 1/4)L min max2 in this case.
When = =x x xmax2 3 , the total probability of winning xmax is 3/4, and
the probability of winning xmin is 1/4, so that L4 is objectively
equivalent to =L x x( , 1/4; , 3/4)H min max2 . In the experiment, the out-
comes x2 and x3 vary in the range (xmin, xmax) and the lottery CE is
determined. According to CPT, the CEs of L4 should all fall between the
CEs of L L2 and L H2 for any combination of x2 and x3.
In addition, the CEs of binary lotteries having various probabilities

of winning are determined and used to estimate the CPT model, more
specifically its probability weighting function. Predictions of this model
with regard to CEs of three- and four-branch lotteries can then be tested
empirically.

3. Experiment 1

3.1. Detailed design

Two payoff Sets were used with xmax=300 zł2 (Set 1) and
xmax=900 zł (Set 2). The lowest branch, xmin, assumed a value of 0 in
both Sets. There were 18 binary lotteries p x p(0, 1 ; , )max constructed
from a factorial design, in which p of winning xmax was either 0.01,
0.05, 0.10, 0.25, 0.5, 0.75, 0.9, 0.95, or 0.99, while xmax was either 300
or 900 zł.
There were 18 three-branch lotteries (0, 1/3; x, 1/3; xmax, 1/3),

where outcome x assumed values of 0, 15, 30, 75, 150, 225, 270, 285,
and 300 zł in Set 1, and values of 0, 45, 90, 225, 450, 675, 810, 855, or
900 zł in Set 2, while xmax was either 300 or 900 zł.
Four-branch lotteries, (xmin, 1/4; x2, 1/4; x3, 1/4; xmax, 1/4) were

constructed from all pairs of outcomes x2 and x3 (such that x2≤ x3)
assuming values of 0, 30, 150, 270, and 300 zł in Set 1, and 0, 90, 450,
810, and 900 zł in Set 2. Lotteries (0, ¼; 100, ¼; 200, ¼; 300, ¼) and
(0, ¼; 300, ¼; 600, ¼; 900, ¼) were added, making a total of 32 four-
branch lotteries.
In total, there were 68 lotteries in the main experimental design: 18

two-branch (binary), 18 three-branch, and 32 four-branch. These were
intermixed with 52 additional lotteries that can be considered fillers
(these 3- and 4-branch lotteries involving branches of unequal prob-
abilities of occurrence were constructed to test other hypotheses to be
described in another paper). Altogether, 120 problems were presented
to subjects.

3.2. Participants and incentives

There were 110 volunteers who were undergraduate economics

1 To see this, observe that ($12, 0.10) is worse than ($12, 0.05; $14, 0.05),
and ($90, 0.05; $96, 0.85) is worse than ($96, 0.90).

2 The złoty is the Polish currency, $1 ≈ 4 zł, although the purchasing power
for basic goods is closer to parity.
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students at the Warsaw School of Economics, and who were recruited
by their supervisors. Their ages ranged from 18 to 25 years with a mean
of 20.5 years, and 52% were women.
The experiment was conducted via the Internet. Six HTML forms

(each with a different random order of the 120 problems) were pre-
pared, and each participant was randomly assigned to one of the six
forms at the start of the experiment. Participants first registered and
familiarized themselves with the instructions online (see Appendix 3).
They then responded to two sample problems. Based on an anticipated
time of 40–50min, participants received a 12-zł voucher redeemable at
the campus cafeteria, but they were free to work at their own paces. The
subjects were further incentivized for performance: They were in-
formed that four of them would be randomly selected after the ex-
periment to play a lottery for real cash prizes. The two who gave the
lowest CEs for the randomly selected lottery received the amounts they
quoted. The other two played that lottery and received real cash prizes
resulting from independent plays.

3.3. Procedure for CE determination

The problems were described in a business-oriented way as risky
ventures having 2, 3, or 4 scenarios with various probabilities of oc-
currence, each of which would have a monetary consequence. Fig. 1
shows two examples of how problems were displayed. In the first ex-
ample (Problem 22), there were three possible scenarios yielding the
outcomes 0, 75, and 300 zł, each with a probability of 33.3%. In the
second example (Problem 61), there were two possible scenarios, each
with an outcome of 450 zł and a probability of occurrence of 25%. The
participants had to enter the value in the initially empty 100% box on
the right that would make them indifferent between participating in a
risky venture or accepting that sure sum of money.

3.4. Aggregating the data

Subjects’ responses in experiments involving lottery CEs may be
noisy, skewed and contain outliers. Moreover, people seem to respond
with round numbers such as 10, 50, 250, 700 rather than 9, 52, 257,
691. Example histograms of CE responses obtained for 6 particular
lotteries are presented in Fig. 2.
Because the mean is sensitive to outliers and the median to tied

values, Wilcox (2012) recommends using the 20% trimmed mean for
social science data. This statistic is the mean of the values remaining
after the 20% with the smallest and the 20% with the largest values
have been discarded (or “trimmed”). It is a compromise between the
median and the mean and, according to Wilcox (2011, 2012), often
outperforms more complex robust estimators when sampling from
heavy-tailed distributions. The aggregated CE values thereby obtained
are given in Appendix 1, and used in what follows.

3.5. The CPT model

The CE values are fitted to estimate the cumulative prospect theory
(CPT) model:
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where xi are lottery outcomes sorted in the decreasing order, pi are the
respective probabilities of xi, = pj

i
j1 is the decumulative probability

that an outcome in the lottery is equal to or exceeds xi, and v denotes
the value function. It is assumed that the value function is described
using a power function =v x x( ) , and the decumulative probability
weighting function is described using the two-parameter
Lattimore et al. (1992) function:
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3.6. Binary lotteries

The aggregated CE values for binary lotteries are presented in Fig. 3
as a function of probability p (orange dots). These values have been
used to estimate the CPT models separately for Set 1 and Set 2 (their
predictions are presented by the blue curves).
It can be seen that both estimated CE(p) curves assume an inverse S-

shape, as is usually the case in experiments involving binary lotteries
(e.g. Tversky and Kahneman, 1992; Gonzales and Wu, 1999). The es-
timated γ parameters, both less than 1, indicate that the probability
weighting functions are inverse S-shaped as well. The CE(p) curves
intersect the diagonal for =p 0.46 in Set 1 and for =p 0.39 in Set 2. The
estimated CE values are therefore greater than the lottery expected
value for =p 1/3 and =p 1/4, but lower than the lottery expected
value for =p 2/3 and =p 3/4.

3.7. Three-branch lotteries

The aggregated CE values for three-branch lotteries are presented as
a function of the middle outcome x in Fig. 4. The two horizontal dotted
lines mark the CE values estimated by the CPT models for binary lot-
teries and for probabilities 1/3 and 2/3 (106.7 and 190.9 for Set 1, and
303.8 and 580.3 for Set 2). The lines define a band within which the CEs
of three-branch lotteries should be located for all x values (this band is
narrower than the one determined by lottery expected values, because
the relation CE(p) presented in Fig. 3 is inverse S-shaped). More spe-
cifically, the leftmost point at =x 0 represents the lottery

=L x(0, 1/3; 0, 1/3; , 1/3)max3 and, according to CPT, should be lo-
cated on the lower line, while the rightmost point at =x xmax represents
the lottery =L x x(0, 1/3; , 1/3; , 1/3)max max3 and should be located on
the upper line. However, as can be seen in both graphs, three CE values
are located below the CE(1/3) line, and four CE values are located
above the CE(2/3) line. Only 2 of the 9 CE values are within the band
dictated by the results obtained for binary lotteries.
The aggregated CE values were used to estimate linear approxima-

tions, = +CE s x a, where s denotes the slope of x and a is a constant
(see the graphs for the estimation details; the adjusted R-squared values
are 0.99 and 0.98 respectively). It follows from CPT and linear ap-
proximation that the CE under- and overvaluation at both ends of the
outcome range is about 15% compared to the CE(1/3) and CE(2/3)
values estimated using binary lotteries. Importantly, the slope values s
of the two curves (i.e. 0.437 and 0.445) exceed the probability of the
middle branch x (i.e. 1/3). This indicates that the middle branch has a
bigger impact on the lottery valuation than the probability of its oc-
currence would dictate, according to either EU or CPT as fit to binary
lotteries.

Fig. 1. Example problems involving a three- (top) and a four-branch (bottom)
lottery.
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3.8. Violations and slopes

Note that violations of coalescing and of stochastic dominance ob-
served in the present experiment are closely related. The finding that
the lottery =L x x(0, 1/3; , 1/3; , 1/3)max3 , where x>0, is valued less
than the lottery =L x(0, 2/3; , 1/3)L max2 is a violation of stochastic
dominance. However, for =x 0 the pattern is a violation of coalescing.
Similarly, that the lottery L3 is valued more than the lottery

=L x(0, 1/3; , 2/3)H max2 is a violation of stochastic dominance for
x< xmax, and violation of coalescing for =x xmax .
Both violations are further interlinked with the estimated slope

values for the middle outcome, x. In fact, starting points outside the
band require high slope values for 0< x< xmax.

3.9. Four-branch lotteries

The aggregated CE values for four-branch lotteries are visualized as
3D surfaces, being functions of middle outcomes x2 and x3(x2≤ x3), in
Fig. 5.
Two planes are additionally presented. These assume values of CE

(1/4) and CE(3/4) estimated by the CPT model for binary lotteries
(85.7 and 213.9 for Set 1, and 234.0 and 652.2 for Set 2). As can be
seen, the bottom-left corner of the CE surface is located below the CE(1/
4) plane, whereas the top-right corner is located above the CE(3/4)
plane.
The CE for four-branch lotteries have been used to estimate linear

approximations: = + +CE s x s x a2 2 3 3 , where s2 and s3 denote the slopes

Fig. 2. Example histograms of CE responses for particular lotteries presented with mean, median and 20% trimmed mean values.
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of x2 and x3 respectively, and a is a constant (see the graphs for the
estimation details; the adjusted R-squared values are 0.99 and 0.98
respectively). It follows from the CPT and fitted linear equation that the
under- and overvaluation of CE in both corners are again approximately
15%. As in the case of three-branch lotteries, the estimated slope values
(0.304, 0.299 in Set 1, and 0.292, 0.314 in Set 2) exceed the prob-
abilities of the outcomes of middle-ranked branches, x2 and x3 (i.e. ¼
and ¼). As the slope values of outcomes x2 and x3 are relative weights
assigned to them during the lottery evaluation, it can be hypothesized
that the middle outcomes receive psychologically higher weights than
the probabilities of their occurrence.
As in the case of three-branch lotteries, both coalescing and sto-

chastic dominance violations co-occur with high slope values for the

middle outcomes x2 and x3. Points above and below the planes re-
present violations of coalescing and stochastic dominance. These cross-
over violations require either high slope values for outcomes x2 and x3,
or they require the values of binary gambles (in this case, represented
by the planes) to be spaced too closely together for corresponding
probabilities, relative to middle branches of three- or four-branch
gambles.

3.10. Self-contradiction of the CPT model

The observations presented so far are problematic for the CPT model
which cannot predict violations of coalescing and stochastic dominance
and, as it assumes an inverse S-shaped probability weighting function,

Fig. 3. CEs of binary lotteries presented as a function of the probability p of winning the greater payoff: Set 1 (left) and Set 2 (right). The points on the graphs (in
orange) represent the aggregated CEdata for given probability values. The blue curves represent estimations using the CPT model. Estimation details: the standard
errors and 0.95 confidence intervals of the estimated parameters are given in the tables on the graphs. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. CE values of three-branch lotteries presented as a function of x for two payoff Sets.
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assigns lower weights to middle branches than to extreme ones.
Portions of the observed data can, however, be described in CPT instead
by an S-shaped probability weighting function.
To illustrate the contradiction in CPT, we first fit EU and CPT to all

the available data. This fit yields a value function, which we then used

to fit separate CPT models for two-, three-, and four-branch lotteries.
These fits yield respective probability weighting functions, all with the
same value function. The exponent of the value function is 1.042
(0.106) when estimated using the CPT model, and 1.043 (0.021) when
estimated using the EU model. Estimated CPT model parameters

Fig. 5. CE surfaces as a function of x2 and x3 for Set 1 (left) and Set 2 (right). The dots on the surface mark the lotteries involved in the experiment.

Table 1
Estimated parameter values of the CPT models: separately for Set 1, Set 2, and for all data. Standard errors are given in parentheses.

Set 1 Set 2 All data in both Sets
α=1.043 γ δ γ δ γ δ

2-branch 0.84 (0.03) 0.94 (0.04) 0.93 (0.03) 0.90 (0.03) 1.20 (0.04) 1.02 (0.02)
3-branch 1.37 (0.05) 1.03 (0.03) 1.40 (0.07) 0.99 (0.04)
4-branch 1.29 (0.05) 1.20 (0.03) 1.30 (0.07) 1.06 (0.04)

Fig. 6. The shapes of the probability weighting functions for Set 1 (left) and Set 2 (right) estimated using three-branch lotteries.
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together with their standard errors are given in Table 1.
The shapes of probability weighting functions estimated using

three-branch lotteries are presented in Fig. 6.
According to the functions derived for Set 1 and Set 2, the middle of

three equally likely branches receives weights of 0.441 and 0.449, re-
spectively (these weights are the differences between w(2/3) and w(1/
3) according to the CPT model). These values are greater than 1/3 and
agree with the slope values 0.437 and 0.445 in the linear approxima-
tions (Fig. 4). Note that, for three equally likely branches, the CPT
model estimated using binary lotteries (with an inverse S-shaped
probability weighting function) assigns a weight to the middle outcome
x that is lower than the probability 1/3: 0.283 for Set 1 and 0.311 for
Set 2. As shown, the weights are less than 1/3 for an inverse S-shape,
and greater than 1/3 for an S-shape of the probability weighting
function.
The shapes of CPT probability weighting functions obtained using

four-branch lotteries are presented in Fig. 7. The weights assigned using

the probability weighting functions fit to four-branch lotteries are 0.286
and 0.320 for Set 1, and 0.300 and 0.311 for Set 2, which are all greater
than 1/4. These values are in accordance with the slope values 0.304,
0.299, 0.292, and 0.314 in the linear approximations of Fig. 5. If the
probability weighting functions estimated for binary lotteries from CPT
were used, then the weights would be: 0.219 and 0.213 for Set 1, and
0.240 and 0.229 for Set 2, which are all lower than the probability 1/4.
Finally, the shapes of estimated probability weighting functions for

two-, three-, and four-branches are presented together in Fig. 8.
The probability weighting function of CPT is inverse S-shaped for

binary lotteries (in blue, the parameter responsible for the curvature
γ<1), and S-shaped for three- and four-branch lotteries (in yellow and
green, respectively, γ>1) in both Sets. The S-shape clearly contradicts
the inverse S-shape estimated in this experiment for binary lotteries, as
well those reported in other experiments with binary lotteries (e.g.
Tversky and Kahneman, 1992; Gonzales and Wu, 1999). The pattern
observed in this experiment for three- and four-branch lotteries, more

Fig. 7. The shapes of probability weighting functions for Set 1 (left) and Set 2 (right) derived using four-branch lotteries.

Fig. 8. Probability weighting functions in the CPT models derived separately for two-, three-, and four-branch lotteries, and for Set 1 (left) and Set 2 (right). The
power coefficient of the value function was estimated from all data and then held constant at 1.043 when fitting the data separately.
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specifically, high weights assigned to the middle outcome(s), requires
an S-shaped probability weighting function, contrary to the pattern
observed for binary lotteries, which requires an inverse S-shaped
probability weighting function. It should be emphasized that these self-
contradictions of the weighting functions (Fig. 8) are obtained for the
same subjects in the same experiment.
Note also that the CPT probability weighting function estimated for

all data is also S-shaped: its γ parameter, characterizing the curvature,
exceeds 1 (see Table 1). Its overall value of 1.20 is a best-fit compromise
of the γ values describing two-branch lotteries (0.84 and 0.93), three-
branch lotteries (1.37 and 1.40), and four-branch lotteries (1.29 and
1.30). Because there were fewer two-branch lotteries (18) than the sum
of three-branch and four-branch lotteries (18+ 32) in the study, the
resulting probability weighting function for all the data resembles more
closely the S-shaped curves than the inverse-S observed with two-
branch lotteries.

3.11. An analysis on the individual level

The results obtained using aggregated data were also found to be
descriptive of individual data. We fit each person's data to individual
CPT models for binary lotteries and linear approximations for three-
and four-branch lotteries. In three branch-lotteries, the best-fit slope of
CE as a function of the middle outcome is an estimate of weight that can
be compared with weight estimated by CPT from binary lotteries (keep
in mind that the best-fit value function for CPT was nearly linear in this
study). According to inverse-S weighting functions estimated from
binary lotteries, the middle branch should have a weight less than 1/3.
However, 63 individuals had estimated slopes in the linear approx-
imation greater than 1/3 in both Set 1 and in Set 2. An even greater
majority had estimated slopes greater than weights estimated in-
dividually using CPT fit to binary gambles: 89 (80.9% of all 110 par-
ticipants) in Set 1 and 81 (73.6%) in Set 2. Histograms of the estimated
slope values s are presented in Fig. 9 (not shown are estimated slopes
for 12 subjects who had nonpositive slopes).
Histograms of the estimated slope values s2 and s3 values in four-

branch lotteries are presented in Fig. 10 (not shown are estimates from
24 subjects whose estimates were nonpositive).
Many individuals have estimated slopes greater than 1/4: 56 and 50

subjects in Set 1, and 45 and 55 subjects in Set 2. For the majority of
subjects (80 and 78 for Set 1, and 70 and 72 for Set 2), the slope values
are greater than the respective weights estimated from binary lotteries
in their individual CPT models. Thus, individual analysis of three- and
four-branch data show that the majority of individuals systematically
violate CPT, if the probability weighting function is supposed to be the
same for two-, three-, and four-branch lotteries.

4. Experiment 2

4.1. Detailed design

The payoff values in Experiment 2 were in $, with xmin=$5 and
xmax=$95.
There were 9 three-branch lotteries of the form ($5, x, $95), with

nine levels of x=$10, $20, $30, $40, $50, $60, $70, $80, or $90. Each
three-branch lottery was presented twice, resulting in 18 problems to be
solved.
There were 81 four-branch lotteries ($5, b2, b3, $95) constructed

from a 9×9, b2 × b3, factorial design, where b2 and b3 denote the
values of the second and the third possible prizes, respectively, which
could take the same 9 values. Thus, subjects received both ($5, $20,
$60, $95) and ($5, $60, $20, $95), for example, but one ($5, $20, $20,
$95) only. Note that in this set-up, the ranked outcomes x2 and x3 are
respectively the lower and the higher of the b2 and b3values (as we
assume that x2≤ x3); hence, =x Min b b( , )2 2 3 and =x Max b b( , )3 2 3 . The
lottery ($5, $45, $55, $95) was added to this set. Combining these
9×9=81 four-branch trials with 18 three-branch trials, plus this
added lottery, there were 100 problems in the experiment, which were
intermixed randomly with up to 33 “filler” trials and presented in
random order, following the instructions and warmup trials. The “fil-
lers” were trials with from two to ten equally likely prize values, where
the prize values were between $5 and $95.

4.2. Participants

Seventy-six subjects took part in the experiment. Sixty-two of them
were undergraduate psychology students at the California State
University, Fullerton, of whom 65% were women. Fourteen were un-
dergraduate economics students at the Warsaw School of Economics,
and 57% of that group were women.
The experiment was conducted via the Internet and the subjects

could respond at their convenience. The participants first registered and
familiarized themselves with the instructions online (see Appendix 4).
They were then required to solve four sample problems, and could then
work at their own paces for the 100 experimental and “filler” trials.

4.3. CE determination

The lotteries were displayed as in the following example:

The participants had to state the value that would make them in-
different between participating in a lottery and accepting a sure sum of
money.

Fig. 9. Histograms of the estimated slope values s for Set 1 (left) and Set 2 (right) in three-branch lotteries.
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4.4. Three-branch lotteries

The individual CE data were aggregated using a 20%-trimmed-mean
(see Appendix 2 for the results). The aggregated CE values for three-
branch lotteries are presented as a function of the middle outcome x in
Fig. 11.

The two horizontal solid lines mark the CE values $35 and $65,
which are expected values of binary lottery ($5, 1-p; $95, p) with
probabilities p of ⅓ and ⅔. If an inverse-S probability weighting
function were used to calculate CEs, the band of supposed CE values
would be even narrower. As seen, aggregated CE values are located
below the EV(⅓) line for x≤$30, and above or on the EV(⅔) line for
x≥$80. Note that two CE points are given for each x value, as each
lottery was presented twice. Thus, the average values for x≥$80 are
greater than the lottery expected value for p=⅔.
The CE values have been used to estimate a linear approximation:
= +CE s x a (see the graph for details; the adjusted R-squared= 0.98).

It follows from the equation that calculated CEs of ($5, $5,
$95)= $18.3 and ($5, $95, $95)= $74.5 are 47.8% less, and 14.6%
greater than their expected values ($35 and $65, respectively). The
curve slope value of 0.624 is much greater than 1/3, the probability of
the middle outcome x. This overweighting of the middle outcome is
even more extreme than found in Experiment 1, where the slopes were
0.437 and 0.445 in Sets 1 and 2, respectively.
Fig. 12 shows a separate examination of Fig. 11 for Californians

(psychology students) and Poles (economics students).
The slope values (0.651 and 0.492, respectively) both exceed 1/3

and are even higher for Californians than Poles. The level of mathe-
matical education or some other confounded variable, rather than
country of origin, may be the reason for the differences; but both
subgroups show the same qualitative crossover.

4.5. Four-branch lotteries

The aggregated CE values for four-branch lotteries are visualized in
Fig. 13 as a function of middle branches b2 and b3 (on the left). The
graph on the right presents the CE surface as a function of

=x Min b b( , )2 2 3 and =x Max b b( , )3 2 3 , where CE is the average for
lotteries (5, b2, b3, 95) and (5, b3, b2, 95).
Two planes of constant values of $27.5 and $72.5, expected values

Fig. 11. Aggregated CE values for three-branch lotteries presented as a function
of x.

Fig. 10. Histograms of estimated slope values in linear models for four-branch lotteries.
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of ($5, 3/4, $95, 1/4) and ($5, 1/4; $95, 3/4), respectively are shown
in the figure. The bottom-left corner of the CE surface is located below
the EV(1/4) plane, and the top-right corner is above the EV(3/4) plane.
The CE surface below and above the CE(1/4) and CE(3/4) planes would
have been larger if an inverse S-shaped probability weighting function
had been used to calculate CE values for those binary lotteries.
We fit the linear approximation: = + +CE s x s x a2 2 3 3 (see Fig. 13

for details; the adjusted R-squared=0.917). The calculated CE is $19.5
for x2= x3= $5, which is 29.1% less than the lottery expected value
($27.5), whereas the CE is $77.8 for x2= x3= $95, which is 7.3% more
than the lottery expected value ($72.5). The estimated slope values for
x2 and x3 are 0.428 and 0.247, respectively, so the second-lowest out-
come received greater weight than the second-highest. The sum of both

weights assigned to middle outcomes is 0.675, leaving a remainder sum
weight of 0.325 for minimum and maximum outcomes. This sum for
middle outcomes (0.675) exceeds the sum of objective probability (0.5),
as in Experiment 1, and is even more extreme than the corresponding
values from Experiment 1 (0.603 and 0.606 for Sets 1 and 2).

4.6. The CPT model

CPT models were fit as follows: First, the value function and prob-
ability weighting function were estimated using all available data for
Experiment 2; then separate CPT models for three- and four-branch
lotteries were estimated (using the value function estimated from all
data) to examine whether the probability weighting functions differ

Fig. 12. CE values of three-branch lotteries presented as a function of x for subjects from California (left), and subjects from Poland (right).

Fig. 13. CE surface as a function of b2 and b3(left), and x2 and x3(right) for four-branch lotteries in Experiment 2. The dots on the surface mark the lotteries involved
in the experiment.
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systematically for these cases. The exponent of the value function es-
timated from all the data is = 1.325 (standard error= 0.212).
Estimated CPT model parameters for separate fits, together with their
standard errors, are given in Table 2.
Fig. 14 shows the estimated probability weighting functions of CPT

for middle branches in three- and four-branch lotteries. These are S-
shaped, rather than inverse-S.
The weight assigned to the middle branch, according to the CPT

model for three-branch lotteries, is 0.620, close to the value of 0.624
estimated in the linear approximation in Fig. 11 (left).
The weights assigned to ranked outcomes x2 and x3, according to

the CPT model for four-branch lotteries, are 0.388 and 0.274, respec-
tively (compared to slope values 0.428 and 0.247 of the linear ap-
proximation in Fig. 13) Their sum in both models (CPT and linear) is
however similar (0.662 vs. 0.675).

4.7. An analysis on the individual level

Linear approximations for three- and four-branch lotteries were
fitted separately for each subject. There were 49 individuals who had
slopes greater than 1/3 in three-branch gambles: (64% of all 76 parti-
cipants). Histograms of the estimated slopes are shown in Fig. 15 (left)
(not shown are estimates from 3 subjects whose estimates were non-
positive).
For slopes estimated from four-branch lotteries: 48 subjects had

s2> 1/4; 33 subjects had s3> 1/4; and for 43 subjects the sum of

s2+ s3> 1/2. The right panel of Fig. 15 shows a histogram of the sums
of estimated slopes s2 and s3, excluding estimates from 15 subjects who
had nonpositive slopes. In sum, the overweighting of middle outcomes
found at the aggregate level is also characteristic of the majority of
individual participants’ data.

5. Discussion

This paper reports new examples of violation of coalescing and
stochastic dominance, as well as evidence that middle outcomes ap-
parently being overweighted (relative to extreme ones) in judgments of
certainty equivalents. The main conclusions extend and confirm pre-
vious findings.
The results of this paper cannot be described by CPT or EU, because

those theories cannot explain violations of coalescing or stochastic
dominance. We found, for example, that lotteries (0, 1/3; 300, 2/3) and
(0, 1/3; 300, 1/3; 300, 1/3), which are objectively equivalent receive
different evaluations, with the three-branch lottery judged higher than
the equivalent two-branch lottery. Further, certain lotteries with
equally likely branches (0, 285, 300), (0, 270, 300), and (0, 225, 300),
are valued more than the binary lottery (0, 1/3; 300, 2/3), despite
being stochastically dominated by it. The opposite is observed when the
middle branch value is low, i.e. certain three-branch lotteries are valued
less than a comparable binary lottery, despite being objectively domi-
nant over it.
It is not always the case that preference orders obtained from

judgments of the value or attractiveness of lotteries and from choices
between lotteries are the same (e.g. Schmidt and Trautmann, 2014).
Cases where lottery A is evaluated higher than B but people choose B
over A are called “preference reversals” and several theories have been
developed and tested to describe them (e.g., Mellers et al., 1992).
However, in this paper we have a case where similar results are ob-
served in both judgment and choice: violations of coalescing and sto-
chastic dominance like those described here for judgments have also
been observed in many studies of choice (Birnbaum, 2008). When the
same phenomena are observed in both judgment and choice, it seems

Table 2
Estimated parameter values of the CPT models: for all data, and separately for
three- and four-branch lotteries. Standard errors are given in parentheses.

α=1.32 (0.21) γ δ

All data 1.71 (0.09) 0.59 (0.10)
3-branch 2.22 (0.11) 0.58 (0.03)
4-branch 1.53 (0.07) 0.60 (0.01)

Fig. 14. Probability weighting functions estimated separately for 3-branches (left) and 4-branches (right).
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reasonable to assume that the same kind of mechanism for evaluation of
the lotteries applies in both cases, though different parameters may be
involved.
Our finding that middle branches receive greater weight than ex-

treme ones is consistent with results with judgments of selling prices of
gambles (Birnbaum and Beeghley, 1997), but it is not necessarily
consistent with studies of choices among gambles. In a general TAX
model (Birnbaum, 2004a), transfers of weights from branch to branch
are free, so it is possible for the middle branch to have the highest
weight. However, in the special TAX model (Birnbaum, 2008), the at-
tention transfers are all equal, so the middle branch of three equally
likely branches is intermediate in weight. Despite this, the special TAX
model can account for a variety of phenomena in choice data, including
violations of stochastic dominance and coalescing, without assuming
greatest weight for the middle branch.
When we attempted to fit the CPT model to our data, the solutions

led to self-contradiction. Binary lotteries could be fit with a probability
weighting function with the usual inverse-S shape, observed in previous
studies, such as in Tversky and Kahneman (1992). However, when we
fit the CPT weighting function separately to lotteries with three or four
branches, we estimated that middle branches have greater relative
weight than their probabilities, leading to a weighting function with the
opposite shape; i.e., S-shaped. Birnbaum and Navarrete (1998) also fit
CPT to show that judgments of binary lotteries and three-branch lot-
teries lead in CPT to contradictory probability weighting functions, si-
milar to our findings, except in a study of choice instead of judgment. It
was found in many studies of choice, starting with Birnbaum and
McIntosh (1996), that the middle branch has greater weight than al-
lowed by any inverse-S weighting function of CPT.
The finding that CPT leads to contradictory probability weighting

functions is taken as evidence that the model is wrong, so parameters
derived using binary lotteries should not be expected to predict results
with multi-branch lotteries. Our conclusions may seem surprising, as
many people once considered CPT to be a well-established model. But
keep in mind that Tversky and Kahneman (1992) fit the CPT model to
binary lotteries and subsequent evidence for the inverse-S weighting
function in CPT came from binary lotteries (e.g. Gonzales and
Wu, 1999). Research involving more outcomes and better experimental
designs have led to problems for the CPT model. For instance,
Kontek (2018) shows that the CPT model is ranked only fourth in the
ranking of models fitting the data from two- and three- branch lotteries
in the Marschak–Machina triangle.
Dozens of other studies falling outside the Marschak–Machina tri-

angle have confirmed direct contradictions in CPT (Birnbaum, 2004b,
2008; Birnbaum and Bahra, 2012). For instance, violations of first order
stochastic dominance have been observed in pairs of three branch

lotteries in choice (Birnbaum and Navarrete, 1998), and in judgment
(Birnbaum et al., 2016). That means that even if we tried to salvage CPT
by allowing a different weighting function for three-branch lotteries, we
could not explain those violations of stochastic dominance.
The finding that middle branches receive weight exceeding their

probabilities stands in contrast not only to CPT with its inverse-S
weighting function, but also to other decision models, such as the
priority heuristic (Brandstätter et al., 2006), which assumes that people
ignore middle branches.
If we reject CPT, we are able to describe our results using an aver-

aging model with configural weights (Birnbaum, 1997) in which the
weights of branches depend on their probability, ranks, and number of
branches:

= =

=
CE

r w p x
r w p

( )
( )
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n

i n i i

i
n

i n i

1 ,

1 ,

where w(pi) is the weight of the branch's probability (not decumulative
probability), and ri, n is the configural weight of branch ranked i in a
lottery with n distinct branches. As noted by Birnbaum (1997), when

=w p p( ) , this model can approximate CPT for binary gambles (al-
lowing a nonlinear utility function would make the approximation even
closer). When γ<1, even with all of the =r 1i n, , this model implies an
inverse-S relation between CE(x, p; y) and p; and when γ<1, this
model also predicts violations of coalescing and stochastic dominance
of the type we observed.
Thus, the contradictions we observed in CPT are consistent with an

averaging model with configural weights, in which the weight of a
branch is a negatively accelerated function of branch probability.
Further, we can describe other aspects of our data by the assumption
that weights are affected by the ranks of the outcomes on discrete
branches (not decumulative probability). One can interpret the slopes
estimated in our linear approximations to effects of the outcomes of
middle branches to be estimates related to the ri, n in the above model.
According to our data, the relative weights of the middle-ranked
branches in two and four-branch gambles are greater than their prob-
abilities.
Such a RAM (Rank-affected multiplicative weights model) is how-

ever not fully satisfying because it requires separate configural weights
for each ranked branch and number of outcomes. Moreover, it does not
explain why the weights would be higher for middle branches, for ex-
ample. What is sought is a simpler, configural or contextual theory,
which we think might take the form of an extension of
Parducci's (1965) range-frequency theory, that could provide a simpler
account of the phenomena that we now describe by empirically esti-
mated configural weights.

Fig. 15. Histograms of individual slope values for 3-branch lotteries (left) and of the sum of slopes s2 and s3 for four-branch lotteries (right).
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7. Appendices

7.1. Appendix 1: Aggregated CE values obtained in Experiment 1

Binary lotteries (p - probability of obtaining xmax, xmin=0)

p 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
=CE x: 300max 15.4 32.9 39.8 78.4 152.1 217.3 258.9 275.0 292.7
=CE x: 900max 24.0 69.3 97.3 220.6 442.6 669.7 781.0 829.9 880.6

Three-branch lotteries (xmin=0, xmax=300)

x 0 15 30 75 150 225 270 285 300
=CE x: 300max 93.6 93.4 104.6 119.8 146.9 193.9 207.6 219.4 214.7

Three-branch lotteries (xmin=0, xmax=900)

x 0 45 90 225 450 675 810 855 900
=CE x: 900max 290.2 246.6 286.3 357.1 461.3 584.3 623.6 627.0 646.5

Four-branch lotteries (xmin=0, xmax=300)

CE: x x|2 3 0 30 150 200 270 300
0 76.4 79.5 130 157.7 159.3
30 87.5 124.7 163.2 169
100 170.3
150 155.7 195.1 205.8
270 244.5 248.4
300 250.6

Four-branch lotteries (xmin=0, xmax=900)

CE: x x|2 3 0 90 450 600 810 900
0 202.7 205.1 376.2 480.9 436.6
90 227.6 338.0 480.1 511.0
300 452.0
450 482.2 586.4 572.8
810 711.7 712.3
900 723.1

7.2. Appendix 2: Aggregated CE values obtained in Experiment 2

Three-branch lotteries (xmin=5, xmax=95)

X 10 20 30 40 50 60 70 80 90
CE1 20.7 26.5 32.6 39.8 47.5 53.7 58.8 65.6 64.8
CE2 21.4 27.2 34.0 39.7 48.3 55.2 59.2 69.1 70.8

Four-branch lotteries (xmin=5, xmax=95)

CE: x x|2 3 10 20 30 40 50 55 60 70 80 90
10 18.0 22.5 27.5 34.7 36.4 41.0 40.1 38.7 45.0
20 22.9 25.0 29.3 33.0 36.8 41.0 42.3 41.2 41.8
30 27.4 28.4 32.1 36.3 38.6 41.6 44.7 44.3 45.1
40 33.1 33.7 38.6 40.5 44.5 46.7 50.2 47.4 48.5
45 48.3
50 37.4 38.4 41.7 42.8 49.2 51.2 54.5 53.2 54.2
60 42.8 44.0 42.4 48.4 52.5 58.4 55.4 59.6 62.2
70 42.1 42.5 44.4 49.3 52.7 59.3 66.9 63.7 67.0
80 44.8 40.0 43.3 49.5 55.5 58.7 64.1 72.7 70.8
90 40.2 46.2 44.8 51.0 55.3 60.6 66.5 73.8 80.0
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7.3. Appendix 3: Instruction used in Experiment 1 (a translation from Polish)

You have a choice to either invest in a risky venture or earn a sure sum of money.
The risky venture may have 2, 3, or 4 scenarios. These may be:

a) a pessimistic and an optimistic scenario (when two scenarios are present);
b) a pessimistic, a neutral, and an optimistic scenario (when three scenarios are present);
c) a very pessimistic, a moderately pessimistic, a moderately optimistic, and a very optimistic scenario (when four scenarios are present).

The scenarios, from the most pessimistic to the most optimistic, are presented in subsequent columns in a table.
The probabilities of occurrence for each scenario are given in the upper row of the table.
The amounts you can earn in each scenario are given in the lower row of the table.
If you invest in a risky venture, your payoff will depend on which scenario occurs. The risk lies in the fact that you have no influence over this.
On the other hand, you can avoid taking part in a risky venture, and earn a sure sum of money (i.e. with 100% certainty) whatever the scenario

(e.g. you can put your money into a savings account).
State the sure sum of money that would make you indifferent between accepting it and taking part in a risky venture, i.e. so that it would not

matter to you whether you received this sure sum or took part in the venture.
Example 1

According to the table, you will earn 0 zł in the pessimistic scenario, 100 zł in the neutral scenario, and 300 zł in the optimistic scenario. Each
scenario has a 33.3% chance of occurrence.

a) Think of the sure sum of money that would make you indifferent between receiving it and taking part in the risky venture. Write this value in
the field below the figure 100% on the right side (100% means that you would receive this amount for sure).
b) If you feel that you would prefer to receive this sum than take part in the risky venture, then the value you have written is too high.
c) If you feel that you would prefer to take part in the risky venture than receive the sum, then the value you have written is too low.
d) Repeat steps a), b), c) until you are indifferent as to whether you take part in the risky venture or receive the sure sum of money.

Further comments:
Carefully consider the amounts given in the problems, and remember that you stand to gain real money. In fact, some of you will be selected to

take part in a real risky venture after the experiment is finished.
Note that payoffs vary across problems.
Try to state the sure sum of money as precisely as possible – at least to within 5–20 zł. Avoid giving rounded amounts. The more precise your

answers, the greater their academic worth.
Do not try to be “mathematically correct”. Obviously, you are not prohibited from counting. It might even be advisable that you do so. Keep in

mind, however, that this is a psychological, and not a mathematical, test.
Before you complete the experiment, try one more example.
Example 2
…………….
If you understand the instructions, start the test by clicking “Next”.
If you are not sure about anything, read the instructions again.
If you do not wish to complete the test, press “Return”.

7.4. Appendix 4: Instruction used in Experiment 2

Instructions for cash values of gambles:
In this task, you are asked to judge the cash equivalent values of gambles. Each gamble can be thought of as a container holding several tickets.

Each ticket has a prize value printed on it. You get to reach in the container and draw out one ticket blindly and at random, and the value printed on
the ticket is your prize.
For example, consider the following case of a container holding exactly 4 tickets:

Each ticket is equally likely, so you might win $30, $40, $50, or $95. Would you like to get one of these prizes? Yes, you would. How much is the
opportunity to reach in and draw out a ticket worth? We are not asking you to judge what you would pay for the opportunity to draw a ticket and win
a prize, but it might be helpful for you to think of that amount as a starting place. Instead, you are asked to state an amount of money such that you
would like the (sure) cash and the gamble equally well. To help you make a judgment, you might write down an amount in the box provided below,
and then ask yourself, which you would rather have. Would you prefer the certain cash, or would you rather try the gamble? If you prefer the cash,
then the amount you wrote down is too big. If you prefer the gamble, then the amount you wrote down was too small. If you like each option equally
well, then your answer is just right. You should feel equally attracted to the money and the gamble.
Now, if you wrote something less than $30, then you would rather take the gamble, because the LEAST you could win with the gamble is $30, and

you might win as much as $95. But the most you can win in any of these choices is $95, so your answer will be less than that. At first, you may find
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the task a bit difficult, but you will soon be able to judge the cash values of the gambles. The first few trials are for practice. If you are not sure what
to do, re-read the instructions, and if still unsure, raise your hand and ask for help.
You will notice that the number of tickets in the urn varies from two to ten. When there is only one ticket, or if all tickets have the same prize, you

are guaranteed to win that amount, so its cash value is the same as the value printed on the ticket. For example, if it says $30, then you would be
indifferent between taking the money ($30) and drawing $30 from the container. When there are two tickets, each ticket has a fifty-fifty chance. For
example, ($30, $100) represents a fifty-fifty chance of winning either $30 or $100. The worst you could do with that gamble is $30 and the best you
could do is $100.

Type a number in the box above and then ask yourself which you would rather have: the amount you typed or the gamble. If they are not equal,
you should adjust the amount in the box so that they are equally good. Remember, the worst you could do with the gamble is $5, so your judgment
should be greater than $5, and the most you could win is $95, so your judgment should be less than $95.
Please re-read the instructions to make sure you understand the task. When you understand the instructions, write in the amount of cash equal to

each gamble below:

W2. ………
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